½ÃÀ庸°í¼­
»óǰÄÚµå
1776775

³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷ ½ÃÀå ¿¹Ãø(-2032³â) : ³óÀå ±Ô¸ðº°, ÄÄÆ÷³ÍÆ®º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

AI in Agriculture - Precision Farming Market Forecasts to 2032 - Global Analysis By Farm Size (Small Farms, Mid-Sized Farms and Large Farms), Component, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷ ½ÃÀåÀº 2025³â¿¡ 59¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGR 26.3%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 304¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷Àº ³ó¾÷ÀÇ Á¤È®¼º°ú °ü¸®¸¦ Çâ»ó½Ã۱â À§ÇØ ÀΰøÁö´É ±â¼úÀ» ³óÀÛ¾÷¿¡ ÅëÇÕÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ¿©±â¿¡´Â µ¥ÀÌÅͺ£À̽º ¾Ë°í¸®Áò, ÆÐÅÏ ÀνÄ, ÀÚÀ² ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© ¹çÀÇ °íÀ¯ÇÑ º¯¼ö¸¦ ºÐ¼®Çϰí ÀÌ¿¡ ´ëÀÀÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ Á¢±Ù¹ýÀº ȯ°æ ¹× »ý¹°ÇÐÀû µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ³óÀÛ¾÷ÀÇ ÀÇ»ç°áÁ¤À» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ±âÁ¸ÀÇ ´ë±Ô¸ð ³ó¹ý¿¡¼­ ¼¼¹ÐÇϰí, Á¤¹ÐÇϰí, °íÇØ»óµµÀ̸ç, ÇöÀå¿¡ ƯȭµÈ ³ó¹ýÀ¸·ÎÀÇ ÀüȯÀ» ÀǹÌÇÕ´Ï´Ù.

NASSCOM¿¡ µû¸£¸é Àεµ¿¡¼­´Â 2025³â±îÁö µ¥ÀÌÅÍ¿Í AI ±â¼úÀÌ ³ó¾÷ ºÎ¹®¿¡ ¾à 900¾ï ´Þ·¯ÀÇ °¡Ä¡¸¦ ´õÇÒ °ÍÀ̶ó°í ÇÕ´Ï´Ù.

AI¿Í IoT ±â¼úÀÇ ¹ßÀü

ÀΰøÁö´É°ú »ç¹°ÀÎÅͳÝ(IoT) µð¹ÙÀ̽ºÀÇ À¶ÇÕÀº ÇöÀå ¼öÁØ¿¡¼­ µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Á¤¹Ð³ó¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. À§¼º À̹ÌÁö, Åä¾ç ¼¾¼­, AI ¾Ë°í¸®ÁòÀÇ ÅëÇÕÀ¸·Î ÀÎÇØ ³ó°¡´Â ÀÛ¹°ÀÇ °Ç°­ »óÅÂ, °ü°³ Çʿ伺, ÇØÃæÀÇ À§ÇùÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ ºÎ¹®ÀÇ ³ó¾÷ ±â¼ú Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ¿¡ ÈûÀÔ¾î ¼±Áø±¹°ú ½ÅÈï °æÁ¦±¹ ¸ðµÎ¿¡¼­ AI µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¼¼°è ½Ä·®¾Èº¸ÀÇ °úÁ¦¿¡ ÈûÀÔ¾î AI¸¦ Ȱ¿ëÇÑ Á¤¹Ð³ó¾÷Àº È®Àå °¡´ÉÇϰí Áö¼Ó°¡´ÉÇÑ ³ó¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

³ó°¡ÀÇ ±â¼úÀû Àü¹®¼º ºÎÁ·

AI¸¦ Ȱ¿ëÇÑ Á¤¹Ð³ó¾÷ÀÇ µµÀÔÀº ³ó¾÷ Á¾»çÀÚÀÇ µðÁöÅÐ ¸®ÅÍ·¯½Ã³ª ±â¼úÀû ³ëÇϿ찡 Á¦ÇÑÀûÀ̶ó´Â Á¡ÀÌ Á¦¾à¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼¼´ë °£ °ÝÂ÷¿Í º¯È­¿¡ ´ëÇÑ ÀúÇ×À¸·Î ÀÎÇØ ¸¹Àº ³ó°¡°¡ ÀüÅëÀûÀÎ °üÇà¿¡¼­ µ¥ÀÌÅÍ Áý¾àÀû ¸ðµ¨·Î ÀüȯÇÏ´Â °ÍÀ» ÁÖÀúÇϰí ÀÖ½À´Ï´Ù. ÀϺΠ³ó¾÷ Áö¿ª¿¡¼­´Â ½º¸¶Æ®Æù°ú ÀÎÅÍ³Ý º¸±ÞÀÌ ¹ÌÈíÇØ AIÀÇ ±â´É¿¡ ÇÊ¿äÇÑ µðÁöÅÐ ÀÎÇÁ¶ó°¡ ¹ÌºñÇÑ »óȲÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °ÝÂ÷¸¦ ¹è°æÀ¸·Î Á¤¹Ð³ó¾÷ ¼Ö·ç¼ÇÀÇ º¸±ÞÀ» À§Çؼ­´Â Áö½Ä °ÝÂ÷ ÇØ¼Ò°¡ ÇʼöÀûÀÔ´Ï´Ù.

