![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1776692
¼¼°èÀÇ ½º¸¶Æ® ±×¸®µå ½ÃÀå : ¿¹Ãø - ÄÄÆ÷³ÍÆ®º°, Àü°³ ¸ðµ¨º°, Åë½Å ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)Smart Grid Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Service), Deployment Model (Cloud-based, On-premises and Hybrid), Communication Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½º¸¶Æ® ±×¸®µå ½ÃÀåÀº 2025³â¿¡ 530¾ï 2,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, 2032³â±îÁö ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 19.0%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 1,791¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
½º¸¶Æ® ±×¸®µå´Â ÀÚµ¿È, µðÁöÅÐ Åë½Å, Çö´ë ±â¼úÀ» ÅëÇØ Àü·Â »ý»ê°ú ¹èÀüÀÇ Áö¼Ó°¡´É¼º, ½Å·Ú¼º, È¿À²À» ³ôÀÌ´Â °í±Þ Àü·Â¸Á ½Ã½ºÅÛÀÔ´Ï´Ù. ±âÁ¸ ¼ÛÀü¸Á°ú ´ëÁ¶ÀûÀ¸·Î ½º¸¶Æ® ±×¸®µå´Â Àü·Âȸ»ç ¹× ¼ö¿äÀÚÀÇ ¾ç¹æÇâ Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ´õ ³ªÀº ºÎÇÏ ±ÕÇü, ½Ç½Ã°£ °¨½Ã, º¯µ¿ ¹× Á¤Àü¿¡ ´ëÇÑ ½Å¼ÓÇÑ ´ëÀÀÀ» ÃËÁøÇÕ´Ï´Ù. ½º¸¶Æ® ±×¸®µå´Â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» ÃËÁøÇϰí Àü±âÂ÷ »ç¿ëÀ» Àå·ÁÇϸç ž籤°ú dz·Â µî ½ÅÀç»ý ¿¡³ÊÁö¿øÀ» µµÀÔÇÕ´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ±×¸®µå´Â µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ°í ¿¡³ÊÁö Àý¾àÀ» ÃËÁøÇϱâ À§ÇØ º¸´Ù °ß°íÇϰí ȯ°æ Ä£ÈÀûÀÎ ¿¡³ÊÁö ÀÎÇÁ¶ó¸¦ ±¸ÃàÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é, ³ÝÁ¦·Î ¹æÃâ(NZE) ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§Çؼ´Â 2030³â±îÁö ¼¼°è Àü·Â¸Á¿¡ ´ëÇÑ ÅõÀÚ¾×ÀÌ ÇöÀç ¿¬°£ ¾à 3,000¾ï ´Þ·¯¿¡¼ ¾à 2¹èÀÇ ¿¬°£ Æò±Õ 6,000¾ï ´Þ·¯·Î Áõ°¡ÇØ¾ß ÇÕ´Ï´Ù.
Áõ°¡ÇÏ´Â ¼ÛÀü¸ÁÀÇ ½Å·Ú¼º ¹× Àü·Â ¿ä±¸
