![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1766095
¼¼°èÀÇ ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç° Á¾·ùº°, ¿øÀç·áº°, À¯±âü À¯Çüº°, ±â¼úº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®White Biotechnology Market Forecasts to 2032 - Global Analysis By Product (Biofuels, Biomaterials, Biochemicals and Industrial Enzymes), Source Material, Organism Types, Technologies, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ½ÃÀåÀº 2025³â¿¡ 3,824¾ï ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 11.56%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 8,224¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö(»ê¾÷ ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö¶ó°íµµ ÇÔ)´Â »ì¾ÆÀÖ´Â ¼¼Æ÷¿Í È¿¼Ò¸¦ »ç¿ëÇÏ¿© Áö¼Ó°¡´ÉÇÑ Á¦Ç° ¹× »ê¾÷ °øÁ¤À» »ý¼ºÇÏ´Â °úÁ¤ÀÔ´Ï´Ù. ÈÇÐ, ±¤¹°, ¿¬·á »ý»ê¿¡¼ ±âÁ¸ÀÇ ¼®À¯ ±â¹Ý ÀýÂ÷¸¦ ¹ÙÀÌ¿À ±â¹Ý °øÁ¤À¸·Î ´ëüÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö´Â ¹ÙÀÌ¿À¸Å½º¿Í °°Àº Àç»ý °¡´ÉÇÑ ÀÚ¿øÀ» Ȱ¿ëÇÏ¿© °øÁ¤ È¿À²À» °³¼±Çϰí, ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̸ç, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÔ´Ï´Ù. ¹ÙÀÌ¿À ¿¡³ÊÁö, ¼¶À¯, ³ó¾÷, Á¦¾à µîÀÇ »ê¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ È¯°æÀûÀ¸·Î À¯ÀÍÇÑ Àü·«Àº Æó±â¹° °¨¼Ò, »ýºÐÇØ¼º, Á¦Á¶ ½Ã ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò¸¦ ÃËÁøÇÏ¿© ¼øÈ¯ °æÁ¦¿¡ ±â¿©ÇÕ´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é, Çö´ë ¹ÙÀÌ¿À ¿¡³ÊÁö´Â ÇöÀç Àü ¼¼°è¿¡¼ »ç¿ëµÇ´Â Àüü Àç»ý¿¡³ÊÁöÀÇ 50%¸¦ Â÷ÁöÇϰí ÀÖÀ¸¸ç, 2025³â±îÁö ¿¬°£ 3%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´ÉÇϰí ģȯ°æÀûÀÎ »ý»ê¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö´Â ¾ö°ÝÇÑ È¯°æ¹ý¿¡ ´ëÀÀÇϰí ÀÌ»êÈź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â ¹æ¹ýÀ¸·Î »ê¾÷°è¿¡¼ Á¡Á¡ ´õ ¸¹Àº Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. »ýºÐÇØ¼º ¹°ÁúÀÇ »ý»êÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á Àå±âÀûÀ¸·Î »ýŰ迡 ´ëÇÑ ÇÇÇØ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À Á¦Ç° ½ÃÀåÀº ¼ÒºñÀÚÀÇ Ä£È¯°æ Á¦Ç° ÁöÇâ¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í Á¶Á÷Àº »ý¸í°øÇÐ ¿¬±¸¿Í ÀÎÇÁ¶ó, ¿¡ÄÚ À̳뺣À̼ÇÀ» ÈÄ¿øÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼ ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö´Â Áö¼Ó°¡´ÉÇÑ »ê¾÷ Çõ½ÅÀÇ ÇÙ½É ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
³ôÀº R&D ºñ¿ë°ú ±ÔÁ¦ À庮
Çõ½ÅÀûÀÎ »ý¸í°øÇÐ °øÁ¤ÀÇ °³¹ß¿¡´Â Àü¹® ÀηÂ, ÷´Ü ±â°è, ´ë±Ô¸ð Å×½ºÆ® ´Ü°è°¡ ÇÊ¿äÇÕ´Ï´Ù. ¾ÈÀü ¹× ȯ°æ ±ÔÁ¦¸¦ ¾ö°ÝÇÏ°Ô ÁؼöÇØ¾ß ÇÏ´Â ±ÔÁ¦ À庮Àº ½ÃÀå ÁøÀÔÀ» ´õ¿í ¾î·Æ°Ô ¸¸µì´Ï´Ù. ´ç±¹ÀÇ Çã°¡¸¦ ¹Þ´Â µ¥´Â ¸¹Àº ºñ¿ë°ú ½Ã°£ÀÌ ¼Ò¿äµË´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°Àº Áß¼Ò±â¾÷ÀÇ ÁøÀÔÀ» Á¦ÇÑÇϰí Á¦Ç° »ó¿ëȸ¦ Áö¿¬½Ãŵ´Ï´Ù. ±× °á°ú, Çõ½ÅÀÌ Á¤Ã¼µÇ°í ½ÃÀå È®´ë°¡ Àü¹ÝÀûÀ¸·Î Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.
