½ÃÀ庸°í¼­
»óǰÄÚµå
1766146

¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀå ¿¹Ãø(-2032³â) - ÄÄÆ÷³ÍÆ®º°, ±â¾÷ ±Ô¸ðº°, ÀÎÁõ ±â¼úº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Face Swiping Payment Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software & Solutions and Services), Enterprise Size (Large Enterprises and Small & Medium Enterprises (SMEs)), Authentication Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ ÀÇÇϸé, ¼¼°èÀÇ ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀåÀº 2025³â¿¡ 81¾ï ´Þ·¯¿¡ ´ÞÇϰí, ¿¹Ãø ±â°£ Áß ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 21.1%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 312¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦´Â °Å·¡ ÀÎÁõ¿¡ ¾ó±¼ ÀÎ½Ä ±â¼úÀ» »ç¿ëÇÏ´Â »ýü ÀÎ½Ä ±â¹ÝÀÇ ºñÁ¢ÃË½Ä °áÁ¦ ¹æ½ÄÀÔ´Ï´Ù. ÀÌ¿ëÀÚ´Â ÀÚ½ÅÀÇ ¾ó±¼ µ¥ÀÌÅ͸¦ °áÁ¦ °èÁ¤°ú ¿¬µ¿ÇÏ¿© POS ´Ü¸»±â¿¡¼­ ¾ó±¼À» ½ºÄµÇÏ´Â °Í¸¸À¸·Î ¼îÇÎÀ» ¿Ï·áÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¹°¸®Àû Ä«µå³ª ¸ð¹ÙÀÏ ±â±â°¡ ÇÊ¿ä ¾ø¾î ¾ÈÀü¼º°ú ÆíÀǼºÀÌ Çâ»óµÇ¾î ¼Ò¸Å¾÷°ú ¼­ºñ½º¾÷¿¡¼­ Àü ¼¼°èÀûÀ¸·Î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

ºñÁ¢ÃË½Ä °áÁ¦¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀåÀº »ç¿ëÀÚÀÇ ÆíÀǼº°ú º¸¾ÈÀ» °­È­ÇÏ´Â ºñÁ¢ÃË½Ä °áÁ¦ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº ƯÈ÷ ¼Ò¸ÅÁ¡À̳ª ´ëÁß±³Åë°ú °°ÀÌ »ç¶÷µéÀÌ ¸¹ÀÌ ¸ðÀ̴ ȯ°æ¿¡¼­ ¹°¸®Àû Ä«µå³ª Çö±ÝÀÌ ÇÊ¿ä ¾ø´Â ¸Å²ô·´°í ¸¶Âû ¾ø´Â °Å·¡¸¦ ¼±È£Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ó±¼ ÀÎ½Ä ±â´ÉÀÌ Å¾ÀçµÈ ½º¸¶Æ®ÆùÀÇ º¸±Þ°ú ÆÒµ¥¹Í ÀÌÈÄ À§»ý¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ºñÁ¢ÃË½Ä °áÁ¦ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ºñÁ¢ÃË½Ä °áÁ¦ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀû ¿À·ù¿Í Á¤È®µµ ¹®Á¦

ºü¸¥ ¼ºÀå¿¡µµ ºÒ±¸ÇÏ°í ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀåÀº ±â¼úÀû ¿À·ù¿Í Á¤È®µµ ¹®Á¦·Î ÀÎÇØ Å« Á¦¾à ¿äÀο¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. Á¶¸í ºÒ·®, ÀúÇØ»óµµ Ä«¸Þ¶ó, ¾ó±¼ Ư¡ ½Äº° ¿À·ù¿Í °°Àº ±â¼úÀû °áÇÔÀº °Å·¡¸¦ ¹æÇØÇÏ°í »ç¿ëÀÚÀÇ ½Å·Ú¸¦ ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ Áß¼Ò±â¾÷ÀÇ °æ¿ì µµÀÔ ºñ¿ëÀÌ ºñ½Î°í, ¼ÒºñÀÚ ÀνÄÀÌ È®»êµÇÁö ¾ÊÀº °ÍÀÌ º¸±Þ¿¡ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© °¡¸ÍÁ¡°ú ¼ÒºñÀÚ ¸ðµÎ ÁÖÀúÇÏ°Ô µÇ°í, ½ÃÀåÀÇ ÀáÀç·ÂÀ» ÃæºÐÈ÷ ¹ßÈÖÇÏÁö ¸øÇϰí ÀÖ½À´Ï´Ù.

