½ÃÀ庸°í¼­
»óǰÄÚµå
1776732

¼¼°èÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀå : ¿¹Ãø - ½Ã½ºÅÛ À¯Çüº°, Á¦°ø, ¾ç½ÄÀå À¯Çüº°, ¾îÁ¾º°, ¿ëµµº°, Áö¿ªº° ºÐ¼®(-2032³â)

Precision Aquaculture Market Forecasts to 2032 - Global Analysis By System Type, Offering, Farm Type (Open Aquaculture Farms and Recirculating Aquaculture Systems ), Fish Species, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀåÀº 2025³â 7¾ï 930¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 14.9%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 18¾ï 7,540¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Á¤¹Ð ¾ç½ÄÀº ¼¾¼­, AI, µ¥ÀÌÅÍ ºÐ¼® µîÀÇ ¼±Áø ±â¼úÀ» ÀÌ¿ëÇÏ¿© ¾ç½Ä ÀÛ¾÷À» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí ÃÖÀûÈ­ÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ´Â ¾ç½Ä¾÷ÀÚ°¡ ¼öÁú, ¹°°í±âÀÇ °Ç°­ »óÅÂ, ¸ÔÀÌ ÆÐÅÏÀ» º¸´Ù Á¤È®ÇÏ°Ô ÃßÀûÇÏ¿© ¼öÈ®·® Çâ»ó, Æó±â¹° °¨¼Ò, Áö¼Ó °¡´É¼º Çâ»óÀ¸·Î ¿¬°áÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ µ¥ÀÌÅÍ ÁÖµµÀÇ Á¢±Ù¹ýÀº ±âÁ¸ÀÇ ¾ç½Ä¾÷À» º¸´Ù ½º¸¶Æ®Çϰí È¿À²ÀûÀ̸ç ģȯ°æÀûÀÎ ½Äǰ »ý»ê ½Ã½ºÅÛÀ¸·Î º¯¸ð½Ã۰í ÀÖ½À´Ï´Ù.

FAOÀÇ 'State of World Fisheries and Aquaculture 2024' º¸°í¼­¿¡ µû¸£¸é ¼¼°è ¼ö»ê ¾ç½Ä »ý»ê·®Àº 2022³â 1¾ï 3,090¸¸ Åæ¿¡ ´ÞÇß½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ ¼ö»ê¹°¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡

Áö¼Ó°¡´ÉÇÑ ¼ö»ê¹°¿¡ ´ëÇÑ ¼¼°è ¼ö¿äÀÇ °íÁ¶´Â Á¤¹Ð ¾ç½Ä ½ÃÀåÀ» ÃßÁøÇÏ´Â Å« ÈûÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ¿Í ±ÔÁ¦±â°üÀÌ Ä£È¯°æ ½Ä·®¿øÀ» Áß½ÃÇÏ´Â °¡¿îµ¥ ¾ç½Ä¾÷ÀÚµéÀº ÀÚ¿ø ÀÌ¿ëÀ» ÃÖÀûÈ­Çϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇÑ ¼±Áø ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â Áß»êÃþÀÇ ¼ÒµæÀÌ Áõ°¡ÇÏ°í ¼ö»ê¹° ¼Òºñ¿Í °ü·ÃµÈ °Ç°­»óÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ´õ¿í µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, È¿À²ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ °í¼öÈ®·® »ý»êÀ» º¸ÁõÇÏ´Â Á¤¹Ð ¾ç½Ä ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó °¡¼ÓµÇ¾î ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¼÷·ÃµÈ ¿î¿µÀÚ ¹× ±â¼ú Áö½ÄÀÇ Çʿ伺