¼¼°èÀÇ µµ½ÃÈ, Àα¸ È®´ë, ±â¼ú °³¹ß·Î Àü·Â ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¿À·¡µÈ ¼ÛÀü¸ÁÀº Çö´ëÀÇ ¿¡³ÊÁö ¼ö¿ä¸¦ °ü¸®ÇÏÁö ¸øÇϰųª ¾ÈÁ¤Àû °ø±ÞÀ» º¸ÀåÇÏÁö ¸øÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ±×¸®µå´Â ¼ö¿ä Ãø °ü¸®, ºÎÇÏ ¿¹Ãø, ÀÚµ¿È ½Ã½ºÅÛÀ» ÅëÇØ ¿¡³ÊÁö È帧À» ÃÖÀûÈÇϰí Á¤ÀüÀ» ¹æÁöÇÔÀ¸·Î½á ÀÌ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. Àü·Â¸Á ÀüüÀÇ ½Å·Ú¼º, ¾ÈÁ¤¼º, È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ Æ¯È÷ »ç¿ë·®ÀÌ Á¤Á¡¿¡ À̸£´Â ½Ã±â¿¡ Áß¿äÇѵ¥, ½º¸¶Æ® ±×¸®µå´Â ½Ç½Ã°£ °¨½Ã¿Í ¿ªµ¿ÀûÀÎ ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
³ôÀº µµÀÔ ¹× Ãʱâ ÅõÀÚ ºñ¿ë
¿ÏÀüÇÑ ½º¸¶Æ® ±×¸®µå ÀÎÇÁ¶ó¸¦ µµÀÔÇϱâ À§Çؼ´Â »ó´çÇÑ ÀÚº»ÀÌ ÇÊ¿äÇÕ´Ï´Ù. °íµµ°èÃø ÀÎÇÁ¶ó(AMI), Åë½Å ³×Æ®¿öÅ©, ½º¸¶Æ® ¼¾¼, Á¦¾î ½Ã½ºÅÛ, »çÀ̹ö º¸¾È µµ±¸, Á÷¿ø ±³À° µîÀÌ ÀÌ¿¡ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ºñ¿ëÀº ¼Ò±Ô¸ð Àü·Â ȸ»ç³ª °³¹ß µµ»ó±¹¿¡´Â ¼ÕÀ» ¾µ ¼ö ¾øÀ»Áöµµ ¸ð¸¨´Ï´Ù. °Ô´Ù°¡ ÅõÀÚ ¼öÀÍ·ü(ROI)ÀÌ ¹àÇôÁö±â±îÁö´Â, ƯÈ÷ ·¹°Å½Ã ½Ã½ºÅÛÀÇ ¾÷±×·¹ÀÌµå ¹× ¸®Ç÷¹À̽ºÀÇ Çʿ伺À» °í·ÁÇϸé, ¸î ³âÀ̳ª °É¸± °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ƯÈ÷ Àü±â¿ä±ÝÀÌ ³·Àº Áö¿ªÀ̳ª °øÀûÀÚ±ÝÀÌ ÀûÀº Áö¿ª¿¡¼´Â ºñ¿ë À庮À¸·Î ÀÎÇØ º¸±ÞÀÌ Áö¿¬µÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ ºÐ¼® ¹× ÀΰøÁö´É °³¹ß
¿¹Áö º¸Àü, Á¤Àü ¿¹Ãø, ¿¡³ÊÁö µµ³ °¨Áö, ½Ç½Ã°£ ÃÖÀûÈÀÇ ´ë±Ô¸ð °¡´É¼ºÀº AI¿Í ºò µ¥ÀÌÅÍ ºÐ¼®À» ½º¸¶Æ® ±×¸®µå ½Ã½ºÅÛ¿¡ ÅëÇÕÇÔÀ¸·Î½á °¡´ÉÇØÁý´Ï´Ù. ¹æ´ëÇÑ ¾çÀÇ ±×¸®µå µ¥ÀÌÅ͸¦ ó¸®ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±â¼úÀº ´Ù¿îŸÀÓÀ» ÁÙÀÌ°í ¿î¿µ È¿À²À» ³ôÀÌ¸ç ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Àü·Âȸ»ç´Â AI¸¦ žÀçÇÑ ±×¸®µå °ü¸® ¼ÒÇÁÆ®¿þ¾î¿¡ º¸´Ù ¸¹Àº ÀÚ±ÝÀ» ÅõÀÚÇϰí ÀÖÀ¸¸ç, µ¥ÀÌÅÍ »çÀÌ¾ðÆ¼½ºÆ®, ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç ÇÁ·Î¹ÙÀÌ´õ, AI °³¹ßÀÚ°¡ ¿¡³ÊÁö ºÎ¹®¿¡ ÁøÀÔÇÏ°í ¼ºÀåÇϱâ À§ÇÑ »õ·Î¿î ¹®À» ¿°í ÀÖ½À´Ï´Ù.