¾ó±¼ ÀÎ½Ä ±â¼úÀÇ ¹ßÀü

ÀΰøÁö´É, ¸Ó½Å·¯´×, ÄÄÇ»ÅÍ ºñÀüÀÇ ¹ßÀüÀ¸·Î ¾ó±¼ ÀÎÁõÀÇ Á¤È®¼º, ¼Óµµ, ½Å·Ú¼ºÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, IoT, ¿§Áö ÄÄÇ»ÆÃ, ´ÙÃþ ÀÎÁõ ÇÁ·Î¼¼½ºÀÇ ÅëÇÕÀ¸·Î º¸´Ù ¾ÈÀüÇϰí È¿À²ÀûÀÎ °áÁ¦ ¼Ö·ç¼ÇÀÌ ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÅõÀÚ¿Í ÆÄÆ®³Ê½ÊÀ» À¯Ä¡ÇÏ°í »ê¾÷°ú Áö¿ªÀ» ÃÊ¿ùÇÑ ±¤¹üÀ§ÇÑ µµÀÔÀÇ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

ÇÁ¶óÀ̹ö½Ã ¹× µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á

ÇÁ¶óÀ̹ö½Ã ¹× µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á´Â ¿©ÀüÈ÷ ¾ó±¼ ÀÎ½Ä °áÁ¦ ½ÃÀå¿¡ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤) ¹× ±âŸ µ¥ÀÌÅÍ º¸È£¹ý°ú °°Àº ¾ö°ÝÇÑ ¼¼°è ±ÔÁ¦´Â »ýüÀÎ½Ä µ¥ÀÌÅÍÀÇ ¼öÁý ¹× ÀúÀå¿¡ ´ëÇÑ ¾ö°ÝÇÑ ¿ä±¸ »çÇ×À» ºÎ°úÇϰí ÀÖÀ¸¸ç, ±â¾÷µéÀº ÀÌ·¯ÇÑ ¿ì·Á¸¦ ÇØ°áÇÏ°í ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ±¸ÃàÇϱâ À§ÇØ °­·ÂÇÑ ¾Ïȣȭ ±â¼úÀ» µµÀÔÇØ¾ß ÇÕ´Ï´Ù. ±â¾÷Àº ÀÌ·¯ÇÑ ¿ì·Á¸¦ ÇØ¼ÒÇÏ°í ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ±¸ÃàÇϱâ À§ÇØ °­·ÂÇÑ ¾Ïȣȭ, »ç¿ëÀÚ µ¿ÀÇ ¸ÞÄ¿´ÏÁò, À±¸®Àû AI °üÇàÀ» ±¸ÇöÇØ¾ß Çϸç, ±×·¸Áö ¾ÊÀ» °æ¿ì ±ÔÁ¦ ó¹ú°ú ÆòÆÇ ÈѼÕÀÇ À§Çè¿¡ ³ëÃâµÉ ¼ö ÀÖ½À´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ

Äڷγª19 »çÅ´ ºñÁ¢ÃË½Ä ¹× ºñÁ¢ÃË½Ä °áÁ¦ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­ÇÔÀ¸·Î½á ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. »çȸÀû °Å¸®µÎ±â ±Ô¹ü°ú À§»ý¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ¼ÒºñÀÚ¿Í ±â¾÷ ¸ðµÎ º¸´Ù ¾ÈÀüÇÏ°í ºñÁ¢ÃËÀûÀÎ °Å·¡ ¹æ½ÄÀ» ¿ä±¸ÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú, ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ±â¼úÀÇ Ã¤ÅÃÀÌ ±ÞÁõÇß°í, ÀÌ ±â°£ µ¿¾È Á¦ÈÞ ¹× Á¦Ç° Ãâ½Ã°¡ Áõ°¡Çß½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â Áö¼ÓÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¾ó±¼ ÀÎ½Ä °áÁ¦´Â ÆÒµ¥¹Í ÀÌÈÄ¿¡µµ ¼±È£µÇ´Â ´ë¾ÈÀ¸·Î ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â ¾ó±¼ ÀÎ½Ä °áÁ¦°¡ °¡´ÉÇÑ POS ´Ü¸»±â, Ű¿À½ºÅ© ´Ü¸»±â, ¸ð¹ÙÀÏ °áÁ¦ ±â±â µî °áÁ¦ ±â±âÀÇ º¸±ÞÀÌ È®´ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ¼Ò¸Å¾÷°ú Á¢°´¾÷¿¡¼­ ¼¿ÇÁ ¼­ºñ½º Ű¿À½ºÅ©ÀÇ Àαâ Áõ°¡¿Í Çϵå¿þ¾î ÅëÇÕÀÇ ¹ßÀüÀÌ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¾ó±¼ ±â¹Ý °áÁ¦¸¦ °¡´ÉÄÉ ÇÏ´Â ÀÌ ºÎ¹®ÀÇ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀº ÀÌ ºÎ¹®ÀÇ Áö¼ÓÀûÀÎ ½ÃÀå ¸®´õ·Î¼­ÀÇ ÁöÀ§¸¦ º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Áß¼Ò±â¾÷(SME) ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÎ¹®Àº Áß¼Ò±â¾÷(SME) ºÎ¹®ÀÔ´Ï´Ù. Áß¼Ò±â¾÷Àº ºñ¿ë È¿À²ÀûÀ̰í ÅëÇÕÀÌ ¿ëÀÌÇÏ¸ç ¾ÈÀüÇÑ °áÁ¦ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, Áö¿ø ¼­ºñ½º¸¦ ¹øµé·Î Á¦°øÇÏ´Â ÅÏŰ ¼­ºñ½º´Â Áß¼Ò±â¾÷ÀÇ µµÀÔ ¿À¹öÇìµå¸¦ ÃÖ¼ÒÈ­ÇÏ¿© Áß¼Ò±â¾÷¿¡°Ô ¾îÇÊÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áß¼Ò±â¾÷ÀÇ µðÁöÅÐÈ­ ÁøÀü°ú ¿øÈ°ÇÑ °í°´ °æÇè¿¡ ´ëÇÑ ¼ö¿ä°¡ ÀÌ ºÎ¹®ÀÇ ±Þ°ÝÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â ºÏ¹Ì°¡ Çõ½ÅÀûÀÎ °áÁ¦ ±â¼úÀ» ºü¸£°Ô µµÀÔÇϰí ÀÖ°í, ±â¼úÀûÀ¸·Î Áøº¸µÈ ¼Ò¸Å ÀÎÇÁ¶ó¸¦ °®Ãß°í ÀÖÀ¸¸ç, ÁÖ¿ä °áÁ¦ ±â¼ú Á¦°ø¾÷ü°¡ Á¸ÀçÇϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ºÏ¹ÌÀÇ ¼ÒºñÀÚ¿Í ±â¾÷µéÀº ÀÚµ¿È­ ¹× µðÁöÅÐ ¼Ö·ç¼ÇÀ» ºü¸£°Ô µµÀÔÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ºÏ¹ÌÀÇ ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀå¿¡¼­ÀÇ ÁÖµµ±ÇÀ» ´õ¿í °ø°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ °ßÁ¶ÇÑ ¼ºÀåÀº ¾ó±¼ ÀÎ½Ä °áÁ¦ÀÇ ÀåÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í, Áß±¹, ÀϺ», Àεµ µî ±¹°¡¿¡¼­ ¾ó±¼ ÀÎ½Ä ±â¼úÀÇ ±¤¹üÀ§ÇÑ Ã¤Åðú ºü¸¥ µðÁöÅÐ Àüȯ¿¡ ÈûÀÔÀº ¹Ù Å®´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ Áö¿øÃ¥°ú ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡ ºÐ¾ßÀÇ È®´ë´Â ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, ¾Æ½Ã¾ÆÅÂÆò¾çÀ» °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±¸¼º ¿ä¼Ò