Á¤¹Ð ¾ç½Ä ºÐ¾ß´Â ¼÷·ÃµÈ ¿î¿µÀÚ ¹× Àü¹®ÀûÀÎ ±â¼ú Áö½ÄÀÇ Çʿ伺¿¡ ÀÇÇÑ Å« Á¦¾à¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. IoT ¼¾¼­, AI ÁÖµµ ºÐ¼®, ÀÚµ¿ ¸ÔÀÌ Ç÷§Æû µî °íµµÀÇ ½Ã½ºÅÛ µµÀÔ°ú À¯Áö¿¡´Â ¾ç½Ä ½Ç¹« ¹× µðÁöÅÐ ±â¼ú ¸ðµÎÀÇ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. Áß¼Ò ±Ô¸ðÀÇ ¾ç½ÄÀåÀÇ ´ëºÎºÐÀº, ÀÌ·¯ÇÑ º¹ÀâÇÑ ½Ã½ºÅÛÀ» °ü¸®ÇÒ ¼ö ÀÖ´Â ÀÎÀçÀÇ È®º¸³ª À°¼º¿¡ °í½ÉÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼ú °ÝÂ÷´Â ƯÈ÷ ½Ç½Ã°£ µ¥ÀÌÅÍ ÇØ¼® ¹× ±â¼úÀû ¹®Á¦ÀÇ ¹®Á¦ ÇØ°á °úÁ¦¿Í °áÇÕµÉ °æ¿ì äÅ÷üÀ» ÀúÇϽÃŰ°í ½ÃÀåÀÇ ¼ºÀå °¡´É¼ºÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI ´ëÀÀ ¸ð´ÏÅ͸µ Ç÷§Æû °³¹ß

AI Áö¿ø ¸ð´ÏÅ͸µ Ç÷§ÆûÀÇ ÃâÇöÀº Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ Ç÷§ÆûÀº ¸Ó½Å·¯´×°ú µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ¸ÔÀ̸¦ ÃÖÀûÈ­Çϰí Áúº´À» Á¶±â¿¡ ¹ß°ßÇϰí ȯ°æ Á¦¾î¸¦ ÀÚµ¿È­ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý °ü¸® ½Ã½ºÅÛ°ú ¿¹Ãø ¾Ë°í¸®ÁòÀ» ÅëÇÕÇÔÀ¸·Î½á ¿î¿µÀÚ´Â »ý»ê¼ºÀ» ³ôÀÌ°í ¼Õ½ÇÀ» ÁÙÀÌ¸ç ¹°°í±â º¹Áö¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¾Æ¿ï·¯ ÇØ»ó ¾ç½Ä ¹× Àç¼øÈ¯ ¾ç½Ä ½Ã½ºÅÛÀÌ È®´ëµÊ¿¡ µû¶ó AI ÁÖµµÇü ¼Ö·ç¼Ç äÅÃÀÌ °¡¼ÓÈ­µÇ°í ¾÷°è ³» Çõ½Å°ú °æÀï ¿ìÀ§¸¦ À§ÇÑ »õ·Î¿î ±æÀÌ ¿­¸± °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

³ôÀº À¯Áö ¹× ¿î¿ë ºñ¿ë

³ôÀº Á¤È®µµÀÇ ¼ö»ê ¾ç½Ä ±â¼úÀÌ ³Î¸® äÅõDZâ À§Çؼ­´Â ³ôÀº À¯Áö ¹× ¿î¿ë ºñ¿ëÀÌ ¿©ÀüÈ÷ »Ñ¸®±íÀº À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. °íµµÀÇ ¸ð´ÏÅ͸µ ±â±â, ÀÚµ¿È­ ½Ã½ºÅÛ, ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû¿¡ ´ëÇÑ Ãʱâ ÅõÀڴ ƯÈ÷ ¼Ò±Ô¸ð »ç¾÷ÀÚ¿¡°Ô´Â »ó´çÇÕ´Ï´Ù. °Ô´Ù°¡ ½Ã½ºÅÛ ¾÷±×·¹À̵å, ±â¼ú Áö¿ø, »çÀ̹ö º¸¾È°ú °ü·ÃµÈ Áö¼ÓÀûÀÎ ÁöÃâÀº ¿î¿µ ¿¹»êÀ» ¾Ð¹ÚÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû À庮Àº ÀϺΠ¾ç½Ä »ç¾÷ÀÚµéÀÌ Á¤¹Ð ¼Ö·ç¼Ç äÅÃÀ» ÁÖÀúÇÏ°Ô ¸¸µé¾î ½ÃÀå ÀüüÀÇ ¼ºÀåÀ» µÐÈ­½ÃŰ°í ±â¼ú Çõ½ÅÀÇ ÇýÅÿ¡ ´ëÇÑ Á¢±ÙÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ À¯ÇàÀº ƯÈ÷ Ãʱ⠴ܰ迡¼­ Á¤¹Ð ¾ç½Ä ½ÃÀå¿¡ ÇöÀúÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÁ·ÎÁ§Æ® ¼³Ä¡ ¹× ½Å±Ô ÅõÀÚ°¡ Áö¿¬µÇ°Å³ª ÁߴܵǸ鼭 Á¤¹Ð ¾ç½Ä ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. °Ô´Ù°¡ °ø±Þ¸ÁÀÇ È¥¶õ ¹× ¼ö»ê¹° ¼ÒºñÀÇ °¨¼Ò´Â ¾ç½Ä¾÷ÀÚ¿¡°Ô °æÁ¦Àû ¼Õ½ÇÀ» ÃÊ·¡Çß½À´Ï´Ù. ±×·¯³ª 2020³â ÈÄ¹Ý ¼¼°è ±ÔÁ¦°¡ ¿ÏÈ­µÇ°í ¼ÒºñÀÚ ¼ö¿ä°¡ ȸº¹µÇÀÚ ½ÃÀåÀº ȸº¹µÇ±â ½ÃÀÛÇß°í ź·Â¼º ÀÖ´Â ±â¼ú ÁÖµµÀÇ ¾ç½Ä ½Çõ¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã ³ô¾ÆÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °³¹æÇü ¾ç½ÄÀå ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È °³¹æÇü ¾ç½ÄÀå ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¿ìÀ§¼ºÀº ±× ±¤¹üÀ§ÇÑ Á¸Àç¿Í È¿À²¼º°ú Áö¼Ó °¡´É¼ºÀ» Çâ»ó½Ã۱â À§ÇÑ Á¤¹Ð ±â¼úÀÇ ÅëÇÕÀÌ Áõ°¡Çϰí ÀÖ´Â °Í¿¡ ±âÀÎÇϰí ÀÖ½À´Ï´Ù. ¿ø°Ý °¨½Ã ½Ã½ºÅÛ ¹× ÀÚµ¿ ¸ÔÀÌ ¼Ö·ç¼ÇÀ» äÅÃÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¾ç½ÄÀåÀº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 »ý»êÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. °³¹æÇü ¾ç½ÄÀåÀÇ ±Ô¸ð ¹× ÀûÀÀ¼ºÀº, Ã¥ÀÓÀ» °¡Áö°í Á¶´ÞµÈ ¾îÆÐ·ù¿¡ÀÇ ³ô¾ÆÁö´Â ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â Áß½ÉÀû Á¸Àç°¡ µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼ºÀåÀÇ ¿øµ¿·ÂÀº °íµµÀÇ µ¥ÀÌÅÍ ºÐ¼®, Ŭ¶ó¿ìµå ±â¹Ý °ü¸® µµ±¸, AI¸¦ Ȱ¿ëÇÑ ÀÇ»ç°áÁ¤ Áö¿ø ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ´ëÀÔ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹Áö º¸Àü, ¸®¼Ò½º ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÏ¸ç ¿î¿µÀÚ°¡ ¼öÀ²À» ÃÖ´ëÈ­ÇÏ°í ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ¼ö»ê¾ç½Ä ºÐ¾ß Àüü¿¡¼­ µðÁöÅÐ ÀüȯÀÌ °¡¼ÓÈ­µÇ´Â °¡¿îµ¥, ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀº È¿À²ÀûÀÎ ³óÀå °ü¸®¿Í Áö¼Ó °¡´ÉÇÑ ¼ºÀå¿¡ ºÒ°¡°áÇÑ °ÍÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» °¡Áø Áö¿ª

