½ÃÀ庸°í¼­
»óǰÄÚµå
1766143

ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå ¿¹Ãø(-2032³â) - Á¦Ç° À¯Çüº°, ÀÚµ¿È­ ·¹º§º°, ÃßÁø ¹æ½Äº°, °¡µ¿ Àå¼Òº°, ÀÛ¹° À¯Çüº°, ±â¼úº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Autonomous Harvester Market Forecasts to 2032 - Global Analysis By Product Type, Level of Automation, Propulsion Type, Site of Operation, Crop Type, Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ ÀÇÇϸé, ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â(ÀÚÀ²ÁÖÇà ÇϺ£½ºÅ¸) ½ÃÀåÀº 2025³â¿¡ 19¾ï ´Þ·¯¿¡ ´ÞÇϰí, ¿¹Ãø ±â°£ Áß¿¡ CAGR 12.8%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 44¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

ÀÚÀ²ÁÖÇà ¼öÈ®±â´Â Àΰ£ÀÇ °³ÀÔÀ» ÃÖ¼ÒÈ­ÇÏ¿© ¼öÈ® ÀÛ¾÷À» ¼öÇàÇϵµ·Ï ¼³°èµÈ ÀÚÀ² ÁÖÇà ³ó¾÷ ±â°è·Î, GPS, ¼¾¼­, ÄÄÇ»ÅÍ ºñÀü, AI ±â¹Ý ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ°ú °°Àº ÷´Ü ±â¼úÀ» »ç¿ëÇÏ¿© ÀÛ¹°À» È¿À²ÀûÀ¸·Î ½Äº°, ¼öÁý ¹× ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. »ý»ê¼ºÀ» ³ôÀ̰í, ³ëµ¿·Â¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç, ³óÀÛ¾÷ÀÇ Á¤È®¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇà ¼öÈ®±â´Â È¿À²¼º°ú Àû½Ã ¼öÈ®ÀÌ ÃÖÀûÀÇ ¼öÈ®·®À» À§ÇØ ÇʼöÀûÀÎ ´ë±Ô¸ð ³óÀå¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

À¯¿£¿¡ µû¸£¸é ¼¼°è Àα¸´Â 1950³â ¾à 25¾ï ¸í¿¡¼­ 2022³â 11¿ù Áß¼ø¿¡´Â 80¾ï ¸í¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Á¤¹Ð³ó¾÷ µµÀÔ Áõ°¡

Á¤¹Ð ³ó¾÷ ±â¼úÀº µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤, ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ÀÛ¾÷ È¿À²À» ³ôÀÌ´Â ÀÚµ¿È­ ÇÁ·Î¼¼½º¸¦ ÅëÇØ ³óºÎµéÀÌ ÀÛ¹° ¼öÈ®·®À» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÚÀ²ÁÖÇà ¼öÈ®±â´Â ³óÀå °ü¸® ½Ã½ºÅÛ°ú ¿øÈ°ÇÏ°Ô ÅëÇյǾî ÷´Ü ¼¾¼­, ¸Ó½Å·¯´× ±â´É, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» Á¦°øÇÏ¿© ³ó¾÷ °æ¿µÀÇ Á¤È®¼º°ú »ý»ê¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀÛ¹° °Ç°­ ¸ð´ÏÅ͸µÀ» °­È­Çϰí, ¼öÈ® ÀÏÁ¤À» ÃÖÀûÈ­Çϰí, ÀÚ¿ø °ü¸®¸¦ °£¼ÒÈ­ÇÏ¿© Çö´ë ³ó¾÷ ±â¾÷¿¡ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.