  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç
  • ¼­ºñ½º

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ±¸ºÐ
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­·Ð

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • ºÐ¼® ¹üÀ§
  • ºÐ¼® ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • ºÐ¼® Á¢±Ù
  • ºÐ¼® ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª¹ÙÀÌ·¯½º(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ¾÷üÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëü Á¦Ç°ÀÇ À§Çù
  • ½Å±Ô Âü¿© ±â¾÷ À§Çù
  • ±â¾÷°£ °æÀï

Á¦5Àå ¼¼°èÀÇ ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ¾ó±¼ ÀÎ½Ä Àü¿ë ´Ü¸»±â
    • ¾ó±¼ ÀÎ½Ä Áö¿ø POS ´Ü¸»±â
    • ¾ó±¼ ÀÎ½Ä Áö¿ø ¼¿ÇÁ¼­ºñ½º Ű¿À½ºÅ©
    • ½º¸¶Æ® Ä«¸Þ¶ó
  • ¼ÒÇÁÆ®¿þ¾î, ¼Ö·ç¼Ç
    • Ŭ¶ó¿ìµå ±â¹Ý °áÁ¦ Ç÷§Æû
    • On-Premise °áÁ¦ ¼Ö·ç¼Ç
    • »ýüÀÎ½Ä ¸ÅĪ ¾Ë°í¸®Áò
    • °áÁ¦ °ÔÀÌÆ®¿þÀÌ ÅëÇÕ ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ ¹× ÅëÇÕ ¼­ºñ½º
    • Á¤ºñ ¹× Áö¿ø ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀå : ±â¾÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦7Àå ¼¼°èÀÇ ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀå : ÀÎÁõ ±â¼úº°

  • 2D ¾ó±¼ ÀνÄ
  • 3D ¾ó±¼ ÀνÄ
  • Àû¿Ü¼± ±â¹Ý ÀνÄ

Á¦8Àå ¼¼°èÀÇ ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¼Ò¸Å¾÷ ¹× E-Commerce
  • ½Äǰ ¹× À½·á
  • ÀºÇà, ±ÝÀ¶¼­ºñ½º ¹× º¸Çè(BFSI)
  • È£½ºÇÇÅ»¸®Æ¼ ¹× °ü±¤
  • ¿î¼Û ¹× ¹°·ù
  • ÀÇ·á
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ¾ó±¼ ½º¿ÍÀÌÇÎ °áÁ¦ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä µ¿Çâ

  • °è¾à, »ç¾÷ Á¦ÈÞ ¹× Çù·Â, ÇÕÀÛÅõÀÚ(JV)
  • ÀμöÇÕº´(M&A)
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®Àå
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ °³¿ä

  • Alibaba
  • Tencent
  • Amazon
  • Mastercard
  • Visa
  • Apple
  • Google
  • Microsoft
  • Samsung
  • NEC Corporation
  • Fujitsu Limited
  • IDEMIA
  • VisionLabs
  • Megvii
  • PopID
  • PayByFace
  • SnapPay
  • CloudWalk Technology
LSH 25.07.21

According to Stratistics MRC, the Global Face Swiping Payment Market is accounted for $8.1 billion in 2025 and is expected to reach $31.2 billion by 2032 growing at a CAGR of 21.1% during the forecast period. Face swiping payment is a biometric-based contactless payment method that uses facial recognition technology to authenticate transactions. Users link their facial data with a payment account, allowing them to complete purchases simply by scanning their face at a point-of-sale terminal. This system enhances security and convenience by eliminating the need for physical cards or mobile devices, making it increasingly popular in retail and service sectors globally.

