½ÃÀ庸°í¼­
»óǰÄÚµå
1766120

ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀå : ¿¹Ãø(-2032³â)

Redundant Power Systems Market Forecasts to 2032 - Global Analysis By Type, Component, Power Capacity, Redundancy Architecture, Application, End User, and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀåÀº 2025³â¿¡ 33¾ï 8,000¸¸ ´Þ·¯, 2032³â¿¡´Â CAGR 10.6%·Î ¼ºÀåÇϰí, 68¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛÀº ÁÖ ½Ã½ºÅÛÀÌ °íÀ峯 ¶§ Áö¼ÓÀûÀÎ Àü¿ø °ø±ÞÀ» º¸ÀåÇϵµ·Ï ¼³°èµÈ ¹é¾÷ Àü±â ½Ã½ºÅÛÀÔ´Ï´Ù. N1, 2N, ºÐ»ê Áߺ¹ µîÀÇ ±¸¼ºÀ» »ç¿ëÇÏ¿© ¿©ºÐÀÇ ¿ë·®À» Á¦°øÇÏ¸ç ´ÜÀÏ Àå¾Ö ÁöÁ¡À» Á¦°ÅÇÕ´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ, º´¿ø, »ê¾÷ ½Ã¼³°ú °°Àº Áß¿äÇÑ È¯°æ¿¡¼­ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ¸ç ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àå¾Ö ¹ß»ý ½Ã ÀÚµ¿À¸·Î ´ëü Àü¿øÀ¸·Î ÀüȯÇÏ¿© ½Å·Ú¼º, °¡µ¿ ½Ã°£ ¹× ¾÷¹« ¿¬¼Ó¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

µ¥ÀÌÅͼ¾ÅÍ ¼ö¿ä Áõ°¡

µðÁöÅÐ ¼­ºñ½º¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó µ¥ÀÌÅͼ¾ÅÍÀÇ ¼ö´Â Àü ¼¼°èÀûÀ¸·Î Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ Å¬¶ó¿ìµå ÄÄÇ»ÆÃ, ºòµ¥ÀÌÅÍ, IoT ±â¼úÀ» µµÀÔÇÔ¿¡ µû¶ó ¹«Á¤Àü Àü¿øÀÇ Çʿ伺ÀÌ ¸Å¿ì Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛÀº µ¥ÀÌÅͼ¾ÅÍÀÇ °¡µ¿ ½Ã°£°ú ¿î¿µ ¾ÈÁ¤¼ºÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¤ÀüÀ¸·Î ÀÎÇÑ µ¥ÀÌÅÍ À¯Ãâ ¹× ¼­ºñ½º Áß´Ü À§ÇèÀ» ÁÙÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ¾ÈÁ¤ÀûÀÎ ¹é¾÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛÀº ÃֽеðÁöÅÐ ÀÎÇÁ¶óÀÇ ±âº» ¿ä±¸ »çÇ×ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Á¦ÇÑµÈ ¼÷·Ã ³ëµ¿·Â

ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛÀÇ µµÀÔ°ú À¯Áö º¸¼ö¿¡´Â Àü±â °øÇаú ½Ã½ºÅÛ °øÇÐÀÇ Àü¹® Áö½ÄÀ» °®Ãá ¼±ÁøÀû ±â¼úÀ» °¡Áø ³ëµ¿·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¸¹Àº ÈÆ·ÃÀ» ¹ÞÀº Àü¹®°¡¸¦ ã´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àη ºÎÁ·Àº ÇÁ·ÎÁ§Æ® ¼öÇà Áö¿¬°ú ½Ã½ºÅÛ ¼º´É ÀúÇÏ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

ÄÝ·ÎÄÉÀÌ¼Ç ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¿î¿µ ºñ¿ëÀ» ÁÙÀ̰í È®À强À» ³ôÀ̱â À§ÇØ Å¸»ç µ¥ÀÌÅͼ¾ÅÍ¿¡¼­ ÀÎÇÁ¶ó¸¦ È£½ºÆÃÇÏ´Â ±â¾÷ÀÌ ´Ã¾î³ª°í ÀÖ½À´Ï´Ù. º¸´Ù ¸¹Àº °í°´À» À¯Ä¡Çϱâ À§ÇØ Àü·Â ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ ½Ã½ºÅÛ ¼³°è ¹× ÅëÇÕ

ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛÀ» ¼³°èÇϰí ÅëÇÕÇÏ·Á¸é ¸Å¿ì º¹ÀâÇÏ°í ¸é¹ÐÇÑ °èȹÀÌ ÇÊ¿äÇÕ´Ï´Ù. °¢ µ¥ÀÌÅͼ¾ÅÍ¿¡´Â °íÀ¯ÇÑ Àü·Â ¿ä±¸ »çÇ×ÀÌ ÀÖÀ¸¸ç ±âÁ¸ ÀÎÇÁ¶ó¿¡ ¸Â°Ô ¸ÂÃãÇü ±¸¼ºÀÌ ÇÊ¿äÇÕ´Ï´Ù. UPS ½Ã½ºÅÛ, ¹ßÀü±â, °³Æó ÀåÄ¡ µî ´Ù¾çÇÑ ±¸¼º ¿ä¼Ò¸¦ ¿øÈ°ÇÏ°Ô µ¿±âÈ­ÇÏ´Â °ÍÀÌ °úÁ¦ÀÔ´Ï´Ù. ºÎÀûÀýÇÑ ÅëÇÕÀº ºñÈ¿À²ÀûÀÌ°í ºñ¿ëÀÌ ³ô°Å³ª ½Ã½ºÅÛ Àå¾Ö·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÁøÈ­ÇÏ´Â ±ÔÁ¦ ±âÁØÀ» Ž»öÇÏ´Â °ÍÀº ½Ã½ºÅÛ µµÀÔ¿¡ »õ·Î¿î ¾î·Á¿òÀ» ´õÇÏ°Ô µË´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº ÀáÀçÀûÀÎ µµÀÔÀÚÀÇ ÀÇÁö¿Í ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº °¢ ºÎ¹®¿¡¼­ µðÁöÅÐ º¯ÇõÀ» °¡¼ÓÈ­ÇÏ°í µ¥ÀÌÅͼ¾ÅÍ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ô¿© Áߺ¹ Àü¿ø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ô¿´½À´Ï´Ù. ÀçÅñٹ«ÀÇ Àǹ«È­¿Í µðÁöÅÐ ¼­ºñ½ºÀÇ ±ÞÁõÀº IT ÀÎÇÁ¶ó¿¡ Àü·Ê¾ø´Â ºÎ´ãÀ» °¡Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ±Þ°ÝÇÑ ¼ö¿ä ±ÞÁõÀ¸·Î ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀÇ Çʿ伺ÀÌ °­Á¶µÇ¾î ¹é¾÷ ½Ã½ºÅÛÀÌ Àü·«Àû ¿ì¼±¼øÀ§°¡ µÇ¾ú½À´Ï´Ù. ±×·¯³ª °ø±Þ¸ÁÀÇ È¥¶õÀº Àü·Â Àåºñ Á¦Á¶ ¹× ¹èÆ÷ ÀÏÁ¤¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. À¯Çà ÀÌÈÄÀÇ ÃÊÁ¡Àº °í±Þ Àü·Â Áߺ¹À¸·Î ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú È®À强À» ³ôÀÌ´Â °Í¿¡ º¯ÇÔÀÌ ¾ø½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È ¹ßÀü±â ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¹ßÀü±â ºÎ¹®Àº Àå±â°£ÀÇ ¹é¾÷ Àü·ÂÀ» °ø±ÞÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇϹǷΠ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ßÀü±â´Â ƯÈ÷ µ¥ÀÌÅͼ¾ÅÍ ¹× Áß¿ä ½Ã¼³¿¡¼­ Àå±â°£ÀÇ ±×¸®µå Àå¾Ö ½Ã ¿î¿µ À¯Áö¿¡ ÇʼöÀûÀÔ´Ï´Ù. ±× È®À强°ú ½Å·Ú¼ºÀº »õ·Î¿î ¼³Ä¡¿Í °³Á¶ ÇÁ·ÎÁ§Æ®¿¡¼­ ¼±È£µÇ´Â ¼±ÅÃÀÔ´Ï´Ù. ±â¼úÀÇ Áøº¸¿¡ ÀÇÇØ º¸´Ù È¿À²ÀûÀ̰í Àú¹èÃâÀÇ ¹ßÀü±â ¸ðµ¨ÀÌ µîÀåÇØ, ±× º¸±ÞÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Åë½Å ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È Åë½Å ºÎ¹®Àº ÀÎÇÁ¶ó ¿ä±¸ »çÇ×ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ã½ºÅÛ¿¡¼­ ¼­ºñ½º Áß´ÜÀ» ÇÇÇÏ·Á¸é ½Å·ÚÇÒ ¼ö ÀÖ´Â Áö¼ÓÀûÀÎ Àü·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº µ¥ÀÌÅͼ¾ÅÍÀÇ È°È²°ú µðÁöÅÐ °æÁ¦ÀÇ ¼ºÀåÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀüÀÚ»ó°Å·¡, µðÁöÅÐ ¹ðÅ· ¹× ¿Â¶óÀÎ ±³À°ÀÇ ½ÃÀÛÀ¸·Î ¾öû³­ ¾çÀÇ µ¥ÀÌÅÍ Æ®·¡ÇÈÀÌ ¹ß»ýÇÕ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸¿©ÁÙ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥ ÀÌ´Â Àü·Â ½Ã½ºÅÛÀÇ ±Ù´ëÈ­°¡ ÁøÇàµÇ°í ½º¸¶Æ® ±â¼úÀÌ º¸±ÞµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿¡³ÊÁö ¾Èº¸¿Í ÀçÇØ ´ëºñ¿¡ ´ëÇÑ ³ôÀº ÀǽÄÀÌ ¹é¾÷ ÀÎÇÁ¶ó¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀå : À¯Çüº°