÷´Ü ½Ã½ºÅÛÀ» Á¶ÀÛÇÒ ¼÷·Ã°ø ºÎÁ·

÷´Ü ÀÚÀ² ¼öÈ® ½Ã½ºÅÛÀ» ¿î¿µÇÒ ¼÷·ÃµÈ ÀηÂÀÇ ºÎÁ·Àº ³ó¾÷ ±â¾÷¿¡°Ô ¿î¿µ»óÀÇ ¾î·Á¿òÀ» ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â°è´Â ÀΰøÁö´É, ¸Ó½Å·¯´×, ¼¾¼­, GPS ½Ã½ºÅÛ µî ÷´Ü ±â¼ú¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, À̸¦ È¿°úÀûÀ¸·Î ¿î¿µÇϰí À¯ÁöÇϱâ À§Çؼ­´Â Àü¹® Áö½Ä°ú ±â¼ú Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÚÀ²ÁÖÇà ¼öÈ®±âÀÇ º¹À⼺Àº ³ó¾÷ Á¾»çÀÚÀÇ Áö¼ÓÀûÀÎ ÈÆ·Ã°ú ±â¼ú Çâ»óÀ» ¿ä±¸ÇÏÁö¸¸, ¸¹Àº ³ó¾÷ °æ¿µÃ¼´Â Á¦ÇÑµÈ ÀÚ¿ø°ú ±â¼ú ±³À° ÇÁ·Î±×·¥¿¡ ´ëÇÑ Á¢±Ù¼ºÀ¸·Î ÀÎÇØ À̸¦ Á¦°øÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °ÝÂ÷´Â ƯÈ÷ Àü¹® ±â¼úÀÚ¸¦ °í¿ëÇÒ °æÁ¦Àû ¿©·ÂÀÌ ¾ø´Â Áß¼Ò±Ô¸ðÀÇ ³ó¾÷ °æ¿µÃ¼¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

³ëµ¿·Â ºÎÁ·°ú ÀΰǺñ »ó½Â

³ó¾÷ ºÎ¹®Àº ³ëµ¿·Â ºÎÁ·À̶ó´Â Å« ¹®Á¦¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, ¹Ì±¹ ³ó¾÷ ¿¬¸ÍÀº ¹Ì±¹¿¡¼­¸¸ ¿¬°£ ¾à 250¸¸ ¸íÀÇ ³ó¾÷ Á¾»çÀÚ¸¦ °í¿ëÇØ¾ßÇÒ °ÍÀ¸·Î ÃßÁ¤Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ó¾÷ Àα¸ÀÇ °í·ÉÈ­¿Í ÀþÀº ¼¼´ë°¡ ¼öÀÛ¾÷À¸·Î ³ó»ç¸¦ Áþ´Â °ÍÀ» ±âÇÇÇϸ鼭 Àη¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãߴ ÷´Ü ³ó±â°è¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚÀ²ÁÖÇà ¼öÈ®±â´Â Àû½Ã¿¡ È¿À²ÀûÀÎ ¼öÈ® ÀÛ¾÷À» º¸ÀåÇϸ鼭 ½¬Áö ¾Ê°í ¿¬¼ÓÀûÀ¸·Î ÀÛµ¿ÇÏ¿© ÀÌ·¯ÇÑ ³ëµ¿·Â ºÎÁ·À» ÇØ°áÇϰí, Àå±âÀûÀ¸·Î ÀΰǺñ¸¦ Àý°¨Çϸ鼭 ÀÛ¾÷ È¿À²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

³ôÀº Ãʱ⠼³ºñ ÅõÀÚ ¹× ¿î¿µ ºñ¿ë

ÀÚÀ²ÁÖÇà ¼öÈ®±â ±¸¸Å ¹× µµÀÔ¿¡ ÇÊ¿äÇÑ ¸·´ëÇÑ Ãʱâ ÅõÀÚºñ¿ëÀº ¿¹»êÀÌ ÇÑÁ¤µÈ Áß¼Ò±Ô¸ð ³óÀå¿¡ °æÁ¦Àû À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë¿¡´Â ±â°è ±¸¸Å °¡°Ý»Ó¸¸ ¾Æ´Ï¶ó ¼³Ä¡, ¼³Á¤, ±âÁ¸ ³óÀå ÀÛ¾÷°úÀÇ ÅëÇÕ ¹× Áö¼ÓÀûÀÎ À¯Áö °ü¸® ¿ä±¸ »çÇ×°ú °ü·ÃµÈ ºñ¿ëµµ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ AI ½Ã½ºÅÛ, ¼¾¼­, GPS ÀåÄ¡, ¸Ó½Å·¯´× ±â´É°ú °°Àº ÷´Ü ±â¼ú ºÎǰÀº ¸¹Àº ³ó¾÷ °æ¿µÀÚµéÀÌ Á¤´çÈ­Çϱ⠾î·Á¿î ¿î¿µ ºñ¿ë Áõ°¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ

Äڷγª19 ÆÒµ¥¹ÍÀº °ø±Þ¸ÁÀÇ È¥¶õ°ú ÀϽÃÀûÀÎ Á¦Á¶ Áö¿¬À¸·Î ÀÎÇØ ÀåºñÀÇ °¡¿ë¼º¿¡ ¿µÇâÀ» ¹ÌÃÄ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¿©Çà Á¦ÇѰú °Ç°­»óÀÇ ¹®Á¦·Î ÀÎÇØ ³ëµ¿·Â ºÎÁ·ÀÌ ½ÉÈ­µÇ¸é¼­ ÀÚµ¿È­ ³ó¾÷ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ´Â °è±â°¡ µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀº ³ó¾÷ ÀÛ¾÷¿¡¼­ Àΰ£¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ´Â °ÍÀÇ Á߿伺À» ºÎ°¢½ÃÄ×°í, ºÒÈ®½ÇÇÑ ½Ã±â¿¡ ÀÛ¾÷ÀÇ ¿¬¼Ó¼ºÀ» ¿øÇÏ´Â ³óºÎµé »çÀÌ¿¡¼­ ÀÚÀ² ¼öÈ® ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀÌ´Â ¿øµ¿·ÂÀÌ µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È µðÁ© ¿£Áø ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Àß ±¸ÃàµÈ ÀÎÇÁ¶ó¿Í ³ó¾÷ ºÐ¾ß¿¡¼­ ÀÔÁõµÈ ½Å·Ú¼ºÀ¸·Î ÀÎÇØ µðÁ© ¿£Áø ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µðÁ© ¿£ÁøÀº °¡¼Ö¸° ´ëüǰ¿¡ ºñÇØ ¿¬·á È¿À²ÀÌ ¶Ù¾î³ª±â ¶§¹®¿¡ ƯÈ÷ ¿¬·á °¡°ÝÀÌ ±ÞµîÇÏ´Â Áö¿ª¿¡¼­ ³óºÎµé¿¡°Ô »ó´çÇÑ ºñ¿ë Àý°¨ È¿°ú¸¦ °¡Á®´Ù ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ó¾÷ Áö¿ª Àü¹Ý¿¡ °ÉÃÄ µðÁ© ¿¬·á ÀÎÇÁ¶ó°¡ ¹ß´ÞµÇ¾î Àֱ⠶§¹®¿¡ Àü ¼¼°è ³óÀÛ¾÷¿¡¼­ ¾ÈÁ¤ÀûÀÎ °¡¿ë¼º°ú Á¢±Ù¼ºÀÌ º¸ÀåµË´Ï´Ù. ¶ÇÇÑ, Ä¿¸Õ·¹ÀÏ Á÷ºÐ»ç ½Ã½ºÅÛ µî ÃÖ±Ù µðÁ© ¿£Áø ±â¼úÀÇ ¹ßÀüÀ¸·Î ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¸¦ ÃæÁ·Çϸ鼭 ¿¬ºñ°¡ °³¼±µÇ¾î ½Å·ÚÇÒ ¼ö ÀÖ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â ³óºÎµé¿¡°Ô ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °úÀÏ ¹× ä¼Ò ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °úÀÏ ¹× ä¼Ò ºÐ¾ß´Â ¼¶¼¼ÇÑ ÀÛ¹° ¼öÈ®ÀÇ Á¤¹Ð¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ö ÀÛ¹°Àº ¼Õ»óÀ» ÃÖ¼ÒÈ­Çϰí ǰÁúÀ» À¯ÁöÇϱâ À§ÇØ ¼¼½ÉÇÑ Ãë±ÞÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ºÎµå·¯¿î ¼öÈ® ÀÛ¾÷À» À§ÇØ Æ¯º°È÷ ¼³°èµÈ °í±Þ ¼¾¼­¿Í ¾Ë°í¸®ÁòÀ» °®Ãá ÀÚÀ²ÁÖÇà ¼öÈ®±âÀÇ Çʿ伺À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Å¼±ÇÑ ³ó»ê¹°¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¼ö¿ä Áõ°¡¿Í °úÀÏ ¹× ä¼Ò ¼öÈ®ÀÇ ³ëµ¿ Áý¾àÀû Ư¼ºÀÌ °áÇյǾî ÀÚµ¿È­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ Å« ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼® ±â´ÉÀ» ÅëÇØ ÀÌ ±â°èµéÀº º¹ÀâÇÑ °ú¼ö¿ø ·¹À̾ƿôÀ» Ž»öÇÏ°í º¯È­ÇÏ´Â ¼öÈ® Á¶°Ç¿¡ ÀûÀÀÇÏ¿© ÃÖÀûÀÇ È¿À²¼º°ú ÃÖ¼ÒÇÑÀÇ ¼öÈ® ¼Õ½ÇÀ» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» °¡Áø Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¿¬±¸°³¹ß¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ, À¯¸®ÇÑ Á¤ºÎ ÇýÅÃ, ÁÖ¿ä ³ó¾÷ ±â¼ú Á¦Á¶¾÷üÀÇ Á¸Àç·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹Àº ´ë±Ô¸ð ³ó¾÷ °æ¿µ°ú Á¤¹Ð ³ó¾÷ ±â¼úÀÇ º¸±Þ¿¡ ÈûÀÔ¾î ºÏ¹Ì ½ÃÀå Á¡À¯À²ÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀº ±â°èÈ­ ³ó¾÷À» Áö¿øÇϴ ÷´Ü ÀÎÇÁ¶óÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÀ¸¸ç, ¹Ì±¹ ³ó¾÷ ¿¬¸Í¿¡ µû¸£¸é ´ë±Ô¸ð ³óÀåÀÇ 70% ÀÌ»óÀÌ ÀÚÀ²ÁÖÇà ÄÞ¹ÙÀÎÀ» ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿ÏÀü ÀÚµ¿È­ ½Ã½ºÅÛÀÇ ÃßÁø°ú ÀΰøÁö´É ¹× ¸Ó½Å·¯´× ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀÌ °áÇյǾî ÀÌ Áö¿ª Àüü ½ÃÀå È®´ë¸¦ Áö¼ÓÀûÀ¸·Î °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ³ó¹ýÀÇ ±Þ¼ÓÇÑ Çö´ëÈ­¿Í ½Ä·® ¾Èº¸¿¡ ´ëÇÑ °ü½É Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»À» Æ÷ÇÔÇÑ ±¹°¡µéÀº ³óÃÌÀÇ ½É°¢ÇÑ ³ëµ¿·Â ºÎÁ·¿¡ ´ëóÇÏ´Â ÇÑÆí, ³ó¾÷ ±â°è¿¡ ÀΰøÁö´É°ú IoT ±â¼úÀ» Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¸Á¶±Ý°ú ±â°èÈ­ ÇÁ·Î±×·¥À» ÅëÇØ Á¤¹Ð ³ó¾÷À» Àå·ÁÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â ÀÌ Áö¿ª Àüü¿¡¼­ ÀÚÀ²ÁÖÇà ¼öÈ®±âÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ Àεµ, Áß±¹, Àεµ³×½Ã¾ÆÀÇ ±¤È°ÇÑ ³ó¾÷ ÁöÇü°ú Çö´ëÈ­¸¦ ÇâÇÑ °­·ÂÇÑ ÃßÁø·ÂÀº ¾Æ½Ã¾ÆÅÂÆò¾ç Àüü ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿È­ ¼öÁØ