ÇÕ¼º»ý¹°Çаú È¿¼Ò°øÇÐÀÇ ¹ßÀü
ÇÕ¼º»ý¹°Çаú È¿¼Ò°øÇÐÀÇ ¹ßÀüÀº ¹ÙÀÌ¿À ±â¹Ý Á¦Ç°, ¿¬·á, ÈÇÐÁ¦Ç°À» º¸´Ù Áö¼Ó°¡´ÉÇÏ°Ô »ý»êÇÒ ¼ö Àִ Ư¼ö ¹Ì»ý¹°ÀÇ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °³¼±µÈ È¿¼Ò °øÇÐÀº ¹ÝÀÀÀÇ ¼±Åüº°ú ¼öÀ²À» ³ô¿© ºñ¿ëÀ» Àý°¨Çϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¾Ç¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÕ¼º»ý¹°ÇÐÀº ±ÕÁÖ ÃÖÀûÈ ¹× ´ë»ç °æ·Î ¼³°è¸¦ °¡¼ÓÈÇÏ¿© »ó¾÷Àû ¹ÙÀÌ¿ÀÇÁ·Î¼¼½ºÀÇ È®À强À» ³ôÀÔ´Ï´Ù. ¼¼°è Áö¼Ó°¡´É¼ºÀÇ ¸ñÇ¥¿¡ µû¶ó ÀÌ·¯ÇÑ ±â¼úÀº ¼®À¯ÈÇÐ ÀÚ¿ø¿¡¼ Àç»ý °¡´É ÀÚ¿øÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇÕ´Ï´Ù. ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö´Â º¸´Ù ºñ¿ë È¿À²ÀûÀ̰í ȯ°æ Ä£ÈÀûÀÎ Á¦Á¶ °øÁ¤À» Á¦°øÇϱ⠶§¹®¿¡ Á¡Á¡ ´õ ¸¹Àº ±â¾÷µéÀÌ À̸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù.
±âÁ¸ ÈÇÐ °øÁ¤°úÀÇ °æÀï
¼ö½Ê ³â¿¡ °ÉÄ£ ÃÖÀûȸ¦ ÅëÇØ ±âÁ¸ ±â¼úÀº ´ë±Ô¸ð Á¦Á¶¿¡¼ ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ÀÎÇÁ¶ó°¡ Àß °®Ãß¾îÁ® Àֱ⠶§¹®¿¡ ´õ ¸¹Àº ÀÚ±ÝÀÌ ÇÊ¿äÇÏÁö ¾Ê½À´Ï´Ù. »ý¸í°øÇÐ Á¦Ç°¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀÌ ºÒÅõ¸íÇÏ´Ù´Â Á¡µµ ¸¹Àº ¾÷°è°¡ ÀüȯÀ» ²¨¸®´Â ÀÌÀ¯ Áß ÇϳªÀÔ´Ï´Ù. ÈÇÐ °øÁ¤Àº »ý»ê ¼Óµµ°¡ ºü¸£±â ¶§¹®¿¡ °æÀïÀûÀ¸·Îµµ À¯¸®ÇÕ´Ï´Ù. µû¶ó¼ ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö´Â ½ÃÀå Á¡À¯À²À» È®´ëÇÏ°í ´õ ³Î¸® ¼ö¿ëµÇ´Â °ÍÀÌ ¾î·Æ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â °ø±Þ¸Á È¥¶õ°ú Àη ºÎÁ·À¸·Î »ý»ê ¹× ¿¬±¸ Ȱµ¿¿¡ Â÷ÁúÀ» ºú¾úÁö¸¸, Áö¼Ó°¡´ÉÇϰí ÇöÁö¿¡¼ »ý»êµÈ ¹ÙÀÌ¿À ±â¹Ý Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. °Ç°, À§»ý, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ÀǾàǰ, ½Äǰ, û¼Ò Á¦Ç°¿¡¼ ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯ÁöÀÇ Ã¤ÅÃÀÌ °¡¼ÓȵǾú½À´Ï´Ù. Á¤ºÎ¿Í »ê¾÷°è´Â ź·Â¼ºÀ» È®º¸Çϱâ À§ÇØ ¹ÙÀÌ¿À ±â¹Ý Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í, Àå±âÀûÀÎ ¼ºÀåÀ» ÃËÁøÇÏ°í ³ì»ö ¹ÙÀÌ¿À °øÁ¤ ±â¼úÀÇ ¹ßÀüÀ» ÃËÁøÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹ÙÀÌ¿À¼ÒÀç ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¹ÙÀÌ¿À¼ÒÀç ºÐ¾ß´Â ¼®À¯ ±â¹Ý ¼ÒÀç¿¡ ´ëÇÑ Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀ» Á¦°øÇÔÀ¸·Î½á ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÐ¾ß´Â »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½, ÀÇ·á¿ë ÀÓÇöõÆ®, Æ÷Àå ¼Ö·ç¼ÇÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ¼¼°è ȯ°æ ±ÔÁ¦¿¡ ºÎÇÕÇÒ °ÍÀÔ´Ï´Ù. ¹ßÈ¿ ¹× È¿¼Ò °øÁ¤ÀÇ ¹ßÀüÀº ¹ÙÀÌ¿À¼ÒÀç »ý»êÀÇ È¿À²¼º°ú È®À强À» Çâ»ó½Ãŵ´Ï´Ù. ÇコÄɾî, ³ó¾÷, ¼ÒºñÀç µîÀÇ »ê¾÷ ¼ö¿ä Áõ°¡´Â ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ±â¾÷µéÀÌ Ä£È¯°æÀûÀ̰í Àç»ý °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, ¹ÙÀÌ¿À¼ÒÀç´Â ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯ÁöÀÇ ÀÀ¿ë ºÐ¾ß°¡ Áö¼ÓÀûÀ¸·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ê¾÷ ¹× Á¦Á¶ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹ÙÀÌ¿À ±â¹Ý °øÁ¤À» ÅëÇÑ »ý»ê È¿À²¼º Çâ»óÀ¸·Î ÀÎÇØ »ê¾÷ Á¦Á¶ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àç»ý °¡´ÉÇÑ ¿ø·á¸¦ »ç¿ëÇÔÀ¸·Î½á ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̰í Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¹æ½ÄÀ¸·Î À̾îÁý´Ï´Ù. ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö°¡ °³¹ßÇÑ È¿¼Ò¿Í ¹Ì»ý¹°Àº ÈÇÐ ¹ÝÀÀÀ» °£¼ÒÈÇÏ°í ¿¡³ÊÁö ¼Òºñ¿Í Æó±â¹° ¹ß»ýÀ» ÁÙÀÔ´Ï´Ù. ÀÌ ºÐ¾ß´Â ¶ÇÇÑ »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½°ú ģȯ°æ ÈÇÐÁ¦Ç°ÀÇ °³¹ßÀ» Áö¿øÇÏ¿© ¼¼°è ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù. ³ì»ö »ê¾÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ ºÐ¾ßÀÇ ±â¼ú Çõ½Å°ú ÅõÀÚ°¡ °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº »ê¾÷ ¼ö¿ä Áõ°¡, Áö¼Ó°¡´ÉÇÑ »ý»ê¿¡ ´ëÇÑ Á¤ºÎ ¿ì´ë Á¤Ã¥, ´ë±Ô¸ð ¹ÙÀÌ¿À ±â¹Ý ¿ø·á °ø±ÞÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡µéÀº ¿¬±¸°³¹ß ¹× ¹ÙÀÌ¿À Á¤Á¦ ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ¼®À¯ÈÇÐÁ¦Ç°¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙ¿©¾ß ÇÒ Çʿ伺¿¡ µû¶ó ÀÌ ½ÃÀåÀº ÀÌÀÍÀ» ¾ò°í ÀÖ½À´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ¿Í È°¹ßÇÑ »ê¾÷ »ý»êÀº ƯÈ÷ ÀǾàǰ, ½Äǰ, ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ºÐ¾ßÀÇ ¼ö¿ä¸¦ ´õ¿í ÀÚ±ØÇÏ¿© ¾Æ½Ã¾ÆÅÂÆò¾çÀ» ÇâÈÄ ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö È®ÀåÀÇ Áß¿äÇÑ °ÅÁ¡À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¹Ì±¹°ú ij³ª´ÙÀÇ °·ÂÇÑ ±â¿©·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ÷´Ü ¹ÙÀÌ¿À °øÁ¤ ±â¼ú, ƯÇã Ãâ¿ø, ¹ÙÀÌ¿À ±â¼ú ½Å»ý ±â¾÷¿¡¼ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¹ÙÀÌ¿À¿¬·á, Ư¼ö È¿¼Ò, »ê¾÷¿ë ÈÇÐÁ¦Ç° µî Áö¼Ó°¡´ÉÇÑ ¹ÙÀÌ¿À Á¦Á¶¿¡ ´ëÇÑ ±ÔÁ¦ Áö¿ø°ú ÀÚ±Ý Áö¿øÀº ½ÃÀå °³Ã´À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ³ôÀº »ý»ê ºñ¿ë°ú ¾ö°ÝÇÑ ±ÔÁ¤ Áؼö ¿ä°ÇÀÌ ºü¸¥ È®À强À» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ºÀå¼¼´Â Áö¼ÓµÉ °ÍÀÌÁö¸¸, º¸´Ù ¾ÈÁ¤ÀûÀÌ°í ¿¬±¸ Áý¾àÀûÀ̱⠶§¹®¿¡ ºÏ¹Ì´Â ¾çÀû È®À庸´Ù´Â ÈÀÌÆ® ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö Çõ½ÅÀÇ ¼±µÎÁÖÀÚ°¡ µÉ °ÍÀÔ´Ï´Ù.
According to Stratistics MRC, the Global White Biotechnology Market is accounted for $382.40 billion in 2025 and is expected to reach $822.40 billion by 2032 growing at a CAGR of 11.56% during the forecast period. White biotechnology, sometimes referred to as industrial biotechnology, is the process of creating sustainable products and industrial processes using live cells and enzymes. It emphasises the replacement of traditional petroleum-based procedures with bio-based processes for the production of chemicals, minerals, and