![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1766107
¼¼°èÀÇ °í¼øµµ °¡½º ½ÃÀå ¿¹Ãø(-2032³â) : °¡½º Á¾·ùº°, Á¦Á¶ °øÁ¤º°, ÀúÀå ¼ö´Üº°, ¼øµµ ·¹º§º°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®High Purity Gas Market Forecasts to 2032 - Global Analysis By Gas Type (High Atmospheric Gases, Noble Gases, Carbon Gases, Hydrogen (H2), and Other Gas Types), Manufacturing Process, Storage, Purity Level, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ °í¼øµµ °¡½º ½ÃÀåÀº 2025³â¿¡ 205¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 6.3%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 314¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°í¼øµµ °¡½º´Â ¸Å¿ì ³·Àº ¿À¿° ¼öÁØÀ¸·Î Á¤Á¦µÈ °¡½º·Î, ÀϹÝÀûÀ¸·Î 99.999%(5N) ÀÌ»óÀÇ ¼øµµ ¼öÁØÀ» ´Þ¼ºÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °¡½º´Â ÀüÀÚ, ÀÇ·á, Á¦¾à µî Á¤¹ÐÇÑ Á¦¾î¿Í ÃÖ¼ÒÇÑÀÇ ºÒ¼ø¹°À» ÇÊ¿ä·Î ÇÏ´Â »ê¾÷¿¡¼ ÇʼöÀûÀÔ´Ï´Ù. ¼øµµ°¡ ¸Å¿ì ³ô¾Æ ¹ÝµµÃ¼ Á¦Á¶, ½ÇÇè½Ç ¿¬±¸, ÀÇ·á ½Ã¼ú°ú °°ÀÌ ¹Ì·®ÀÇ ¿À¿°¹°Áúµµ ¼º´ÉÀ̳ª ¾ÈÀü¼ºÀ» ÇØÄ¥ ¼ö ÀÖ´Â ¹Î°¨ÇÑ ºÐ¾ß¿¡ »ç¿ëµË´Ï´Ù.
Ư¼ö °¡½º ¼ö¿ä Áõ°¡
Àü ¼¼°èÀûÀ¸·Î ÀüÀÚ, ÀÇ·á, ¹ÝµµÃ¼ ÀÀ¿ë ºÐ¾ß°¡ Áõ°¡ÇÔ¿¡ µû¶ó Ư¼ö °¡½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °¡½º´Â ³ôÀº Á¤¹Ðµµ¿Í ¹«°øÇØ È¯°æÀ» Á¶¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÃÖÁ¾ ¿ëµµÀÇ Ç°Áú°ú ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ »ê¾÷°è´Â Ãʼø¼ö °¡½º¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¿¬±¸ ¹× ÷´Ü Á¦Á¶¿¡¼ Á¦¾îµÈ ÈÇÐ ¹ÝÀÀ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ºÐ¾ßÀÇ Áø´Ü ÀÀ¿ë ºÐ¾ß°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÇÇè½Ç ±³Á¤À» À§ÇØ Ãʼø¼ö °¡½º°¡ ÇÊ¿äÇÕ´Ï´Ù.
º¹ÀâÇÑ º¸°ü ¹× ¿î¼Û ¿ä°Ç
°í¼øµµ °¡½º´Â ¹ÝÀÀ¼ºÀÌ ³ô°í ÈÖ¹ßÇϱ⠽±±â ¶§¹®¿¡ Ãë±Þ¿¡ Å« ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. Ư¼ö ¿ë±â, ¾ö°ÝÇÑ ¾Ð·Â Á¦¾î, °íµµÀÇ ´©Ãâ ¹æÁö ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °¡½º¸¦ ¿î¼ÛÇÏ´Â ¹°·ù´Â ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀ» ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼öÇÑ ¿ä±¸»çÇ×Àº ÀúÀå, À¯Åë ¹× ÀÎÇÁ¶ó ºñ¿ëÀ» Å©°Ô Áõ°¡½Ãŵ´Ï´Ù. ¿î¼Û Áß ¿À¿°Àº ¼º´É ÀúÇÏ ¹× Á¦Ç° ºÒÇÕ°ÝÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº ƯÈ÷ ¹°·ù ³×Æ®¿öÅ©°¡ ¹ß´ÞÇÏÁö ¾ÊÀº ½ÅÈï ½ÃÀå¿¡¼ÀÇ ½ÃÀå È®´ë¸¦ Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
Àç»ý¿¡³ÊÁö µµÀÔ Áõ°¡
¼ö¼Ò¿Í °°Àº °¡½º´Â ¿¬·áÀüÁö ±â¼ú°ú ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ž籤 ¹× dz·Â¿¡³ÊÁö ÀÎÇÁ¶óµµ ÆÐ³Î Á¦Á¶ ¹× Åͺó À¯Áöº¸¼ö ½Ã Ư¼ö °¡½º¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ°¡ ³ÝÁ¦·Î(Net Zero) °èȹ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí Àֱ⠶§¹®¿¡ ģȯ°æ ±â¼ú ºÐ¾ß¿¡¼ Ãʼø¼ö °¡½º¿¡ ´ëÇÑ ¼ö¿ä´Â ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀüÇØÁ¶ ±â¼ú°ú ¹èÅ͸® °³¹ßÀº Á¡Á¡ ´õ °¡½º¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. À̴ Żź¼ÒȵǴ ¼¼°èÀÇ ¼øµµ¿Í ¾ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ãų ¼ö ÀÖ´Â °ø±Þ¾÷ü¿¡°Ô ¹®È£¸¦ °³¹æÇÒ ¼ö ÀÖ´Â ±âȸ°¡ µÉ °ÍÀÔ´Ï´Ù.