  • ¼Ò°³
  • N 1 Áߺ¹¼º
  • 2N Áߺ¹¼º
  • 2N 1 Áߺ¹¼º
  • ºÐ»ê Áߺ¹¼º
  • ±×¸®µå ¿¬°á Áߺ¹ ½Ã½ºÅÛ
  • ±âŸ

Á¦6Àå ¼¼°èÀÇ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼Ò°³
  • ¹«Á¤Àü Àü¿ø ÀåÄ¡(UPS)
  • ¹èÀü À¯´Ö(PDU)
  • ¹ßÀü±â
  • Àü¼Û ½ºÀ§Ä¡
  • ¹èÅ͸® ½Ã½ºÅÛ
  • Àü¿ø °ü¸® ¼ÒÇÁÆ®¿þ¾î
  • ÄÉÀ̺í°ú Ä¿³ØÅÍ

Á¦7Àå ¼¼°èÀÇ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀå : Àü·Â ¿ë·®º°

  • ¼Ò°³
  • 10kVA ÀÌÇÏ
  • 10-100kVA
  • 100-500kVA
  • 500kVA ÀÌ»ó

Á¦8Àå ¼¼°èÀÇ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀå : Áߺ¹ ¾ÆÅ°ÅØÃ³º°

  • ¼Ò°³
  • º´·Ä Áߺ¹¼º
  • ¸ðµâ Áߺ¹¼º
  • ÇÏÀ̺긮µå ½Ã½ºÅÛ

Á¦9Àå ¼¼°èÀÇ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • µ¥ÀÌÅͼ¾ÅÍ
  • Åë½Å
  • ÀÇ·á½Ã¼³
  • ÀºÇà, ±ÝÀ¶¼­ºñ½º ¹× º¸Çè(BFSI)
  • »ê¾÷ ÀÚµ¿È­
  • »ó¾÷ ºôµù
  • ±³Åë°ú ÀÎÇÁ¶ó
  • ±º ¹× ¹æÀ§
  • À¯Æ¿¸®Æ¼ ¹× ¿¡³ÊÁö
  • ¹æ¼Û ¹Ìµð¾î
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼Ò°³
  • ´ë±â¾÷
  • Áß¼Ò±â¾÷
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • Ŭ¶ó¿ìµå¿Í °øµ¿ À§Ä¡ Á¦°ø¾÷ü
  • ±âŸ

Á¦11Àå ¼¼°èÀÇ ÀÌÁßÈ­ Àü·Â ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä °³¹ß

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Eaton Corporation
  • Schneider Electric SE
  • Vertiv Group Corp.
  • ABB Ltd.
  • Emerson Electric Co.
  • Delta Electronics Inc.
  • Mitsubishi Electric Corporation
  • Siemens AG
  • General Electric(GE)
  • Toshiba Corporation
  • Hitachi Ltd.
  • Riello Elettronica SpA
  • Cyber Power Systems Inc.
  • Legrand SA
  • Fuji Electric Co., Ltd.
SHW 25.07.16

According to Stratistics MRC, the Global Redundant Power Systems Market is accounted for $3.38 billion in 2025 and is expected to reach $6.84 billion by 2032 growing at a CAGR of 10.6% during the forecast period. Redundant Power Systems are backup electrical systems designed to ensure continuous power supply in the event of a primary system failure. They use configurations such as N+1, 2N, or distributed redundancy to provide extra capacity and eliminate single points of failure. Commonly used in critical environments like data centers, hospitals, and industrial facilities, these systems enhance reliability, uptime, and operational continuity by automatically switching to alternative power sources when disruptions occur.

