![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1766097
¼¼°èÀÇ µ¿¹°¿ë ¹é½Å ½ÃÀå ¿¹Ãø(-2032³â) : Á¾·ùº°, µ¿¹°º°, Áúȯº°, ±â¼úº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Veterinary Vaccine Market Forecasts to 2032 - Global Analysis By Type, Animal, Disease, Technology, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ µ¿¹°¿ë ¹é½Å ½ÃÀåÀº 2025³â¿¡ 129¾ï 8,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 7.8%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 219¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
µ¿¹°¿ë ¹é½ÅÀº µ¿¹°ÀÇ ¸é¿ªÃ¼°è¸¦ ÀÚ±ØÇÏ¿© ƯÁ¤ Àü¿°º´À¸·ÎºÎÅÍ µ¿¹°À» º¸È£Çϱâ À§ÇØ »ç¿ëµÇ´Â »ý¹°ÇÐÀû Á¦Á¦ÀÔ´Ï´Ù. ¹é½Å¿¡´Â ¹ÙÀÌ·¯½º, ¹ÚÅ׸®¾Æ, ±â»ýÃæ µîÀÇ º´¿øÃ¼¿¡¼ À¯·¡ÇÑ Ç׿øÀÌ Æ÷ÇԵǾî ÀÖ¾î Áúº´ ÀÚü¸¦ À¯¹ßÇÏÁö ¾Ê°í ¸é¿ª¹ÝÀÀÀ» ÀÏÀ¸Åµ´Ï´Ù. µ¿¹°¿ë ¹é½ÅÀº Áúº´ ¹ß»ýÀ» ¿¹¹æÇϰí, µ¿¹°ÀÇ º¹Áö¸¦ ÁõÁøÇϸç, ½ÄǰÀÇ ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÎ µµ±¸ÀÔ´Ï´Ù. µ¿¹°¿ë ¹é½ÅÀº Àμö°øÅëÀü¿°º´ÀÇ È®»êÀ» ¾ïÁ¦Çϰí, »ý»ê¼ºÀ» Çâ»ó½Ã۸ç, µ¿¹° °Ç° °ü¸®¿¡¼ Ç×»ýÁ¦ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ ¹Ý·Áµ¿¹°°ú °¡Ãà ¸ðµÎ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.
Áß±¹ ±¹°¡Åë°è±¹¿¡ µû¸£¸é, 2023³â Áß±¹ÀÇ µÅÁö°í±â »ý»ê·®Àº 5,794¸¸ ÅæÀ¸·Î Àü³â ´ëºñ 5% Áõ°¡Çß½À´Ï´Ù.
Àμö°øÅëÀü¿°º´ ¹× °¡ÃàÀü¿°º´ÀÇ À¯Çà Áõ°¡
µ¿¹°¿¡¼ »ç¶÷À¸·Î Àü¿°µÇ´Â Áúº´ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °øÁß º¸°ÇÀ» º¸È£Çϱâ À§ÇÑ ¿¹¹æ Á¶Ä¡ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °¡ÃàÀ» º¸È£Çϰí Áúº´ ¹ß»ýÀ¸·Î ÀÎÇÑ °æÁ¦Àû ¼Õ½ÇÀ» ÇÇÇϱâ À§ÇØ Ãà»ê¾÷ÀÚµéÀº ¹é½Å¿¡ ¸¹Àº ºñ¿ëÀ» ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. Áúº´ È®»êÀ» ¾ïÁ¦Çϱâ À§ÇØ Á¤ºÎ¿Í º¸°Ç ±â°üÀº ¹é½Å Á¢Á¾ ÇÁ·Î±×·¥À» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. »õ·Î¿î Áúº´ÀÇ ÃâÇöÀ¸·Î ÀÎÇØ ÃֽŠ÷´Ü ¹é½Å Á¢Á¾ÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. µ¿¹°¿ë ¹é½Å ºÐ¾ßÀÇ Çõ½Å°ú ¼ºÀåÀº ÀÌ·¯ÇÑ ±ä±Þ¼º°ú ÀνÄÀÇ Áõ°¡·Î ÀÎÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
³ôÀº ºñ¿ë°ú ¾ö°ÝÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ
Çõ½ÅÀûÀÎ ¹é½ÅÀ» °³¹ßÇϱâ À§Çؼ´Â ÷´Ü ±â¼ú°ú Àü¹® Áö½Ä¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀ¸·Î ÀÎÇØ Á¦Ç° Ãâ½Ã°¡ ´Ê¾îÁö°í ¼Ò±Ô¸ð °æÀï»çÀÇ ÁøÀÔÀÌ Á¦ÇѵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÇ ¾ö°ÝÇÑ ½ÂÀÎÀ¸·Î ÀÎÇØ ¾ÈÀü¼º ¹× À¯È¿¼º ½ÃÇèÀÌ ¸¹ÀÌ ÇÊ¿äÇϸç, ±× º¹À⼺Àº ´õ¿í Áõ°¡ÇÕ´Ï´Ù. ½ÃÀå Ãâ½Ã ½Ã°£ÀÌ ±æ¾îÁö°í, ½ÂÀÎ ÀýÂ÷°¡ ±æ¾îÁö°í, ºñ¿ëÀÌ ¸¹ÀÌ µé±â ¶§¹®¿¡ ±â¼ú Çõ½ÅÀÌ ÀúÇØµË´Ï´Ù. ÀÌ·¯ÇÑ º¯¼öµéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© Àü ¼¼°èÀûÀ¸·Î »õ·Î¿î µ¿¹° ¿¹¹æÁ¢Á¾ÀÇ °¡¿ë¼º°ú ¼ºÀåÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