fuels. White biotechnology improves process efficiency, lowers energy consumption, and lessens its impact on the environment by utilising renewable resources like biomass. It is essential to industries including bioenergy, textiles, agriculture, and pharmaceuticals. This environmentally beneficial strategy encourages waste reduction, biodegradability, and a smaller carbon footprint during manufacturing, all of which contribute to the circular economy.
According to the International Energy Agency (IEA), Modern bioenergy constitutes 50% of all renewable energy used in the world today and is expected to grow 3% per year through 2025.
Rising demand for sustainable and eco-friendly production
White biotechnology is becoming more and more popular among industries as a way to meet strict environmental laws and lower carbon footprints. It reduces long-term ecological harm by making it possible to produce biodegradable materials. The market for bio-manufactured items is being driven by consumers' preference for green products. Governments and organisations are sponsoring biotech research and infrastructure, as well as eco-innovations. White biotechnology is therefore emerging as a key component of sustainable industrial change.
High R&D costs and regulatory hurdles
Innovative biotechnological process development calls for specialised staff, sophisticated machinery, and extensive testing stages. By requiring stringent adherence to safety and environmental regulations, regulatory barriers make market entry even more difficult. Getting agency clearances can be expensive and time-consuming. These obstacles restrict the involvement of small and medium-sized businesses and postpone the commercialisation of products. Innovation may consequently stall, which would limit market expansion as a whole.
Advancements in synthetic biology and enzyme engineering
Advancements in synthetic biology and enzyme engineering enable the development of specialised microbes capable of more sustainably producing bio-based products, fuels, and chemicals. Improved enzyme engineering lowers expenses and has a less negative effect on the environment by increasing reaction selectivity and yield. Additionally, strain optimisation and metabolic pathway design are accelerated by synthetic biology, increasing the scalability of commercial bioprocesses. In line with the objectives of global sustainability, these technologies facilitate the transition from petrochemical to renewable resources. Because white biotechnology offers more cost-effective and environmentally friendly manufacturing processes, companies are adopting it more and more.