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è ¾ç½Ä »ý»ê¿¡¼­ Áö¹èÀûÀÎ ¿ªÇÒÀ» ´ã´çÇϰí Àֱ⠶§¹®¿¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¼°è ¼ö»ê ¾ç½Ä »ý»ê·®ÀÇ ¾à 80%´Â ÀÌ Áö¿ªÀÌ ¿ø»êÁöÀ̱⠶§¹®¿¡ »ý»ê¼º ¹× Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â Á¤¹Ð ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ °­ÇÕ´Ï´Ù. ¼öÁß ROV³ª IoT º£À̽ºÀÇ ¸ð´ÏÅ͸µ µð¹ÙÀ̽º µîÀÇ Ã·´Ü ±â¼úÀÇ º¸±ÞÀº, ½ÅÈï±¹ ½ÃÀå¿¡¼­ ÀǽÄÀÇ °íÁ¶¿Í ÇÔ²², ¾Æ½Ã¾ÆÅÂÆò¾ç Àü¿ª¿¡¼­ ½ÃÀå ¼ºÀåÀ» ÇÑÃþ ´õ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÌ °¡Àå ³ôÀº CAGRÀ» º¸¿©ÁÙ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼ºÀåÀº ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ¿Õ¼ºÇÑ ÅõÀÚ, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, Áö¼Ó °¡´ÉÇÑ ¾ç½Ä °üÇà¿¡ ´ëÇÑ °­ÇÑ ÁÖ¸ñ¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. À¯·´ »ç¾÷ÀÚµéÀº ¾÷¹« È¿À²À» °³¼±ÇÏ°í ±ÔÁ¦ ±âÁØÀ» ÃæÁ·½Ã۱â À§ÇØ ÃÖ÷´Ü ±â¼úÀ» ºü¸£°Ô µµÀÔÇϰí ÀÖ½À´Ï´Ù. ±â¼úÇõ½Å°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾à¼ÓÀ¸·Î ÀÌ Áö¿ªÀº ¼±ÁøÀûÀÎ ¼ö»ê¾ç½Ä ¼Ö·ç¼ÇÀÇ ¼¼°è ÁÖ¿ä ÃßÁø·ÂÀ¸·Î ÀÚ¸®¸Å±èÇÏ¿© ½ÃÀåÀÇ ±Þ¼ÓÇÑ È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¦°ø

  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á »ç¿ëÀÚ Á¤ÀÇ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀå : ½Ã½ºÅÛ À¯Çüº°

  • ±Þ½Ä ½Ã½ºÅÛ
  • °¨½Ã ¹× Á¦¾î ½Ã½ºÅÛ
  • ¼öÁß ROV(¿ø°Ý Á¶ÀÛ Â÷·®)

Á¦6Àå ¼¼°èÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀå : Á¦°øº°

  • Çϵå¿þ¾î
    • ¼¾¼­
    • Ä«¸Þ¶ó
    • Á¦¾î ½Ã½ºÅÛ
    • ¾×Ãß¿¡ÀÌÅÍ
    • ±âŸ Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î
    • ºÐ¼® ¹× µ¥ÀÌÅÍ °ü¸®
    • AI ±â¹Ý ÀÇ»ç°áÁ¤ Áö¿ø
    • ¿ø°Ý °¨½Ã Ç÷§Æû
    • ³óÀå °ü¸® ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º
    • ½Ã½ºÅÛ ÅëÇÕ
    • ÄÁ¼³ÆÃ ¹× ±³À°
    • À¯Áöº¸¼ö ¹× Áö¿ø