¹é½Å ±â¼ú ¹× ¸ÂÃãÇü ÀÇ·áÀÇ ¹ßÀü
º¤ÅÍ ±â¹Ý ¹é½Å Á¢Á¾, mRNA ±â¹Ý ¹é½Å, ÀçÁ¶ÇÕ DNA ±â¼ú µîÀÇ ±â¼ú Çõ½ÅÀ¸·Î ¸é¿ª ¹ÝÀÀÀÌ °³¼±µÇ°í ºÎÀÛ¿ëÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. »õ·Ó°Ô ¹ß»ýÇÏ´Â Àμö°øÅëÀü¿°º´¿¡ ´ëÇÑ ½Å¼ÓÇÑ ´ëÀÀµµ ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ °¡´ÉÇØÁ³½À´Ï´Ù. µ¿¹°ÀÇ Á¾, ǰÁ¾, °Ç° »óÅ¿¡ µû¸¥ Ư¼ö ¹é½Å Á¢Á¾ °èȹ¿¡ ´ëÇÑ ¼ö¿ä´Â °³º°ÈµÈ µ¿¹° °ü¸®¸¦ ÅëÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. µ¿¹°ÀÇ »ý»ê¼º°ú Áúº´ ¿¹¹æÀº ÀÌ·¯ÇÑ ÁýÁß Àü·«À» ÅëÇØ °ÈµË´Ï´Ù. Àü¹ÝÀûÀ¸·Î, ÀÌ·¯ÇÑ ¿ªÇÐÀº µ¿¹° ¹é½Å ½ÃÀåÀÇ ¼ºÀå°ú °ü·Ã¼ºÀ» Å©°Ô Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
Àú¼Òµæ Áö¿ªÀÇ ¹é½Å ³»¼º ¹× Á¦ÇÑµÈ ÄݵåüÀÎ ÀÎÇÁ¶ó
¹®ÈÀû ½Å³ä, À߸øµÈ Á¤º¸, ¹é½ÅÀÇ È¿°ú¿¡ ´ëÇÑ ÀDZ¸½É µîÀÌ ¸ðµÎ ÀÌ·¯ÇÑ ÀúÇ׿¡ ÀÏÁ¶Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÒÃæºÐÇÑ ÄݵåüÀÎ ÀÎÇÁ¶ó´Â ¿¹¹æ Á¢Á¾ º¸°ü ¹× ¿î¼Û ¹æ¹ý¿¡ ¿µÇâÀ» ¹ÌÃÄ ¿¹¹æ Á¢Á¾ È¿°ú¸¦ ¶³¾î¶ß¸³´Ï´Ù. ÀÌ ¹®Á¦´Â ºÒÃæºÐÇÑ ³ÃÀå ½Ã¼³°ú ºÒ¾ÈÁ¤ÇÑ Àü·Â °ø±ÞÀ¸·Î ÀÎÇØ ´õ¿í ¾Çȵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦ÀÇ °á°ú·Î Áúº´ ¹ß»ý°ú ¹é½Å Á¢Á¾·üÀÌ °¨¼ÒÇÕ´Ï´Ù. ±× °á°ú, À̵é Áö¿ªÀÇ µ¿¹°¿ë ¹é½Å ½ÃÀåÀÇ È®´ë¿Í È¿´ÉÀº °è¼Ó Á¦Çѵǰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº µ¿¹°¿ë ¹é½Å ½ÃÀå¿¡ ¾î´À Á¤µµ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °ø±Þ¸ÁÀÇ È¥¶õ°ú Æó¼â ±â°£ µ¿¾È ¼öÀÇ»ç ¹æ¹® °¨¼Ò·Î ÀÎÇØ ÀϽÃÀûÀ¸·Î ¹é½Å À¯Åë ¹× ÆÇ¸Å¿¡ ÁöÀåÀ» ÃÊ·¡ÇßÁö¸¸, ¹Ý·Áµ¿¹° »çÀ°ÀÌ Áõ°¡ÇÏ°í µ¿¹° °Ç°¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ ºÐ¾ß´Â ȸº¹¼¼¸¦ º¸¿´½À´Ï´Ù. Á¤ºÎ¿Í ÀÌÇØ°ü°èÀÚµéÀº Àμö°øÅëÀü¿°º´ÀÇ ¹ß»ýÀ» ÇÇÇϱâ À§ÇØ µ¿¹° Áúº´ ¿¹¹æ¿¡ ÁßÁ¡À» µÎ¾î ¹é½Å ¼ö¿ä¸¦ °ßÀÎÇß½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ »ý¸í°øÇÐ ¹× Áø´Ü µµ±¸ÀÇ ¹ßÀüÀº µ¿¹°¿ë ¹é½Å °³¹ßÀÇ ±â¼ú Çõ½ÅÀ» °¡¼ÓÈÇÏ¿© ½ÃÀåÀÇ È¸º¹°ú Àå±âÀûÀÎ ¼ºÀåÀ» µÞ¹ÞħÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀçÁ¶ÇÕ ¹é½Å ºÐ¾ß°¡ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀçÁ¶ÇÕ ¹é½Å ºÐ¾ß´Â º¸´Ù ¾ÈÀüÇÑ ¿¹¹æÁ¢Á¾ ¼Ö·ç¼ÇÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¹é½ÅÀº º´¿øÃ¼ ÀçÀ¯ÀÔÀÇ À§ÇèÀ» ÁÙÀÌ°í µ¿¹°ÀÇ ¾ÈÀü¼º°ú ¹é½ÅÀÇ ¾ÈÁ¤¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ½ÅÈï Áúº´¿¡ ´ëÇÑ ½Å¼ÓÇÑ °³¹ßÀ» °¡´ÉÇÏ°Ô Çϰí, ¹ßº´¿¡ ´ëÇÑ Àû½Ã ´ëÀÀÀ» Áö¿øÇÕ´Ï´Ù. °·ÂÇÑ ¸é¿ª¹ÝÀÀÀ» À¯µµÇÏ´Â È¿À²¼ºÀÌ ³ô¾Æ Åõ¿© Ƚ¼ö¸¦ ÁÙÀÌ°í ¼øÀÀµµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, µ¿¹° ÀÇ·á ºÐ¾ß¿¡¼ ÷´Ü »ý¸í°øÇÐ ±â¼úÀÇ Ã¤ÅÃÀÌ È®´ëµÇ¸é¼ ÀçÁ¶ÇÕ ¹é½Å¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ÀçÅÃÀÇ·á ºÐ¾ßÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, ƯÈ÷ ¹Ý·Áµ¿¹°ÀÇ °æ¿ì Æí¸®ÇÏ°í ½Ã±âÀûÀýÇÑ ¹é½Å Á¢Á¾ÀÌ °¡´ÉÇØÁü¿¡ µû¶ó ÀçÅÃÀÇ·á ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̸¦ ÅëÇØ µ¿¹°º´¿øÀ» ÀÚÁÖ ¹æ¹®ÇÒ Çʿ䰡 ÁÙ¾îµé°í, ¹Ý·Áµ¿¹°°ú º¸È£ÀÚ¿¡°Ô ¿¹¹æ ÀÇ·á°¡ ´õ Ä£¼÷ÇÏ°í ½ºÆ®·¹½º°¡ Àû½À´Ï´Ù. ¹Ý·Áµ¿¹° »çÀ°ÀÇ Áõ°¡¿Í µ¿¹° °Ç°¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó °¡Á¤¿ë ¹é½Å ¹× °ü·Ã ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ç¿ëÇϱ⠽¬¿î ¹é½Å °ø±Þ ½Ã½ºÅÛ°ú °°Àº ±â¼úÀÇ ¹ßÀüÀº °¡Á¤ ³» Á¢Á¾À» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â ¹é½Å Á¢Á¾ ÁؼöÀ²À» ³ôÀ̰í Àüü ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Ãà ¼öÀÇ Áõ°¡, µ¿¹° °Ç°¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡, Á¤ºÎ Áö¿øÃ¥À¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ, È£ÁÖ µîÀÇ ±¹°¡¿¡¼´Â ±¸Á¦¿ª, µÅÁö¿º´, Á¶·ùµ¶°¨ ¹é½Å¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À°·ù ¹× À¯Á¦Ç° »ê¾÷ÀÇ È®´ë¿Í ¼öÀÇÇÐ ÀÎÇÁ¶óÀÇ °³¼±Àº ½ÃÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ³óÃÌ Áö¿ª¿¡¼´Â ±ÔÁ¦ À庮°ú ÄݵåüÀÎ ¹°·ùÀÇ Á¦ÇÑ µîÀÇ ¹®Á¦°¡ ¿©ÀüÈ÷ ³²¾Æ ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ¼±ÁøÀûÀÎ µ¿¹° °Ç° °ü¸® ½Ã½ºÅÛ, °·ÂÇÑ R&D ÅõÀÚ, ¹Ý·Áµ¿¹° °Ç°¿¡ ´ëÇÑ ³ôÀº °ü½ÉÀ¸·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â DNA ¹é½Å°ú À¯ÀüÀÚÀçÁ¶ÇÕ ¹é½Å°ú °°Àº ±â¼úÀÇ º¸±ÞÀ¸·Î ±â¼ú Çõ½Å°ú ¹é½Å µµÀÔ¿¡ ¾ÕÀå¼°í ÀÖ½À´Ï´Ù. ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ¹é½ÅÀÇ Ç°ÁúÀ» º¸ÀåÇÏÁö¸¸, µ¿½Ã¿¡ ½ÅÁ¦Ç° ÁøÀÔ¿¡ ´ëÇÑ µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ´Þ¸® ¹Ý·Áµ¿¹° º¸Çè°ú µ¿¹°º´¿ø¿¡ ´ëÇÑ Á¢±Ù¼ºÀº ¼º¼÷ÇÏ°í ±â¼ú Áý¾àÀûÀÎ Á¢±Ù ¹æ½ÄÀ» ¹Ý¿µÇÏ¿© ½ÃÀå ¿ªÇп¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Veterinary Vaccine Market is accounted for $12.98 billion in 2025 and is expected to reach $21.97 billion by 2032 growing at a CAGR of 7.8% during the forecast period. A veterinary vaccine is a biological preparation used to protect animals from specific infectious diseases by stimulating their immune systems. It contains antigens derived from pathogens such as viruses, bacteria, or parasites, which trigger an immune response without causing the disease itself. Veterinary vaccines are essential tools in preventing disease outbreaks, enhancing animal welfare, and improving food safety. They are widely used in both domestic pets and livestock to reduce the spread of zoonotic diseases, boost productivity, and decrease reliance on antibiotics in animal health management.