Market Dynamics:

Driver:

Increasing demand for contactless payments

The face swiping payment market is being propelled by the growing demand for contactless payment solutions, which offer both convenience and enhanced security for users. Consumers increasingly prefer seamless, frictionless transactions that eliminate the need for physical cards or cash, especially in high-traffic environments like retail and public transportation. Furthermore, the proliferation of smartphones with integrated facial recognition and the emphasis on hygiene post-pandemic have accelerated the adoption of these technologies, making contactless payments a key driver for market growth.

Restraint:

Technical errors and accuracy issues

Despite its rapid growth, the face-swiping payment market faces significant restraints due to technical errors and accuracy issues. Technical glitches, such as poor lighting, low-resolution cameras, or facial feature identification errors, can disrupt transactions and erode user trust. Additionally, the high implementation costs, particularly for small businesses, and the lack of widespread consumer awareness further hinder adoption. These factors collectively create hesitation among both merchants and consumers, limiting the market full potential.

Opportunity:

Advancements in facial recognition technology

Improvements in artificial intelligence, machine learning, and computer vision have significantly increased the accuracy, speed, and reliability of facial authentication. Moreover, the integration of IoT, edge computing, and multi-layered verification processes is enabling more secure and efficient payment solutions. These technological innovations are attracting investments and partnerships, paving the way for broader adoption across industries and regions.

Threat:

Privacy and data security concerns

Privacy and data security concerns remain a prominent threat to the face swiping payment market. Consumers are often apprehensive about sharing their biometric data due to fears of misuse, identity theft, and mass surveillance. Stringent global regulations, such as GDPR and other data protection laws, impose strict requirements on biometric data collection and storage. Companies must implement robust encryption, user consent mechanisms, and ethical AI practices to address these concerns and build consumer trust or risk regulatory penalties and reputational damage.

Covid-19 Impact:

The Covid-19 pandemic had a positive impact on the face swiping payment market by accelerating the shift toward touchless and contactless payment solutions. Social distancing norms and heightened hygiene awareness drove both consumers and businesses to seek safer, non-contact methods for transactions. As a result, adoption of face swiping payment technology surged, with increased collaborations and product launches during this period. This shift is expected to have a lasting effect, positioning face swiping payments as a preferred option in the post-pandemic era.

The hardware segment is expected to be the largest during the forecast period

The hardware segment is expected to account for the largest market share during the forecast period, attributed to the widespread deployment of payment equipment such as point-of-sale terminals, kiosks, and mobile payment devices that enable face swiping transactions. Furthermore, the growing popularity of self-service kiosks in retail and hospitality, along with advancements in hardware integration, is driving the segment's expansion. The segment's foundational role in enabling secure and efficient face based payments ensures its continued market leadership.

The small & medium enterprises (SMEs) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the small & medium enterprises (SMEs) segment is predicted to witness the highest growth rate. SMEs are increasingly adopting face swiping payment solutions due to their need for cost-effective, easy-to-integrate, and secure payment systems. Turnkey offerings that bundle hardware, software, and support services appeal to SMEs by minimizing implementation overhead. Additionally, the growing digitalization and demand for seamless customer experiences among SMEs are contributing to this segment's rapid expansion.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, driven by the region's rapid adoption of innovative payment technologies, a technologically advanced retail infrastructure, and the presence of major payment technology providers. Moreover, North American consumers and businesses are early adopters of automation and digital solutions, further solidifying the region's leadership in the face swiping payment market.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. The region's robust growth is fueled by increasing awareness of the benefits of face swiping payments, rapid digital transformation, and the widespread adoption of facial recognition technologies in countries like China, Japan, and India. Additionally, supportive government initiatives and the expanding retail and e-commerce sectors are accelerating market growth in Asia Pacific, positioning it as the fastest-growing region.