Á¦7Àå ¼¼°èÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀå : ¾ç½ÄÀå À¯Çüº°

  • ¿Á¿Ü ¾ç½ÄÀå
  • ¼øÈ¯Çü ¾ç½Ä ½Ã½ºÅÛ(RAS)

Á¦8Àå ¼¼°èÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀå : ¾îÁ¾º°

  • ¿¬¾î
  • Ƽ¶óÇǾÆ
  • ¸Þ±â
  • »õ¿ì
  • ¸Å½º
  • ±âŸ ¾ç½ÄÁ¾

Á¦9Àå ¼¼°èÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀå : ¿ëµµº°

  • ±ÞÀÌÀÇ ÃÖÀûÈ­
    • ÀÚµ¿±Þ½Ä
    • »ç·á ÀüȯÀ²(FCR)ÀÇ ÃÖÀûÈ­
  • °¨½Ã ¹× ºÐ¼®
    • ¼öÁú °¨½Ã
    • »ý¼±ÀÇ °Ç°­ ¹× Áúº´ÀÇ °ËÃâ
    • Çൿ ºÐ¼®
    • ȯ°æ Á¶°Ç °¨½Ã
  • ¼öÀ² ¹× ¼ºÀå ºÐ¼®
    • ¹ÙÀÌ¿À¸Å½º ÃßÁ¤
    • ¼ºÀå·ü ÃßÀû
    • ¼öÈ® °èȹ ¹× ¿¹Ãø

Á¦10Àå ¼¼°èÀÇ Á¤¹Ð ¾ç½Ä ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • AKVA Group
  • InnovaSea Systems
  • Steinsvik/ScaleAQ
  • Deep Trekker
  • Aquabyte
  • Eruvaka Technologies
  • Akuakare
  • CPI Equipment
  • Lifegard Aquatics
  • Bluegrove
  • Imenco AS
  • In-Situ Inc.
  • Signify
  • Jala Tech
  • Planet Lighting
  • MonitorFish
  • Observe Technologies
  • OxyGuard International
AJY

According to Stratistics MRC, the Global Precision Aquaculture Market is accounted for $709.3 million in 2025 and is expected to reach $1875.4 million by 2032 growing at a CAGR of 14.9% during the forecast period. Precision aquaculture is the use of advanced technologies like sensors, AI, and data analytics to monitor and optimize fish farming operations in real time. It helps farmers track water quality, fish health, and feeding patterns more accurately, leading to better yields, reduced waste, and improved sustainability. This data-driven approach is transforming traditional aquaculture into a smarter, more efficient, and environmentally responsible food production system.

According to the FAO's State of World Fisheries and Aquaculture 2024 report, global aquaculture production reached 130.9 million tonnes in 2022.

Market Dynamics:

Driver:

Increasing global demand for sustainable seafood

The rising global appetite for sustainable seafood is a major force propelling the precision aquaculture market. As consumers and regulatory bodies emphasize eco-friendly food sources, aquaculture operators are adopting advanced technologies to optimize resource use and minimize environmental impact. This shift is further supported by growing middle-class incomes and heightened awareness of the health benefits associated with seafood consumption. Consequently, the demand for precision aquaculture solutions that ensure efficient, sustainable, and high-yield production continues to accelerate, reinforcing market expansion.

Restraint:

Need for skilled operators and technical knowledge

The precision aquaculture sector faces a significant restraint due to the necessity for skilled operators and specialized technical knowledge. Implementing and maintaining advanced systems such as IoT sensors, AI-driven analytics, and automated feeding platforms requires expertise in both aquaculture practices and digital technologies. Many small and medium-sized farms struggle to recruit or train personnel capable of managing these complex systems. This skills gap can slow adoption rates and limit the market's growth potential, especially when combined with the challenge of interpreting real-time data and troubleshooting technical issues.