According to the National Bureau of Statistics China, China produced 57.94 million tonnes of pig meat in 2023, which represented a 5% increase from the previous year.
Rising prevalence of zoonotic diseases and livestock infections
The need for preventive measures to protect public health is growing as more diseases spread from animals to people. In order to protect animals and avoid financial losses due to disease outbreaks, livestock producers are spending money on vaccines. Vaccination programs are being promoted by governments and health organisations in an effort to curb the spread of illnesses. The need for updated and sophisticated vaccinations is further increased by the appearance of new disease strains. Innovation and growth in the veterinary vaccine sector are being driven by this increased urgency and awareness.
High cost and stringent regulatory approvals
Innovative vaccine development necessitates a large investment in cutting-edge technology and specialised knowledge. These costs frequently postpone product debuts and restrict access for smaller competitors. The intricacy is increased by strict regulatory approvals, which call for a great deal of safety and effectiveness testing. Time-to-market increases and innovation is discouraged by the drawn-out and expensive approval processes. All of these variables work together to limit the availability and growth of new veterinary vaccinations around the world.
Advancements in vaccine technology and personalized animal care
Immune response is improved and adverse effects are decreased by innovations including vector-based vaccinations, mRNA-based vaccines, and recombinant DNA technologies. Faster reactions to newly developing zoonotic diseases are also made possible by these technologies. Demand for specialised vaccination plans based on species, breed, and health status is being driven by personalised animal care. Animal productivity and disease prevention are enhanced by this focused strategy. When taken as a whole, these dynamics greatly increase the market for veterinary vaccines' growth and relevance.