¿¹»ê ¾ïÁ¦ ¹× °æÁ¦Àû È¥¶õ
±¹¹ÎÀÇ ½º¸¶Æ® ±×¸®µå ÇÁ·ÎÁ§Æ® ÀÚ±ÝÀº ¼¼°è °æ±â ħü, ÀÎÇ÷¹À̼Ç, ÆÒµ¥¹Í ¹× ÁöÁ¤ÇÐÀû ºÐÀïÀ¸·Î ÀÎÇÑ È¥¶õ¿¡ ÀÇÇØ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »óȲ¿¡¼´Â °¢±¹ Á¤ºÎ°¡ º¸´Ù ±ä±Þ¼ºÀÌ ³ôÀº ¹®Á¦¿¡ ÀÚ¿øÀ» ½ÃÇÁÆ®Çϱâ·Î °áÁ¤ÇÏ¿© ÀÎÇÁ¶ó Çö´ëÈÀÇ Á߿伺ÀÌ ÀúÇ쵃 °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ´õ¿íÀÌ °ø±Þ¸Á Áß´Ü, ȯÀ² º¯µ¿, Àç·á ¹× ºÎǰ ºñ¿ëÀÇ ±ÞµîÀº ƯÈ÷ °³¹ßµµ»ó±¹ÀÇ Àü·Âȸ»ç¿¡°Ô ÇÁ·ÎÁ§Æ®ÀÇ ½ÇÇà, Á¶´Þ ¶Ç´Â ½º¸¶Æ® ±×¸®µå ±â¼úÀÇ À繫Àû ½ÇÇà °¡´É¼º Áö¿¬À» ¾ß±âÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº ½º¸¶Æ® ±×¸®µå ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ¼¼°è °ø±Þ¸Á Àå¾Ö, ÇÁ·ÎÁ§Æ® Áö¿¬, Àü·Âȸ»çÀÇ ¼³ºñÅõÀÚ °¨¼Ò(ƯÈ÷ ½ÅÈï±¹)·Î ´Ü±âÀûÀÎ ½ÃÀå È¥¶õÀÌ ¹ß»ýÇß½À´Ï´Ù. ºÀ¼â ¹× µµÇ× Á¦Çѵµ ½º¸¶Æ® ±×¸®µå ÀÎÇÁ¶óÀÇ Àü°³¸¦ Áö¿¬½ÃÄÑ ÇöÁö¿¡¼ÀÇ ¼³Ä¡¸¦ °ï¶õÇÏ°Ô Çß½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ¿¡³ÊÁö ¾÷°èÀÇ µðÁöÅÐ º¯ÇõÀ» °¡¼ÓÈÇÏ°í °ß°íÇϰí ÀÚµ¿ÈµÈ ¿ø°Ý Á¦¾î ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Çʿ伺À» °Á¶Çß½À´Ï´Ù. ¼ÛÀü¸ÁÀÇ Çö´ëÈ, ½ÅÀç»ý ¿¡³ÊÁöÀÇ ÅëÇÕ, ¿ø°Ý °¨½Ã ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ´Â °¡¿îµ¥, ÀÌ·¯ÇÑ º¯È´Â ÆÒµ¥¹Í ÈÄ¿¡ ½º¸¶Æ® ±×¸®µå ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» ÀçÁ¡È½ÃÄ×½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¹èÀü ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÏ´Â °ÍÀº ¹èÀü ºÎ¹®ÀÔ´Ï´Ù. º¯Àü¼Ò¿¡¼ ÃÖÁ¾ »ç¿ëÀÚ±îÁöÀÇ Àü·Â °ø±ÞÀ» È¿°úÀûÀÌ°í ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí Á¦¾îÇÏ°í ½Í´Ù´Â ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÌ ÀÌ ¿ìÀ§¼ºÀÇ ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀÌ°í ¹®Á¦¸¦ Áï½Ã ÆÄ¾ÇÇØ ¿Á»ó ¼Ö¶ó¿Í EV ÃæÀü µî ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀ» ÅëÇÕÇϱâ À§ÇØ ½º¸¶Æ® ¹èÀü ½Ã½ºÅÛÀº °íµµÀÇ °èÃø ÀÎÇÁ¶ó, ¼¾¼, ÀÚµ¿È, ºÐ¼®À» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. °øÀÍ»ç¾÷ÀÚ´Â Àü·Â ¼ö¿ä°¡ º¸´Ù º¯µ¿µÇ°í ºÐ»êµÇ´Â °¡¿îµ¥ ½Å·Ú¼º, À¯¿¬¼º, °í°´ÀÇ °ü¿©¸¦ º¸ÀåÇϱâ À§ÇØ ¹èÀü¸Á °»½Å¿¡ ³ôÀº ¿ì¼±¼øÀ§¸¦ µÎ°í ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹®Àº ¹ßÀü°ú ¼Òºñ¸¦ ¿¬°áÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ½º¸¶Æ® ±×¸®µå °³¹ß¿¡¼ °¡Àå Áß¿äÇÑ ºÎºÐÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â »ê¾÷ ºÎ¹®
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀÌ ¿¹»óµÇ´Â °ÍÀº »ê¾÷ ºÐ¾ßÀÔ´Ï´Ù. ÀÌ ¼ºÀåÀÇ ÁÖµÈ ¿øµ¿·ÂÀº µ¥ÀÌÅͼ¾ÅÍ, Á¦Á¶¾÷, ±¤¾÷, ¼®À¯ ¹× °¡½º µî ¿¡³ÊÁö ´Ù¼Òºñ ºÎ¹®¿¡¼ ÀÚµ¿ ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛ, ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¡³ÊÁö È¿À²È ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÔ´Ï´Ù. °í±Þ ¼¾¼, ¼ö¿ä ÀÀ´ä ½Ã½ºÅÛ, ¿¹Áö º¸Àü µµ±¸¸¦ ÀÌ¿ëÇÔÀ¸·Î½á ½º¸¶Æ® ±×¸®µå ¼Ö·ç¼ÇÀº »ê¾÷ ½Ã¼³ÀÌ ÇÊ¿ä·Î ÇÏ´Â ½Å·Ú¼º ÀÖ°í