Opportunity:

Development of Ai-enabled monitoring platforms

The emergence of AI-enabled monitoring platforms presents substantial opportunities. These platforms leverage machine learning and data analytics to optimize feeding, detect diseases early, and automate environmental controls. By integrating cloud-based management systems and predictive algorithms, operators can enhance productivity, reduce losses, and improve fish welfare. Moreover, as offshore and recirculating aquaculture systems expand, the adoption of AI-driven solutions is expected to accelerate, offering new avenues for innovation and competitive advantage within the industry.

Threat:

High maintenance and operational costs

High maintenance and operational costs remain a persistent threat to the widespread adoption of precision aquaculture technologies. The initial investment in advanced monitoring equipment, automated systems, and software platforms is substantial, particularly for smaller operators. Furthermore, ongoing expenses related to system upgrades, technical support, and cybersecurity can strain operational budgets. These financial barriers may deter some aquaculture businesses from embracing precision solutions, potentially slowing the market's overall growth and restricting access to the benefits of technological innovation.

Covid-19 Impact:

The Covid-19 pandemic had a notable impact on the precision aquaculture market, particularly during its initial stages. Project installations and new investments were delayed or halted, leading to reduced demand for precision aquaculture solutions. Additionally, disruptions in supply chains and a decline in seafood consumption caused economic losses for aquaculture operators. However, as global restrictions eased and consumer demand rebounded in late 2020, the market began to recover, with renewed interest in resilient and technology-driven aquaculture practices.

The open aquaculture farms segment is expected to be the largest during the forecast period

The open aquaculture farms segment is expected to account for the largest market share during the forecast period. This dominance is attributed to their widespread presence and the increasing integration of precision technologies to improve efficiency and sustainability. By adopting remote monitoring systems and automated feeding solutions, these farms can optimize production while minimizing environmental impact. The scale and adaptability of open aquaculture farms make them central to meeting the growing demand for responsibly sourced seafood.

The software segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the software segment is predicted to witness the highest growth rate. This growth is driven by the rising need for advanced data analytics, cloud-based management tools, and AI-powered decision-support systems. Software solutions enable real-time monitoring, predictive maintenance, and resource optimization, allowing operators to maximize yields and minimize costs. As digital transformation accelerates across the aquaculture sector, software platforms are becoming essential for efficient farm management and sustainable growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to its dominant role in global aquaculture production. With around 80% of the world's aquaculture output originating from this region, there is strong demand for precision solutions to enhance productivity and sustainability. The proliferation of advanced technologies, such as underwater ROVs and IoT-based monitoring devices, along with increasing awareness in developing countries, further propels market growth throughout Asia Pacific.

Region with highest CAGR:

Over the forecast period, the Europe region is anticipated to exhibit the highest CAGR. This growth is underpinned by robust investments in research and development, stringent environmental regulations, and a strong focus on sustainable aquaculture practices. European operators are rapidly adopting cutting-edge technologies to improve operational efficiency and meet regulatory standards. The region's commitment to innovation and sustainability positions it as a key driver of advanced aquaculture solutions globally, fostering rapid market expansion.

Key players in the market

Some of the key players in Precision Aquaculture Market include AKVA Group, InnovaSea Systems, Steinsvik / ScaleAQ, Deep Trekker, Aquabyte, Eruvaka Technologies, Akuakare, CPI Equipment, Lifegard Aquatics, Bluegrove, Imenco AS, In-Situ Inc., Signify, Jala Tech, Planet Lighting, MonitorFish, Observe Technologies and OxyGuard International.

Key Developments:

In February 2025, Innovasea Adds Predictions to Monitoring Platform and Expands Hatchery Solution Offering in Chile. The new feature, developed in partnership with BiOceanOr, is the latest advancement to Innovasea's complete environmental monitoring solution.

In October 2024, Deep Trekker is leading the AI ROV Ship Modeling and Detection Project that was introduced at the ALL IN Conference. The initiative harnesses remotely operated vehicle (ROV) technology integrated with advanced AI to redefine ship hull inspections for greater precision and efficiency. The project brings together Canada's Ocean Supercluster (OSC), Qii.AI, the Department of National Defence, Kongsberg Discovery Canada Limited, and ABS Global Canada.