Èñ¼Ò °¡½ºÀÇ Á¦ÇÑµÈ °¡¿ë¼º
Å©¼¼³í, Å©¸³Åæ, ³×¿Â°ú °°Àº Èñ±Í°¡½º´Â õ¿¬ÀÚ¿øÀÌ ÇÑÁ¤µÇ¾î ÀÖ¾î Èñ¼Ò¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Èñ°¡½ºÀÇ ÃßÃâÀº ÀϹÝÀûÀ¸·Î °ø±âºÐ¸® Á¦Ç°º°À̱⠶§¹®¿¡ È®À强ÀÌ Á¦Çѵ˴ϴÙ. »ê¾÷¿ë °¡½ºÀÇ »ý»êÀÌ ÁߴܵǸé Èñ¼Ò °¡½ºÀÇ °¡¿ë¼º¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í °¡°Ý º¯µ¿À¸·Î À̾îÁý´Ï´Ù. ¼Ò¼öÀÇ ¼¼°è °ø±Þ¾÷ü¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô±â ¶§¹®¿¡ °ø±Þ¸Á ¸®½ºÅ©°¡ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾àÀº Èñ¼Ò °¡½º¿¡ ÀÇÁ¸ÇÏ´Â ÀüÀÚ ¹× Ç×°ø¿ìÁÖ »ê¾÷°ú °°Àº ºÐ¾ß¿¡¼ ƯÈ÷ ¿ì·ÁÇØ¾ß ÇÒ »çÇ×ÀÔ´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ´ëüǰÀ̳ª ÀçȰ¿ë ¼Ö·ç¼ÇÀÌ ¾ø´Ù¸é, ÀÌ·¯ÇÑ ºÎÁ·Àº Àå±âÀûÀÎ ½ÃÀå ¾ÈÁ¤¼ºÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â Ãʱ⿡ °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ °í¼øµµ °¡½ºÀÇ »ý»ê ¹× ¿î¼Û ºÎÁ·À» ÃÊ·¡Çß½À´Ï´Ù. »ê¾÷ ºÎ¹®ÀÇ °¡µ¿ Áß´ÜÀº ºñÇʼö °¡½º ¼ö¿ä¸¦ °¨¼Ò½ÃÄÑ ½ÃÀå ¿ªÇп¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÀÇ·á ºÐ¾ß, ƯÈ÷ »ê¼Ò ¹× ±âŸ È£Èí±â¿ë °¡½º¿¡ ´ëÇÑ ¼ö¿ä´Â ȸº¹µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ, ÀÌ ºÐ¾ß´Â ź·ÂÀûÀÎ °ø±Þ ½Ã½ºÅÛ°ú ´Ù¾çÇÑ ÃÖÁ¾ ¿ëµµ¿¡ ´ëÇÑ ÅõÀÚ¸¦ Àç°³Çß½À´Ï´Ù.