Vaccine resistance and limited cold chain infrastructure in low-income regions
Cultural beliefs, misinformation, and doubts about the effectiveness of vaccines all play a part in this resistance. Furthermore, inadequate cold chain infrastructure compromises the effectiveness of vaccinations by affecting how they are stored and transported. The problem is made worse by inadequate refrigeration equipment and an unstable electrical supply. Disease outbreaks and vaccination coverage decline as a result of these issues. As a result, the veterinary vaccine market's expansion and efficacy in these areas continue to be limited.
Covid-19 Impact
The COVID-19 pandemic moderately impacted the Veterinary Vaccine Market. While disruptions in supply chains and reduced veterinary visits during lockdowns temporarily hindered vaccine distribution and sales, the sector rebounded as pet adoption increased and awareness of animal health grew. Governments and stakeholders emphasized disease prevention in animals to avoid zoonotic outbreaks, driving demand for vaccines. Moreover, advancements in biotechnology and diagnostic tools, inspired by the pandemic, accelerated innovation in veterinary vaccine development, supporting market recovery and long-term growth.
The recombinant vaccines segment is expected to be the largest during the forecast period
The recombinant vaccines segment is expected to account for the largest market share during the forecast period, due to safer immunization solutions. These vaccines reduce the risk of reversion to virulence, enhancing animal safety and vaccine stability. They enable rapid development against emerging diseases, supporting timely responses to outbreaks. Their efficiency in inducing strong immune responses leads to reduced dosage frequency and improved compliance. Additionally, the growing adoption of advanced biotechnology in veterinary medicine fuels the demand for recombinant vaccines globally.
The homecare settings segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the homecare settings segment is predicted to witness the highest growth rate by enabling convenient and timely administration of vaccines, especially for companion animals. It reduces the need for frequent veterinary clinic visits, making preventive care more accessible and less stressful for pets and owners. Growing pet ownership and increasing awareness about animal health are driving demand for home-use vaccines and related services. Technological advancements like easy-to-use vaccine delivery systems further support at-home administration. This shift enhances vaccination compliance and boosts overall market growth.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to increasing livestock populations, rising awareness of animal health, and supportive government initiatives. Countries like China, India, and Australia are witnessing increased demand for vaccines against foot-and-mouth disease, swine fever, and avian influenza. Expanding meat and dairy industries, along with improving veterinary infrastructure, further boost the market. However, challenges like regulatory barriers and limited cold chain logistics persist in rural areas.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to advanced animal healthcare systems, strong R&D investments, and a high focus on companion animal health. The U.S. and Canada lead in innovation and vaccine adoption, with widespread use of technologies like DNA and recombinant vaccines. Stringent regulatory frameworks ensure vaccine quality but also pose entry challenges for new products. Unlike Asia Pacific, pet insurance and veterinary service access significantly influence market dynamics, reflecting the region's mature and technology-intensive approach.
Key players in the market
Some of the key players profiled in the Veterinary Vaccine Market include Zoetis Inc., Boehringer Ingelheim GmbH, Merck & Co., Inc., Ceva Sante Animale, Elanco Animal Health, Virbac S.A., HIPRA, Phibro Animal Health Corporation, Vaxxinova International B.V., Biogenesis Bago, Hester Biosciences Limited, Indian Immunologicals Ltd., Neogen Corporation, Tianjin Ringpu Bio-Technology Co., Ltd., China Animal Husbandry Group, Jinyu Bio-technology Co., Ltd., Ourofino Saude Animal and Vetoquinol.
In June 2025, Boehringer Ingelheim entered a strategic collaboration with Eko Health, a leader in AI-powered detection of heart and lung diseases, to improve heart murmur detection in dogs. This partnership combines BI's expertise in canine cardiology with Eko's digital stethoscope and AI algorithms. The collaboration aims to launch a canine-specific heart murmur detection algorithm via an Eko mobile app in 2026, enhancing early diagnosis and care for canine heart disease.
In March 2025, Zoetis collaborated with the Federation of European Companion Animal Veterinary Associations (FECAVA) and the Federation of Veterinarians of Europe (FVE) to launch a handbook promoting best practices and policy recommendations to strengthen the human-animal bond. This initiative highlights Zoetis's commitment to advancing animal and human health through multi-stakeholder engagement.
In September 2024, Boehringer Ingelheim acquired Saiba Animal Health, a Swiss company specializing in therapeutic vaccines for companion animals. The acquisition brings SAH's virus-like particle vaccine platform into BI's R&D portfolio, targeting chronic diseases such as allergies, inflammation, and pain in pets. This move builds on previous collaborations between the companies and is expected to accelerate the development of innovative therapeutic vaccines with longer-lasting effects.