Market Dynamics:

Driver:

Increasing demand for data centres

The rising reliance on digital services is significantly increasing the number of data centres worldwide. As businesses embrace cloud computing, big data, and IoT technologies, the need for uninterrupted power becomes critical. Redundant power systems play a pivotal role in ensuring data centre uptime and operational stability. These systems are essential in mitigating risks of data loss and service disruptions caused by power outages. Increasing investments in hyperscale data centres further accelerate the demand for reliable backup solutions. As a result, redundant power systems are becoming a foundational requirement for modern digital infrastructure.

Restraint:

Limited skilled workforce

The deployment and maintenance of redundant power systems require a highly skilled workforce with expertise in electrical and systems engineering. However, there is a notable talent gap in this domain, particularly in emerging markets and rural regions. Organizations often struggle to find adequately trained professionals to design, install, and manage complex power systems. This shortage can lead to delays in project execution and compromised system performance. Moreover, lack of awareness and limited technical training opportunities hamper workforce development.

Opportunity:

Rising demand for colocation services

Businesses are increasingly opting to host their infrastructure in third-party data centres to reduce operational costs and enhance scalability. These facilities must offer uninterrupted power to meet client expectations, driving the need for robust redundancy solutions. Furthermore, colocation providers are investing heavily in power infrastructure to attract more customers. This shift is also influenced by sustainability goals, prompting providers to incorporate energy-efficient and resilient backup systems. Consequently, the rise in colocation demand is directly fuelling the redundant power systems market.

Threat:

Complex system design and integration

Designing and integrating redundant power systems involves significant complexity and meticulous planning. Each data centre has unique power needs, requiring customized configurations that align with existing infrastructure. Challenges arise in synchronizing various components such as UPS systems, generators, and switchgear for seamless operation. Improper integration can result in inefficiencies, higher costs, or even system failures. Moreover, navigating evolving regulatory standards adds another layer of difficulty to system implementation. These complexities can discourage potential adopters and hinder market growth.

Covid-19 Impact

The COVID-19 pandemic accelerated digital transformation across sectors, increasing the dependency on data centres and thereby on redundant power solutions. Work-from-home mandates and the surge in digital services put unprecedented strain on IT infrastructure. This sudden demand spike emphasized the need for consistent power supply, making backup systems a strategic priority. Supply chain disruptions, however, impacted manufacturing and deployment timelines for power equipment. The post-pandemic focus remains on enhancing system reliability and scalability through advanced power redundancy.

The generators segment is expected to be the largest during the forecast period

The generators segment is expected to account for the largest market share during the forecast period, due to its critical role in providing long-duration backup power. Generators are indispensable in maintaining operations during extended grid failures, especially in data centres and critical facilities. Their scalability and reliability make them a preferred choice for both new installations and retrofit projects. Technological advancements have led to more efficient, low-emission generator models, boosting their adoption.

The telecommunications segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the telecommunications segment is predicted to witness the highest growth rate, due to the sector's increasing infrastructure requirements. The expansion of 5G networks and rapid digital connectivity are pushing telecom companies to strengthen their power resilience. Reliable and continuous power is essential to avoid service disruptions in densely connected systems. Investments in edge computing and telecom towers in remote areas further boost demand for autonomous and reliable power solutions.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to the region's booming data centre landscape and digital economy growth. Countries like China, India, and Singapore are making substantial investments in hyperscale data centres. The rise of e-commerce, digital banking, and online education is generating massive data traffic. These developments necessitate robust and uninterrupted power infrastructure, driving demand for redundant power systems.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to increasing modernization of power systems and the proliferation of smart technologies. The presence of global tech giants and data-driven enterprises accelerates the adoption of advanced redundancy solutions. High awareness of energy security and disaster preparedness fuels ongoing investments in backup infrastructure. The transition toward edge computing and decentralized data centres further augments power system requirements.

Key players in the market

Some of the key players profiled in the Redundant Power Systems Market include Eaton Corporation, Schneider Electric SE, Vertiv Group Corp., ABB Ltd., Emerson Electric Co., Delta Electronics Inc., Mitsubishi Electric Corporation, Siemens AG, General Electric (GE), Toshiba Corporation, Hitachi Ltd., Riello Elettronica S.p.A., Cyber Power Systems Inc., Legrand S.A., and Fuji Electric Co., Ltd.