Competition from conventional chemical processes
Decades of optimisation have made these conventional techniques more cost-effective for large-scale manufacturing. Their extensive infrastructure eliminates the need for more funding. The uncertainty surrounding regulatory approvals for biotechnology products is another reason why many industries are reluctant to make the shift. Chemical processes' quicker output rates give them a competitive advantage as well. White biotechnology hence has difficulties expanding its market share and garnering broader acceptance.
Covid-19 Impact
The COVID-19 pandemic had a mixed impact on the White Biotechnology Market. While supply chain disruptions and workforce shortages initially hindered production and research activities, the demand for sustainable and locally produced bio-based products surged. Increased focus on health, hygiene, and sustainability accelerated the adoption of white biotechnology in pharmaceuticals, food, and cleaning products. Governments and industries invested more in bio-based innovations to ensure resilience, ultimately fostering long-term growth and driving advancements in green bioprocessing technologies.
The biomaterials segment is expected to be the largest during the forecast period
The biomaterials segment is expected to account for the largest market share during the forecast period by offering sustainable alternatives to petroleum-based materials. It drives innovation in biodegradable plastics, medical implants, and packaging solutions, aligning with global environmental regulations. Advancements in fermentation and enzymatic processes enhance the efficiency and scalability of biomaterial production. Increasing demand from industries such as healthcare, agriculture, and consumer goods boosts market expansion. As companies prioritize eco-friendly and renewable solutions, biomaterials continue to fuel growth in white biotechnology applications.
The industrial manufacturing segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the industrial manufacturing segment is predicted to witness the highest growth rate, due to enhanced production efficiency through bio-based processes. It reduces reliance on fossil fuels by utilizing renewable raw materials, leading to sustainable manufacturing practices. Enzymes and microbes developed through white biotechnology streamline chemical reactions, cutting down energy consumption and waste generation. This segment also supports the development of biodegradable plastics and eco-friendly chemicals, aligning with global environmental goals. Increasing demand for green industrial solutions continues to drive innovations and investments in this sector.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to increasing industrial demand, government incentives for sustainable production, and a large bio-based feedstock supply. Countries like China, India, and Japan are investing heavily in R&D and bio-refinery infrastructure. The market benefits from rising environmental concerns and the need to reduce reliance on petrochemicals. Rapid urbanization and strong industrial output further fuel demand, particularly in pharmaceuticals, food, and bio-plastics, positioning Asia Pacific as a key hub for future white biotech expansion.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to strong contributions from the United States and Canada. The region leads in advanced bioprocess technologies, patent filings, and biotech startups. Regulatory support and funding for sustainable biomanufacturing, especially in biofuels, specialty enzymes, and industrial chemicals, propel market development. However, high production costs and strict compliance requirements may hinder rapid scalability. While growth continues, it is more stable and research-intensive, making North America a leader in white biotechnology innovation rather than volume-driven expansion.
Key players in the market
Some of the key players profiled in the White Biotechnology Market include Koninklijke DSM N.V., DuPont de Nemours, Inc., BASF SE, Evonik Industries AG, Novozymes A/S, Corbion N.V., Lonza Group Ltd, Amyris, Inc., Ginkgo Bioworks, Kaneka Corporation, Akzo Nobel N.V., Henkel AG & Co. KGaA, Mitsubishi Corporation, Cargill, Inc., Archer Daniels Midland Company (ADM), Fujifilm Holdings Corporation, BioAmber and Codexis, Inc.
In April 2025, DSM partnered with Inscripta to co-develop innovative well-aging skincare ingredients. Leveraging Inscripta's GenoScaler(TM) platform, the collaboration aims to engineer microbial strains for sustainable production of bio-based cosmetic actives. This partnership enhances dsm firmenich's biotech capabilities in personal care through precision strain development and green manufacturing.
In September 2024, DuPont and Royal DSM established a 50/50 joint venture named Actamax Surgical Materials LLC to develop and commercialize innovative biodegradable hydrogel-based biomedical materials. These include surgical sealants, tissue adhesives, and adhesion barriers aimed at enhancing patient outcomes, minimizing surgical complications, and supporting advanced wound management solutions.
In June 2024, BASF and Saarland, Marburg & Kaiserslautern Universities launched a joint research project using Basfia succiniciproducens to convert sugar and CO2 into bio-based fumaric acid-an important intermediate in the chemical industry.