  • ¹ÝÀÚÀ²ÁÖÇà ¼öÈ®±â(¿îÀüÀÚ º¸Á¶Çü)
  • ¿ÏÀü ÀÚÀ²ÁÖÇà ¼öÈ®±â(¹«ÀÎ)

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ±¸ºÐ
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­·Ð

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • ºÐ¼® ¹üÀ§
  • ºÐ¼® ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • ºÐ¼® Á¢±Ù
  • ºÐ¼® ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª¹ÙÀÌ·¯½º(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ¾÷üÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëü Á¦Ç°ÀÇ À§Çù
  • ½Å±Ô Âü¿© ±â¾÷ À§Çù
  • ±â¾÷°£ °æÀï

Á¦5Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå : Á¦Ç° À¯Çüº°

  • ÄÞ¹ÙÀÎ
  • »ç·á ¼öÈ®±â
  • Àܵð±ð±â±â°è
  • °úÀÏ ¼öÈ®±â
  • »çÅÁ¼ö¼ö ¼öÈ®±â
  • °¨ÀÚ ¼öÈ®±â
  • ä¼Ò ¼öÈ®±â
  • ±âŸ ¼öÈ®±â

Á¦6Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå : ÀÚµ¿È­ ·¹º§º°

  • ¹ÝÀÚÀ²ÁÖÇà ¼öÈ®±â(¿îÀü Áö¿øÇü)
  • ¿ÏÀüÀÚÀ²ÁÖÇà ¼öÈ®±â(¹«ÀÎÇü)

Á¦7Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå : ÃßÁø ¹æ½Äº°

  • µðÁ© ¿£Áø
  • Àü±â
  • ÇÏÀ̺긮µå

Á¦8Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå : °¡µ¿ Àå¼Òº°

  • ³óÁö ÀÛ¾÷
  • Á¦¾î ȯ°æ ³ó¾÷(CEA)
    • ¿Â½Ç
    • ½Ç³» ³óÀå

Á¦9Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå : ÀÛ¹° À¯Çüº°

  • °î¹°
  • °úÀÏ ¹× ä¼Ò
  • ¸éÈ­
  • »çÅÁ¼ö¼ö
  • ±âŸ À¯Çü ÀÛ¹°

Á¦10Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå : ±â¼úº°

  • GPS ¹× GNSS ±â¼ú
  • LiDAR ¹× ·¹ÀÌ´õ ¼¾¼­
  • ÄÄÇ»ÅÍ ºñÀü ¹× Ä«¸Þ¶ó ½Ã½ºÅÛ
  • ÀΰøÁö´É ¹× ¸Ó½Å·¯´×
  • »ç¹°ÀÎÅͳÝ(IoT)
  • ¿§Áö ÄÄÇ»ÆÃ
  • Ŭ¶ó¿ìµå Á¢¼Ó ¹× ÅÚ·¹¸Åƽ½º

Á¦11Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ´ë±Ô¸ð ³óÀå
  • Áß±Ô¸ð ³óÀå
  • ¼Ò±Ô¸ð ³óÀå
  • ³ó¾÷ Çùµ¿ Á¶ÇÕ
  • ¼öŹ ³ó¾÷ ¼­ºñ½º

Á¦12Àå ¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼öÈ®±â ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦13Àå ÁÖ¿ä µ¿Çâ

  • °è¾à, »ç¾÷ Á¦ÈÞ ¹× Çù·Â, ÇÕÀÛÅõÀÚ(JV)
  • ÀμöÇÕº´(M&A)
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®Àå
  • ±âŸ ÁÖ¿ä Àü·«