Key Developments:

In May 2025, ABB announced it has signed an agreement to acquire BrightLoop, a French innovator in advanced power electronics, to accelerate its electrification strategy in industrial mobility and marine propulsion. The acquisition will expand ABB's capabilities in delivering compact, rugged, and intelligent power conversion systems tailored for the most demanding applications-from construction and mining equipment to electric ferries and offshore vessels.

In September 2024, Eaton announced the signing of a Memorandum of Understanding (MoU) with the Government of Tamil Nadu. This agreement marks a significant step in Eaton's expansion plans for its Crouse-Hinds and B-Line business, reinforcing the company's commitment to driving innovation and growth in India through its sustainable solutions.

Types Covered:

  • N+1 Redundancy
  • 2N Redundancy
  • 2N+1 Redundancy
  • Distributed Redundancy
  • Grid-Connected Redundant Systems
  • Other Types

Components Covered:

  • Uninterruptible Power Supplies (UPS)
  • Power Distribution Units (PDU)
  • Generators
  • Transfer Switches
  • Battery Systems
  • Power Management Software
  • Cabling & Connectors

Power Capacities Covered:

  • Less than 10 kVA
  • 10-100 kVA
  • 100-500 kVA
  • Above 500 kVA

Redundancy Architectures Covered:

  • Parallel Redundancy
  • Modular Redundancy
  • Hybrid Systems

Applications Covered:

  • Data Centers
  • Telecommunications
  • Healthcare Facilities
  • Banking, Financial Services, and Insurance (BFSI)
  • Industrial Automation
  • Commercial Buildings
  • Transportation & Infrastructure
  • Military & Defense
  • Utilities & Energy
  • Broadcasting & Media
  • Other Applications

End Users Covered:

  • Large Enterprises
  • Small and Medium Enterprises (SMEs)
  • Government and Public Sector
  • Cloud and Colocation Providers
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Redundant Power Systems Market, By Type

  • 5.1 Introduction
  • 5.2 N+1 Redundancy
  • 5.3 2N Redundancy
  • 5.4 2N+1 Redundancy
  • 5.5 Distributed Redundancy
  • 5.6 Grid-Connected Redundant Systems
  • 5.7 Other Types

6 Global Redundant Power Systems Market, By Component

  • 6.1 Introduction
  • 6.2 Uninterruptible Power Supplies (UPS)
  • 6.3 Power Distribution Units (PDU)
  • 6.4 Generators
  • 6.5 Transfer Switches
  • 6.6 Battery Systems
  • 6.7 Power Management Software
  • 6.8 Cabling & Connectors

7 Global Redundant Power Systems Market, By Power Capacity

  • 7.1 Introduction
  • 7.2 Less than 10 kVA
  • 7.3 10-100 kVA
  • 7.4 100-500 kVA
  • 7.5 Above 500 kVA

8 Global Redundant Power Systems Market, By Redundancy Architecture

  • 8.1 Introduction
  • 8.2 Parallel Redundancy
  • 8.3 Modular Redundancy
  • 8.4 Hybrid Systems

9 Global Redundant Power Systems Market, By Application

  • 9.1 Introduction
  • 9.2 Data Centers
  • 9.3 Telecommunications
  • 9.4 Healthcare Facilities
  • 9.5 Banking, Financial Services, and Insurance (BFSI)
  • 9.6 Industrial Automation
  • 9.7 Commercial Buildings
  • 9.8 Transportation & Infrastructure
  • 9.9 Military & Defense
  • 9.10 Utilities & Energy
  • 9.11 Broadcasting & Media
  • 9.12 Other Applications

10 Global Redundant Power Systems Market, By End User

  • 10.1 Introduction
  • 10.2 Large Enterprises
  • 10.3 Small and Medium Enterprises (SMEs)
  • 10.4 Government and Public Sector
  • 10.5 Cloud and Colocation Providers
  • 10.6 Other End Users

11 Global Redundant Power Systems Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Eaton Corporation
  • 13.2 Schneider Electric SE
  • 13.3 Vertiv Group Corp.
  • 13.4 ABB Ltd.
  • 13.5 Emerson Electric Co.
  • 13.6 Delta Electronics Inc.
  • 13.7 Mitsubishi Electric Corporation
  • 13.8 Siemens AG
  • 13.9 General Electric (GE)
  • 13.10 Toshiba Corporation
  • 13.11 Hitachi Ltd.
  • 13.12 Riello Elettronica S.p.A.
  • 13.13 Cyber Power Systems Inc.
  • 13.14 Legrand S.A.
  • 13.15 Fuji Electric Co., Ltd.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