Èñ°¡½º ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ±Ô¸ð Àü¸Á
Èñ°¡½º ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Çï·ý, ³×¿Â, ¾Æ¸£°ï°ú °°Àº Èñ°¡½º´Â ºÒȰ¼º Ư¼º°ú ³ôÀº ÈÇÐÀû ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á¿ë ¿µ»óó¸®, Á¶¸í, ¹ÝµµÃ¼, ¾ß±Ý¿¡¼ÀÇ »ç¿ëÀÌ ²ÙÁØÇÑ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ Çï·ýÀº ±ØÀú¿Â ±â¼ú°ú MRI ¼ö¼ú¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀüÀÚÁ¦Ç°ÀÇ ¼ÒÇüÈ¿¡ µû¶ó ¿¡Äª ¹× ¸®¼Ò±×·¡ÇÇ °øÁ¤¿¡¼ ¾Æ¸£°ï°ú ³×¿ÂÀÇ ¼Òºñ·®Àº °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¼®À¯ ¹× °¡½º ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼®À¯ ¹× °¡½º ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ °¡½º, ƯÈ÷ Áú¼Ò´Â ÆÄÀÌÇÁ¶óÀÎ, ÅÊÅ©, ÀåºñÀÇ ºñȰ¼ºÈ ¹× ÆÛÁö¿¡ ÇʼöÀûÀ̸ç, Æø¹ß ¹× ºÎ½ÄÀ» ¹æÁöÇÕ´Ï´Ù. °í¼øµµ ÀÌ»êÈź¼Ò(CO2)´Â ¼®À¯È¸¼öÁõÁø¹ý(EOR)¿¡ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, ¼º¼÷ÇÑ À¯Á¤¿¡ ÁÖÀÔÇÏ¿© »ý»ê·®À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í¼øµµ °¡½º´Â Á¦Ç°ÀÇ Ç°Áú°ú ¾ÈÀü¼ºÀ» º¸ÀåÇÏ´Â ´Ù¾çÇÑ Á¤Á¦ °øÁ¤°ú ½ÇÇè½Ç ºÐ¼®, Ž»ç ¹× »ý»ê¿¡ »ç¿ëµÇ´Â ÀåºñÀÇ ±³Á¤¿¡µµ ÇʼöÀûÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷È¿Í Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ÀüÀÚÁ¦Ç° Á¦Á¶ Áß½ÉÁö¿¡¼ÀÇ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÇ·á ÀÎÇÁ¶óÀÇ È®Àåµµ Áø´Ü ¹× ÀÇ·á ºÐ¾ßÀÇ ¼Òºñ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ¹× Àç»ý¿¡³ÊÁö ºÎ¹®¿¡ ´ëÇÑ Á¤ºÎÀÇ °·ÂÇÑ Áö¿øÀº ÀÌ Áö¿ªÀÇ ¼ºÀå Àü¸ÁÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÌ Áö¿ªÀÌ Ã»Á¤¿¡³ÊÁö¿Í ÷´Ü ±â¼ú¿¡ ÁßÁ¡À» µÎ°í Àֱ⠶§¹®¿¡ Ư¼ö °¡½º ¼Òºñ°¡ °¡¼Óȵǰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¼ö¼Ò »ý»ê¿¡ ´ëÇÑ Á¤ºÎÀÇ ¿ì´ë Á¶Ä¡¿Í ¹ÝµµÃ¼ ¸®¼î¾î¸µ ÀÌ´Ï¼ÅÆ¼ºê°¡ Áö¼ÓÀûÀÎ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. »ý¹° ÀÇÇÐ ¿¬±¸¿Í Ç×°ø¿ìÁÖ °øÇÐÀÇ ¹ßÀüÀº Ãʼø¼ö °¡½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global High Purity Gas Market is accounted for $20.52 billion in 2025 and is expected to reach $31.47 billion by 2032 growing at a CAGR of 6.3% during the forecast period. High purity gases are gases that have been refined to extremely low levels of contamination, typically achieving purity levels of 99.999% (5N) or higher. These gases are essential in industries requiring precise control and minimal impurities, such as electronics, healthcare, and pharmaceuticals. Due to their exceptional purity, they are used in sensitive applications like semiconductor manufacturing, laboratory research, and medical procedures, where even trace contaminants can compromise performance or safety.
Increasing demand for specialty gases
The global rise in electronics, healthcare, and semiconductor applications is driving heightened demand for specialty gases. These gases are essential in producing high-precision and contamination-free environments. Industries are increasingly relying on ultra-high-purity gases to ensure quality and performance in end-use applications. The growing need for controlled chemical reactions in research and advanced manufacturing is further fueling demand. Moreover, the rise in diagnostic applications in healthcare requires ultra-pure gases for laboratory calibration.