Á¦14Àå ±â¾÷ °³¿ä

  • John Deere(Deere & Company)
  • CNH Industrial
  • AGCO Corporation
  • Kubota Corporation
  • CLAAS KGaA mbH
  • Yanmar Co., Ltd.
  • Mahindra & Mahindra Ltd.
  • SDF Group
  • Iseki & Co., Ltd.
  • Harvest CROO Robotics
  • Naio Technologies
  • Agrobot
  • Harvest Automation, Inc.
  • Eos Crop Automation
  • Autonomous Solutions, Inc.(ASI)
  • AgEagle Aerial Systems Inc.
  • Raven Industries, Inc.
  • Solinftec
LSH 25.07.21

According to Stratistics MRC, the Global Autonomous Harvester Market is accounted for $1.9 billion in 2025 and is expected to reach $4.4 billion by 2032 growing at a CAGR of 12.8% during the forecast period. An autonomous harvester is a self-operating agricultural machine designed to perform harvesting tasks with minimal human intervention. Using advanced technologies such as GPS, sensors, computer vision, and AI-driven navigation systems, these machines can efficiently identify, collect, and process crops. They enhance productivity, reduce labor dependency, and ensure precision in farming operations. Autonomous harvesters are particularly valuable in large-scale farms where efficiency and timely harvesting are critical for optimal yield.

According to the United Nations, the global human population reached 8.0 billion in mid-November 2022, up from an estimated 2.5 billion in 1950.

Market Dynamics:

Driver:

Increasing adoption of precision agriculture

Precision agriculture technologies enable farmers to optimize crop yields through data-driven decision-making, real-time monitoring, and automated processes that enhance operational efficiency. Autonomous harvesters integrate seamlessly with farm management systems, providing advanced sensors, machine learning capabilities, and real-time data analytics that bolster precision and productivity in agricultural operations. Additionally, these systems enhance crop health monitoring, optimize harvesting schedules, and streamline resource management, making them indispensable tools for modern agricultural enterprises.

Restraint:

Lack of skilled workforce for operating advanced systems

The lack of a skilled workforce for operating advanced autonomous harvesting systems creates operational challenges for agricultural enterprises. These sophisticated machines depend on advanced technologies, including artificial intelligence, machine learning, sensors, and GPS systems, which require specialized knowledge and technical expertise to operate and maintain effectively. Moreover, the complexity of autonomous harvesters demands continuous training and upskilling of farm personnel, which many agricultural operations struggle to provide due to limited resources and access to technical education programs. This skills gap particularly affects small and medium-sized farming operations that lack the financial capacity to hire specialized technicians.

Opportunity:

Labor shortages and rising labor costs

The agricultural sector faces significant workforce challenges, with the American Farm Bureau Federation estimating approximately 2.5 million farm jobs need to be filled annually in the United States alone. Additionally, aging farming populations and the reluctance of younger generations to engage in manual agricultural work have intensified the demand for advanced agricultural equipment that reduces dependence on human labor. Furthermore, autonomous harvesters address these labor gaps by ensuring timely and efficient harvesting operations while operating continuously without breaks, enhancing operational efficiency while reducing long-term labor costs.

Threat:

High initial capital investment and operational costs

The substantial upfront investment required for purchasing and implementing autonomous harvesters creates financial barriers for small and medium-sized farms with limited budgets. These costs encompass not only the purchase price of machinery but also expenses related to installation, setup, integration with existing farm operations, and ongoing maintenance requirements. Furthermore, the advanced technological components, including AI systems, sensors, GPS equipment, and machine learning capabilities, contribute to elevated operational expenses that many farming operations find challenging to justify.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the autonomous harvester market through supply chain disruptions and temporary manufacturing delays that affected equipment availability. However, the crisis also accelerated adoption of automated farming solutions as labor shortages intensified due to travel restrictions and health concerns. Furthermore, the pandemic highlighted the importance of reducing human dependency in agricultural operations, driving increased interest in autonomous harvesting technologies among farmers seeking operational continuity during uncertain times.