Áö¼ÓÀûÀÎ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ Å« ¿äÀÎÀº ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò¿Í ¿î¿µ ºñ¿ë ÃÖÀûÈ¿¡ ´ëÇÑ ¾Ð·ÂÀÌ ³ô¾ÆÁø °á°ú ¸¹Àº »ê¾÷¿¡¼ ½º¸¶Æ® ±×¸®µå°¡ äÅõǰí ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̰ÍÀº ÷´Ü ±â¼úÀÇ ±¤¹üÀ§ÇÑ Ã¤¿ë, °ß°íÇÑ ±ÔÁ¦ Ʋ, ¼ÛÀü¸ÁÀÇ ±Ù´ëÈ¿¡ ´ëÇÑ ´Ù¾×ÀÇ ÅõÀÚ°¡ ¹è°æ¿¡ ÀÖ½À´Ï´Ù. ¹Ì±¹Àº, ½º¸¶Æ® ±×¸®µå ÅõÀÚ Á¶¼º±Ý(SGIG)°ú °°Àº ÇÁ·Î±×·¥ ¹× ¿¡³ÊÁö¼ºÀ¸·ÎºÎÅÍÀÇ Áö¿ø¿¡ ÀÇÇØ, ½º¸¶Æ® ¹ÌÅÍ, ¹èÀü ÀÚµ¿È, ¼ö¿ä ÀÀ´ä ½Ã½ºÅÛÀÇ ´ë±Ô¸ð µµÀÔ¿¡¼ ÁÖµµ±ÇÀ» Áã°í ÀÖ½À´Ï´Ù. ½Å·Ú¼ºÀ» ³ôÀÌ°í ½ÅÀç»ý ¿¡³ÊÁö¸¦ µµÀÔÇϱâ À§ÇØ ÀÌ Áö¿ªÀÇ Àü·Âȸ»ç´Â ³ëÈÄÈµÈ ÀÎÇÁ¶óÀÇ Çö´ëȸ¦ ±Þ¼ÓÈ÷ ÁøÇàÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ºÏ¹Ì´Â °·ÂÇÑ ±â¼ú »ýŰ踦 °¡Áö°í ÀÖ°í Áö¼Ó °¡´É¼º°ú Å»ÅºÈ ¼ö¼Ò¸¦ Áß½ÃÇÏ´Â °æÇâÀÌ °ÇØÁö°í Àֱ⠶§¹®¿¡ ½º¸¶Æ® ±×¸®µå¿¡¼ ¼¼°è¸¦ ¼±µµÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Àü·Â ¼ö¿ä Áõ°¡, ±Þ¼ÓÇÑ µµ½ÃÈ, ¿¡³ÊÁö ÀÎÇÁ¶ó °»½ÅÀ» À§ÇÑ Á¤ºÎÀÇ ´ë±Ô¸ð ³ë·ÂÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿¡³ÊÁö È¿À²À» ³ôÀÌ°í ¼ÛÀü ¼Õ½ÇÀ» Àú°¨ÇÏ¸ç ½ÅÀç»ý ¿¡³ÊÁö¿øÀ» ¼ÛÀü¸Á¿¡ »ðÀÔÇϱâ À§ÇØ Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº ½º¸¶Æ® ±×¸®µå ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀεµÀÇ '±¹°¡ ½º¸¶Æ® ±×¸®µå ¹Ì¼Ç'À̳ª Áß±¹ÀÇ '½ºÆ®·Õ ½º¸¶Æ® ±×¸®µå'¿Í °°Àº ÇÁ·Î±×·¥¿¡ ÀÇÇØ¼, µµÀÔÀÌ °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼¼°èÀÇ ½º¸¶Æ® ±×¸®µå ½ÃÀå¿¡¼ ÀÌ Áö¿ªÀÇ °·ÂÇÑ ¼ºÀå ±Ëµµ´Â, ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®ÀÇ È®´ë, »ê¾÷ÈÀÇ ÁøÀü, ±ÔÁ¦ °ñÁ¶ÀÇ Áö¿ø¿¡ ÀÇÇØ¼ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Smart Grid Market is accounted for $53.02 billion in 2025 and is expected to reach $179.19 billion by 2032 growing at a CAGR of 19.0% during the forecast period. A smart grid is a sophisticated electrical grid system that enhances the sustainability, dependability, and efficiency of electricity production and distribution through automation, digital communication, and contemporary technologies. Smart grids, as opposed to traditional grids, allow for two-way communication between utility companies and customers, which facilitates better load balancing, real-time monitoring, and a faster reaction to fluctuations or outages. They facilitate energy storage solutions, encourage the use of electric vehicles, and incorporate renewable energy sources like solar and wind. Moreover, smart grids are essential to creating a more robust and environmentally friendly energy infrastructure because they offer data-driven insights and encourage energy conservation.
According to the International Energy Agency, global investment in electricity grids must nearly double to an average of US $600 billion per year through 2030-up from about $300 billion annually today-to achieve Net Zero Emissions (NZE) targets.