ÀÛ¹° ¼öÈ®·® ¹× È¿À²¼º Çâ»ó

AI¸¦ Ȱ¿ëÇÑ Á¤¹Ð³ó¾÷Àº ÅõÀÔ ºñ¿ë°ú ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 ÀÛ¹° »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®°ú ÀûÀÀÇü ÇнÀ ¸ðµ¨À» ÅëÇØ ³ó°¡´Â ÀÌÀü°ú´Â ºñ±³ÇÒ ¼ö ¾øÀ» Á¤µµ·Î Á¤¹ÐÇÏ°Ô ½Ãºñ, °ü°³, ³ó¾à »ìÆ÷ µîÀ» Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ´ë½Ãº¸µå¿Í ³óÀå °ü¸® ¼ÒÇÁÆ®¿þ¾î¿¡ ÈûÀÔ¾î ¼Ò±Ô¸ð ³ó°¡Á¶Â÷µµ AIÀÇ ÃÖÀûÈ­ °¡´É¼º¿¡ ´ëÇÑ ÇýÅÃÀ» ´©¸®±â ½ÃÀÛÇß½À´Ï´Ù. Á¤¹ÐÇÑ ¾Ë°í¸®ÁòÀ» ÅëÇØ ¹ç ´ÜÀ§ÀÇ ÀÇ»ç°áÁ¤À» ¹Ì¼¼ Á¶Á¤ÇÏ´Â Á¤¹ÐÇÑ ¾Ë°í¸®ÁòÀ» ÅëÇØ ¼öÀ² Çâ»óÀº ÃøÁ¤ °¡´ÉÇϰí ÀçÇö °¡´ÉÇÑ ¼öÁØÀ¸·Î Çâ»óµÇ°í ÀÖ½À´Ï´Ù.

³ó¾÷ ½Ã½ºÅÛ¿¡ ´ëÇÑ »çÀ̹ö °ø°ÝÀÇ °¡´É¼º

AI¿Í IoT ±â¼ú¿¡ ÀÇÇÑ ³ó¾÷ÀÇ µðÁöÅÐÈ­´Â ³ó¾÷ ½Ã½ºÅÛÀ» »çÀ̹ö º¸¾ÈÀÇ Ãë¾à¼º¿¡ ³ëÃâ½Ãŵ´Ï´Ù. ½º¸¶Æ® ±â±â¿Í Ŭ¶ó¿ìµå Ç÷§ÆûÀÇ »óÈ£ ¿¬°á¼ºÀ¸·Î ÀÎÇØ ÇØÄ¿´Â ¾àÁ¡À» ÆÄ°íµé¾î ¾÷¹«¸¦ ¹æÇØÇϰųª µ¥ÀÌÅ͸¦ Á¶ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­µÈ ±â°è¿Í ÀÚÀ²ÁÖÇà µå·ÐÀÇ »ç¿ë Áõ°¡¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, ½Ã½ºÅÛ Ä§ÇØ°¡ ¹ß»ýÇϸé ÇöÀå ¼öÁØÀÇ ÇÇÇØ¿Í ±ÝÀüÀû ¼Õ½ÇÀÌ Ä¿Áú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§ÇèÀ¸·Î ÀÎÇØ ÀÌÇØ°ü°èÀÚµéÀº Á¤¹Ð³ó¾÷ Àü·«ÀÇ ÀÏȯÀ¸·Î °­·ÂÇÑ »çÀ̹ö ¹æ¾î ¸ÞÄ¿´ÏÁòÀ» ÅëÇÕÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 ÆÒµ¥¹ÍÀº Àü ¼¼°è ³ó¾÷À» ÀçÆíÇϰí ÀÖÀ¸¸ç, ³ëµ¿·Â ºÎÁ·°ú °ø±Þ¸Á ´ÜÀý ¼Ó¿¡¼­ AI ±â¹Ý Á¤¹Ð³ó¾÷ÀÌ ÁÖµµ±ÇÀ» Áã°Ô µÇ¾ú½À´Ï´Ù. À̵¿ Á¦ÇѰú ³ëµ¿·Â °¨¼Ò·Î ÀÎÇØ ³ó°¡´Â Á¡Á¡ ´õ ÀÚµ¿È­ ¹× ¿ø°Ý ¸ð´ÏÅ͸µ Åø·Î ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. ½Ä·® »ý»êÀ» ÁߴܽÃŰÁö ¾Ê¾Æ¾ß ÇÑ´Ù´Â Àý¹ÚÇÔ¿¡ ÈûÀÔ¾î AI Ç÷§ÆûÀº Àû½Ã¿¡ °³ÀÔÇϰí ÅõÀÔ¹°À» Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï ÃËÁøÇß½À´Ï´Ù. À§±â »óȲ¿¡¼­ Á¦°øµÈ ź·ÂÀûÀÎ AI Åø¿¡ ÀÚ±ØÀ» ¹Þ¾Æ Æ÷½ºÆ® Äڷγª ½Ã´ë¿¡ Á¤¹Ð³ó¾÷ ½Ã½ºÅÛÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¼Ò±Ô¸ð ³óÀå ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼Ò±Ô¸ð ³ó°¡ÀÇ µðÁöÅÐ Æ÷¿ëÀ» ÃËÁøÇϱâ À§ÇÑ ³ë·ÂÀÌ È®´ëµÊ¿¡ µû¶ó ¼Ò±Ô¸ð ³ó°¡ ºÎ¹®ÀÌ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ±â¼úÀº ¿µ¼¼ ³ó°¡¿¡ ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ¼öÈ®·®°ú È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¸ð¹ÙÀÏ ¾Û, ¼¾¼­ µî È®Àå °¡´ÉÇÑ AI ÅøÀÇ Àú·ÅÇÑ °¡°ÝÀÌ AI ÅøÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼Ò±Ô¸ð ³ó°¡¿¡ ´ëÇÑ Á¤ºÎ º¸Á¶±ÝÀº Á¤¹Ð³ó¾÷ ±â¼ú¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» °­È­ÇÕ´Ï´Ù. ¼Ò±Ô¸ð ³ó¾÷ÀÇ Áö¼Ó°¡´ÉÇÑ °üÇàÀÇ Çʿ伺ÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº »ý»ê¼º Çâ»óÀ» ÅëÇØ ¼Ò±Ô¸ð ³ó°¡°¡ ´ë±Ô¸ð °æ¿µ¿¡ ´ëÇ×ÇÒ ¼ö ÀÖ´Â ÈûÀ» ÁÝ´Ï´Ù.