The diesel-powered segment is expected to be the largest during the forecast period

The diesel-powered segment is expected to account for the largest market share during the forecast period due to established infrastructure and proven reliability in agricultural applications. Diesel engines provide superior fuel efficiency compared to gasoline alternatives, resulting in significant cost savings for farmers, particularly in regions with elevated fuel prices. Moreover, the well-developed diesel fuel infrastructure across agricultural regions ensures consistent availability and accessibility for farming operations worldwide. Additionally, recent technological advancements in diesel engine technology, including common rail direct injection systems, have improved fuel efficiency while meeting stringent emission regulations, making them the preferred choice for those seeking reliable and cost-effective solutions.

The fruits & vegetables segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the fruits & vegetables segment is predicted to witness the highest growth rate due to increasing demand for precision in harvesting delicate crops. These specialized crops require careful handling to minimize damage and maintain quality, driving the need for autonomous harvesters equipped with advanced sensors and algorithms designed specifically for gentle harvesting operations. Furthermore, the escalating global demand for fresh produce, coupled with the labor-intensive nature of fruit and vegetable harvesting, creates substantial opportunities for automation solutions. Additionally, real-time data analytics capabilities enable these machines to navigate complex orchard layouts and adapt to varying harvesting conditions, ensuring optimal efficiency and minimal crop loss.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, driven by strong investment in research and development, favorable government incentives, and the presence of leading agricultural technology manufacturers. The United States holds the majority of the North American market share, supported by large-scale farming operations and widespread adoption of precision agriculture technologies. Furthermore, the region benefits from advanced infrastructure supporting mechanized farming, with over 70% of large farms utilizing self-propelled combine harvesters, according to the American Farm Bureau Federation. Moreover, the push toward fully automatic systems, combined with rapid advancements in artificial intelligence and machine learning technologies, continues to drive market expansion across the region.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by rapid modernization of farming practices and increasing food security concerns. Countries including China, India, and Japan are actively integrating artificial intelligence and IoT technologies into agricultural machinery while addressing significant labor shortages in rural areas. Furthermore, government initiatives promoting precision farming through subsidies and mechanization programs are accelerating the adoption of autonomous harvesting equipment across the region. Additionally, the region's large agricultural geography and fierce drive toward modernization, particularly in India, China, and Indonesia, fuel market expansion throughout the Asia Pacific region.

Key players in the market

Some of the key players in Autonomous Harvester Market include John Deere (Deere & Company), CNH Industrial, AGCO Corporation, Kubota Corporation, CLAAS KGaA mbH, Yanmar Co., Ltd., Mahindra & Mahindra Ltd., SDF Group, Iseki & Co., Ltd., Harvest CROO Robotics, Naio Technologies, Agrobot, Harvest Automation, Inc., Eos Crop Automation, Autonomous Solutions, Inc. (ASI), AgEagle Aerial Systems Inc., Raven Industries, Inc., and Solinftec.

Key Developments:

In March 2025, Kubota Corporation is scheduled to exhibit the "Type: V" and "Type: S" concept models of its versatile platform robots for the future at the Future City pavilion, which Kubota supports as a platinum partner. The Type: V model will be making its world debut at that time.

In January 2025, John Deere revealed several new autonomous machines during a press conference at CES 2025 to support customers in agriculture, construction, and commercial landscaping. Building on Deere's autonomous technology first revealed at CES 2022, the company's second-generation autonomy kit combines advanced computer vision, AI, and cameras to help the machines navigate their environments.

In January 2024, Yanmar Agribusiness Co., Ltd. (Yanmar AG), a subsidiary of Yanmar Holdings, has revealed its e-X1 concept, an electric drive compact electric agricultural machine designed to achieve zero emissions in agriculture.