Complex storage and transportation requirements
Handling high purity gases poses significant challenges due to their reactive and volatile nature. They require specialized containers, stringent pressure controls, and advanced leak-proof systems. The logistics of transporting these gases must comply with strict regulatory standards to ensure safety. These specialized requirements significantly increase costs for storage, distribution, and infrastructure. Any contamination during transit can result in performance degradation or product rejection. Such complexities limit market expansion, particularly in developing regions with underdeveloped logistics networks.
Rising adoption of renewable energy
Gases like hydrogen are becoming critical in fuel cell technology and energy storage systems. Solar and wind energy infrastructure also rely on specialty gases during panel manufacturing and turbine maintenance. With governments investing heavily in net-zero initiatives, demand for ultra-pure gases in green technologies is expected to surge. Furthermore, electrolyzer technologies and battery development are increasingly gas-reliant. This opens doors for suppliers who can meet the purity and volume demands of a decarbonizing world.
Limited availability of rare gases
Rare gases such as xenon, krypton, and neon face increasing scarcity due to limited natural sources. Their extraction is typically a by-product of air separation, which restricts scalability. Any disruption in industrial gas production directly impacts rare gas availability, leading to price volatility. High dependency on a few global suppliers intensifies supply chain risk. These constraints are particularly concerning for sectors like electronics and aerospace that rely on rare gases. Without sustainable alternatives or recycling solutions, this shortage may inhibit long-term market stability.
Covid-19 Impact
The COVID-19 pandemic initially disrupted supply chains and led to shortages in the production and transportation of high purity gases. Shutdowns in industrial sectors dampened demand for non-essential gases, affecting market dynamics. However, demand rebounded in the medical sector, especially for oxygen and other respiratory gases. Post-pandemic, the sector has seen renewed investment in resilient supply systems and diversified end-use applications.
The noble gases segment is expected to be the largest during the forecast period
The noble gases segment is expected to account for the largest market share during the forecast period. These gases-such as helium, neon, and argon-are prized for their inert nature and high chemical stability. Their use in medical imaging, lighting, semiconductors, and metallurgy drives consistent demand. Helium, in particular, plays a vital role in cryogenics and MRI operations. Increasing miniaturization in electronics continues to boost argon and neon consumption in etching and lithography processes.
The oil & gas segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the oil & gas segment is predicted to witness the highest growth rate. These gases, particularly nitrogen, are vital for inerting and purging pipelines, tanks, and equipment, preventing explosions and corrosion. High purity carbon dioxide (CO2) is increasingly used for enhanced oil recovery (EOR), injecting it into mature wells to boost production. Furthermore, high purity gases are essential for various refinery processes, ensuring product quality and safety, as well as for laboratory analysis and calibration of instruments used in exploration and production.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapid industrialization and growth in electronics manufacturing hubs like China, Japan, and South Korea fuel demand. Expanding healthcare infrastructure also boosts consumption in diagnostics and medical treatment. Strong government support for semiconductor and renewable energy sectors enhances regional growth prospects.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to the region's focus on clean energy and cutting-edge technology is accelerating specialty gas consumption. Government incentives for hydrogen production and semiconductor reshoring initiatives support sustained growth. Advancements in biomedical research and aerospace engineering further increase demand for ultra-pure gases.
Key players in the market
Some of the key players profiled in the High Purity Gas Market include Linde plc, Air Liquide, Air Products and Chemicals, Inc., Nippon Sanso Holdings Corporation, Messer Group GmbH, Matheson Tri-Gas, Inc., Iwatani Corporation, SOL Group, Yingde Gases Group, Air Water Inc., Daigas Group, INOX Air Products, Advanced Specialty Gases, Versum Materials, and Resonac Holdings Corporation.
In May 2025, Air Liquide strengthens its Home Healthcare activity with two acquisitions in Germany. Air Liquide is continuing its development in Germany with the acquisition of two outpatient intensive care companies, intensivLeben GmbH and AP-Sachsen GmbH. With this operation, the Group broadens its presence in the care market. Air Liquide accompanies more than 220,000 patients in Germany, with a growing presence over the last 25 years.
In August 2024, Linde announced it has signed a long-term agreement for the supply of clean hydrogen to Dow's Fort Saskatchewan Path2Zero Project. The company will invest more than $2 billion to build, own and operate a world-scale integrated clean hydrogen and atmospheric gases facility in Alberta, Canada.