Growing need for grid reliability and electricity
Global urbanization, population expansion, and technological development have resulted in a sharp increase in the demand for electricity. Older power grids are frequently unable to manage the demands of contemporary energy or guarantee a steady supply. Additionally, smart grids solve this problem by optimizing energy flow and preventing blackouts through demand-side management, load forecasting, and automated systems. In order to ensure greater dependability, stability, and efficiency across power networks-particularly important during periods of peak usage-they make it possible for real-time monitoring and dynamic response.
High deployment and initial investment costs
A large amount of capital is needed to implement a complete smart grid infrastructure. Advanced metering infrastructure (AMI), communication networks, smart sensors, control systems, cyber security tools, and employee training are all included in this. These expenses may be unaffordable for smaller utility providers and developing nations. Furthermore, it may take years for the return on investment (ROI) to become apparent, particularly when taking into consideration the necessity of upgrading or replacing legacy systems. Widespread adoption may be slowed by the cost barrier, especially in areas with low electricity rates or little public funding.
Developments in data analytics and artificial intelligence
Large-scale potential for predictive maintenance, outage forecasting, energy theft detection, and real-time optimization is made possible by the incorporation of AI and big data analytics into smart grid systems. By processing vast amounts of grid data, these technologies can decrease downtime, increase operational efficiency, and produce actionable insights. Moreover, utilities are spending more money on AI-powered grid management software, which opens up new doors for data scientists, software solution providers, and AI developers to enter or grow in the energy sector.
Budgetary restraints and economic disruptions
Smart grid project funding from the public and private sectors may be impacted by global economic downturns, inflation, or disruptions brought on by pandemics or geopolitical conflicts. Governments may decide to shift resources to more pressing issues in these circumstances, making infrastructure modernization less important. Additionally, supply chain interruptions, currency fluctuations, and rising material and component costs can cause delays in project execution, procurement, or the financial viability of smart grid technologies for utilities, particularly in developing countries.