Key players in the market

Some of the key players in Face Swiping Payment Market include Alibaba, Tencent, Amazon, Mastercard, Visa, Apple, Google, Microsoft, Samsung, NEC Corporation, Fujitsu Limited, IDEMIA, VisionLabs, Megvii, PopID, PayByFace, SnapPay, and CloudWalk Technology.

Key Developments:

In July 2023, IDEMIA partnered with Abu Dhabi International Airport to deploy facial recognition technology for passenger authentication, creating a Single Token Journey solution that eliminates the need for physical travel documents.

In May 2022, Mastercard unleashes new era of biometric payments to enhance the checkout experience. Brazil Pilot with Payface The first pilot launched with Payface at five St Marche supermarkets in Sao Paulo, where customers can enroll their face through the Payface app and pay by smiling at checkout.

Components:

  • Hardware
  • Software & Solutions
  • Services

Enterprise Sizes Covered:

  • Large Enterprises
  • Small & Medium Enterprises (SMEs)

Authentication Technologies Covered:

  • 2D Facial Recognition
  • 3D Facial Recognition
  • Infrared-Based Recognition

End Users Covered:

  • Retail & E-commerce
  • Food & Beverage
  • Banking, Financial Services, and Insurance (BFSI)
  • Hospitality & Tourism
  • Transportation & Logistics
  • Healthcare
  • Government & Public Sector
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Face Swiping Payment Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Dedicated Facial Recognition Terminals
    • 5.2.2 Facial Recognition Enabled Point of Sale (POS) Terminals
    • 5.2.3 Facial Recognition Enabled Self-Service Kiosks
    • 5.2.4 Smart Cameras
  • 5.3 Software & Solutions
    • 5.3.1 Cloud-Based Payment Platforms
    • 5.3.2 On-Premises Payment Solutions
    • 5.3.3 Biometric Matching Algorithms
    • 5.3.4 Payment Gateway Integration Software
  • 5.4 Services
    • 5.4.1 Consulting & Integration Services
    • 5.4.2 Maintenance & Support Services

6 Global Face Swiping Payment Market, By Enterprise Size

  • 6.1 Introduction
  • 6.2 Large Enterprises
  • 6.3 Small & Medium Enterprises (SMEs)

7 Global Face Swiping Payment Market, By Authentication Technology

  • 7.1 Introduction
  • 7.2 2D Facial Recognition
  • 7.3 3D Facial Recognition
  • 7.4 Infrared-Based Recognition

8 Global Face Swiping Payment Market, By End User

  • 8.1 Introduction
  • 8.2 Retail & E-commerce
  • 8.3 Food & Beverage
  • 8.4 Banking, Financial Services, and Insurance (BFSI)
  • 8.5 Hospitality & Tourism
  • 8.6 Transportation & Logistics
  • 8.7 Healthcare
  • 8.8 Government & Public Sector
  • 8.9 Other End Users

9 Global Face Swiping Payment Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Alibaba
  • 11.2 Tencent
  • 11.3 Amazon
  • 11.4 Mastercard
  • 11.5 Visa
  • 11.6 Apple
  • 11.7 Google
  • 11.8 Microsoft
  • 11.9 Samsung
  • 11.10 NEC Corporation
  • 11.11 Fujitsu Limited
  • 11.12 IDEMIA
  • 11.13 VisionLabs
  • 11.14 Megvii
  • 11.15 PopID
  • 11.16 PayByFace
  • 11.17 SnapPay
  • 11.18 CloudWalk Technology
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