Product Types Covered:

  • Combine Harvesters
  • Forage Harvesters
  • Turf Harvesters
  • Fruit Harvesters
  • Sugarcane Harvesters
  • Potato Harvesters
  • Vegetable Harvesters
  • Other Harvesters

Level of Automations:

  • Semi-Autonomous Harvesters (Driver-Assisted)
  • Fully Autonomous Harvesters (Driverless)

Propulsion Types Covered:

  • Diesel-Powered
  • Electric
  • Hybrid

Site of Operations Covered:

  • Open-Field Operations
  • Controlled Environment Agriculture (CEA)

Crop Types Covered:

  • Grains & Cereals
  • Fruits & Vegetables
  • Cotton
  • Sugarcane
  • Other Crop Types

Technologies Covered:

  • GPS & GNSS Technology
  • LiDAR & Radar Sensors
  • Computer Vision & Camera Systems
  • Artificial Intelligence & Machine Learning
  • Internet of Things (IoT)
  • Edge Computing
  • Cloud Connectivity & Telematics

End Users Covered:

  • Large Scale Farms
  • Medium Scale Farms
  • Small Scale Farms
  • Agricultural Cooperatives
  • Contract Farming Services

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Autonomous Harvester Market, By Product Type

  • 5.1 Introduction
  • 5.2 Combine Harvesters
  • 5.3 Forage Harvesters
  • 5.4 Turf Harvesters
  • 5.5 Fruit Harvesters
  • 5.6 Sugarcane Harvesters
  • 5.7 Potato Harvesters
  • 5.8 Vegetable Harvesters
  • 5.9 Other Harvesters

6 Global Autonomous Harvester Market, By Level of Automation

  • 6.1 Introduction
  • 6.2 Semi-Autonomous Harvesters (Driver-Assisted)
  • 6.3 Fully Autonomous Harvesters (Driverless)

7 Global Autonomous Harvester Market, By Propulsion Type

  • 7.1 Introduction
  • 7.2 Diesel-Powered
  • 7.3 Electric
  • 7.4 Hybrid

8 Global Autonomous Harvester Market, By Site of Operation

  • 8.1 Introduction
  • 8.2 Open-Field Operations
  • 8.3 Controlled Environment Agriculture (CEA)
    • 8.3.1 Greenhouses
    • 8.3.2 Indoor Farms

9 Global Autonomous Harvester Market, By Crop Type

  • 9.1 Introduction
  • 9.2 Grains & Cereals
  • 9.3 Fruits & Vegetables
  • 9.4 Cotton
  • 9.5 Sugarcane
  • 9.6 Other Crop Types

10 Global Autonomous Harvester Market, By Technology

  • 10.1 Introduction
  • 10.2 GPS & GNSS Technology
  • 10.3 LiDAR & Radar Sensors
  • 10.4 Computer Vision & Camera Systems
  • 10.5 Artificial Intelligence & Machine Learning
  • 10.6 Internet of Things (IoT)
  • 10.7 Edge Computing
  • 10.8 Cloud Connectivity & Telematics

11 Global Autonomous Harvester Market, By End User

  • 11.1 Introduction
  • 11.2 Large Scale Farms
  • 11.3 Medium Scale Farms
  • 11.4 Small Scale Farms
  • 11.5 Agricultural Cooperatives
  • 11.6 Contract Farming Services

12 Global Autonomous Harvester Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 John Deere (Deere & Company)
  • 14.2 CNH Industrial
  • 14.3 AGCO Corporation
  • 14.4 Kubota Corporation
  • 14.5 CLAAS KGaA mbH
  • 14.6 Yanmar Co., Ltd.
  • 14.7 Mahindra & Mahindra Ltd.
  • 14.8 SDF Group
  • 14.9 Iseki & Co., Ltd.
  • 14.10 Harvest CROO Robotics
  • 14.11 Naio Technologies
  • 14.12 Agrobot
  • 14.13 Harvest Automation, Inc.
  • 14.14 Eos Crop Automation
  • 14.15 Autonomous Solutions, Inc. (ASI)
  • 14.16 AgEagle Aerial Systems Inc.
  • 14.17 Raven Industries, Inc.
  • 14.18 Solinftec
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