The COVID-19 pandemic affected the smart grid market in a variety of ways. Global supply chain failures, project delays, and utilities' decreased capital expenditures, especially in developing nations, caused short-term market disruptions. Lockdowns and travel restrictions also slowed the deployment of smart grid infrastructure and made on-site installations more difficult. However, the pandemic hastened the energy industry's digital transformation, emphasizing the necessity of robust, automated, and remotely controlled energy systems. With increased investment in grid modernization, renewable integration, and remote monitoring solutions, this shift rekindled interest in smart grid technologies following the pandemic.
The distribution segment is expected to be the largest during the forecast period
The distribution segment is expected to account for the largest market share during the forecast period. The growing demand for effective, real-time monitoring and control of electricity delivery from substations to end users is what is causing this dominance. In order to reduce energy losses, identify problems immediately, and integrate distributed energy resources like rooftop solar and EV charging, smart distribution systems make use of sophisticated metering infrastructure, sensors, automation, and analytics. Utilities place a high priority on updating the distribution network to guarantee dependability, flexibility, and customer involvement as the demand for electricity grows more variable and dispersed. This segment is the most important part of developing a smart grid because it plays a crucial role in tying generation to consumption.
The industrial segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the industrial segment is predicted to witness the highest growth rate. The primary driver of this growth is the increased need for automated energy management systems, real-time monitoring, and energy efficiency in energy-intensive sectors like data centers, manufacturing, mining, and oil and gas. With the use of sophisticated sensors, demand response systems, and predictive maintenance tools, smart grid solutions can provide the highly dependable and continuous power that industrial facilities need. A significant factor in the market's growth is the adoption of smart grids by numerous industries as a result of mounting pressure to lower carbon emissions and optimize operating costs.
During the forecast period, the North America region is expected to hold the largest market share, driven by widespread adoption of cutting-edge technologies, robust regulatory frameworks, and significant investments in grid modernization. With programs like the Smart Grid Investment Grant (SGIG) and assistance from the Department of Energy, the US has taken the lead in implementing smart meters, distribution automation, and demand response systems on a large scale. In order to increase dependability and incorporate renewable energy, utilities in the area are quickly modernizing their aging infrastructure. Furthermore, North America leads the world in smart grids owing to a strong technological ecosystem and an increasing emphasis on sustainability and decarburization.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by a combination of growing electricity demand, fast urbanization, and extensive government efforts to update energy infrastructure. To increase energy efficiency, lower transmission losses, and incorporate renewable energy sources into the grid, nations like China, India, Japan, and South Korea are making significant investments in smart grid technologies. Adoption is being accelerated by programs like India's "National Smart Grid Mission" and China's Strong Smart Grid. Additionally, the region's robust growth trajectory in the global smart grid market is being driven by expanding smart city projects, growing industrialization, and supportive regulatory frameworks.
Key players in the market
Some of the key players in Smart Grid Market include General Electric Company, Eaton Corporation, Honeywell International Inc., Mitsubishi Electric Corporation, Trilliant Holdings, Inc, ABB Ltd., IBM Corporation, Siemens AG, Toshiba Corporation, Schweitzer Engineering Laboratories Inc., Oracle Corporation, Fujitsu Limited, Itron Inc., Cisco Systems Inc., S&C Electric Company, Wipro Limited and Schneider Electric SE.
In June 2025, Eaton announced it has signed an agreement to acquire Ultra PCS Limited from the Cobham Ultra Group. Ultra PCS's innovative solutions for safety and mission critical aerospace systems will augment Eaton's portfolio in both military and civilian aircraft. We expect Ultra PCS's strong growth position on high-margin business to be accretive to Eaton. Under the terms of the agreement, Eaton will pay $1.55 billion for Ultra PCS.
In February 2025, Mitsubishi Electric Corporation announced that it has signed an agreement with HD Renewable Energy Co., Ltd., a Taipei-based developer and operator of solar power and battery storage systems, to collaborate on initiatives that will help realize carbon neutrality. As part of their collaboration, the companies will establish an aggregation business joint venture and Mitsubishi Electric will acquire a stake in HD Renewable Energy.
In December 2024, Honeywell announced the signing of a strategic agreement with Bombardier, a global leader in aviation and manufacturer of world-class business jets, to provide advanced technology for current and future Bombardier aircraft in avionics, propulsion and satellite communications technologies. The collaboration will advance new technology to enable a host of high-value upgrades for the installed Bombardier operator base, as well as lay innovative foundations for future aircraft.