In August 2022, Eruvaka Technologies, an aquaculture tech company, has achieved an exit for its founders, team and primary investor Omnivore after existing investor Nutreco acquired a 93.7% stake in the company this week. Indian impact fund Omnivore said the exit - which a source close to the deal indicated was worth between $40 million and $50 million - is the largest recorded in Indian agritech.

System Types Covered:

  • Feeding Systems
  • Monitoring & Control Systems
  • Underwater ROVs (Remotely Operated Vehicles)

Offerings:

  • Hardware
  • Software
  • Services

Farm Types Covered:

  • Open Aquaculture Farms
  • Recirculating Aquaculture Systems (RAS)

Fish Species Covered:

  • Salmon
  • Tilapia
  • Catfish
  • Shrimp
  • Trout
  • Other Cultured Species

Applications Covered:

  • Feeding Optimization
  • Monitoring & Analytics
  • Yield & Growth Analytics

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Precision Aquaculture Market, By System Type

  • 5.1 Introduction
  • 5.2 Feeding Systems
  • 5.3 Monitoring & Control Systems
  • 5.4 Underwater ROVs (Remotely Operated Vehicles)

6 Global Precision Aquaculture Market, By Offering

  • 6.1 Introduction
  • 6.2 Hardware
    • 6.2.1 Sensors
    • 6.2.2 Cameras
    • 6.2.3 Control Systems
    • 6.2.4 Actuators
    • 6.2.5 Other Hardware
  • 6.3 Software
    • 6.3.1 Analytics & Data Management
    • 6.3.2 AI-based Decision Support
    • 6.3.3 Remote Monitoring Platforms
    • 6.3.4 Farm Management Software
  • 6.4 Services
    • 6.4.1 System Integration
    • 6.4.2 Consulting & Training
    • 6.4.3 Maintenance & Support

7 Global Precision Aquaculture Market, By Farm Type

  • 7.1 Introduction
  • 7.2 Open Aquaculture Farms
  • 7.3 Recirculating Aquaculture Systems (RAS)

8 Global Precision Aquaculture Market, By Fish Species

  • 8.1 Introduction
  • 8.2 Salmon
  • 8.3 Tilapia
  • 8.4 Catfish
  • 8.5 Shrimp
  • 8.6 Trout
  • 8.7 Other Cultured Species

9 Global Precision Aquaculture Market, By Application

  • 9.1 Introduction
  • 9.2 Feeding Optimization
    • 9.2.1 Automated Feeding
    • 9.2.2 Feed Conversion Ratio (FCR) Optimization
  • 9.3 Monitoring & Analytics
    • 9.3.1 Water Quality Monitoring
    • 9.3.2 Fish Health & Disease Detection
    • 9.3.3 Behavior Analysis
    • 9.3.4 Environmental Condition Monitoring
  • 9.4 Yield & Growth Analytics
    • 9.4.1 Biomass Estimation
    • 9.4.2 Growth Rate Tracking
    • 9.4.3 Harvest Planning & Prediction

10 Global Precision Aquaculture Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 AKVA Group
  • 12.2 InnovaSea Systems
  • 12.3 Steinsvik / ScaleAQ
  • 12.4 Deep Trekker
  • 12.5 Aquabyte
  • 12.6 Eruvaka Technologies
  • 12.7 Akuakare
  • 12.8 CPI Equipment
  • 12.9 Lifegard Aquatics
  • 12.10 Bluegrove
  • 12.11 Imenco AS
  • 12.12 In-Situ Inc.
  • 12.13 Signify
  • 12.14 Jala Tech
  • 12.15 Planet Lighting
  • 12.16 MonitorFish
  • 12.17 Observe Technologies
  • 12.18 OxyGuard International
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