¿¹Ãø ±â°£ Áß Çϵå¿þ¾î ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß Á¤¹Ð³ó¾÷ÀÇ ¼¾¼­, µå·Ð, ÀÚµ¿È­ Àåºñ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î Çϵå¿þ¾î ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÷´Ü Çϵå¿þ¾î´Â Åä¾ç, ³¯¾¾, ÀÛ¹°ÀÇ »óŸ¦ Á¤È®ÇÏ°Ô ¸ð´ÏÅ͸µÇÏ¿© ³ó¾÷ÀÇ ¼º°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Ãֽгó¾÷¿ë Çϵå¿þ¾îÀÇ Àú·ÅÇÑ °¡°Ý°ú È®À强Àº ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ³»±¸¼º°ú ¿¡³ÊÁö È¿À²ÀÌ ¶Ù¾î³­ ÀåºñÀÇ ±â¼úÀû Áøº¸°¡ äÅÃÀ» ÃËÁøÇÕ´Ï´Ù. Çϵå¿þ¾î¿Í AI ¼ÒÇÁÆ®¿þ¾îÀÇ ÅëÇÕÀº Á¤¹Ð³ó¾÷ÀÇ ´É·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù. ½º¸¶Æ® ³ó±â°è¿¡ ´ëÇÑ ÅõÀÚ È®´ë°¡ ÀÌ ºÐ¾ßÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» Áö¿øÇÕ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ³ó¾÷¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô°í ½º¸¶Æ® ³ó¾÷ ±â¼ú¿¡ ´ëÇÑ Á¤ºÎ Áö¿øÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹À̳ª Àεµ¿Í °°Àº ±¹°¡µéÀº ½Ä·® »ý»êÀ» ÃËÁøÇϱâ À§ÇØ AI¿Í IoT¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀεµÀÇ µðÁöÅÐ ³ó¾÷ ¹Ì¼Ç°ú °°Àº Á¤ºÎ ±¸»óÀº AIÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ³ó¾÷¿¡¼­ µå·Ð°ú ¼¾¼­ÀÇ È°¿ëÀÌ È®´ëµÇ¸é¼­ ÀÌ Áö¿ª ½ÃÀå ÀÔÁö°¡ °­È­µÇ°í ÀÖ½À´Ï´Ù. µµ½ÃÈ­¿Í ½Ä·® ¼ö¿ä Áõ°¡´Â ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â ³ôÀº ¼öÁØÀÇ ³ó¾÷ ±â¼ú Çõ½Å°ú ÷´Ü ³ó¾÷ ÀåºñÀÇ ±¤¹üÀ§ÇÑ »ç¿ë¿¡ ±âÀÎÇÕ´Ï´Ù. ¹Ì±¹Àº AI ±â¹Ý ³ó¾÷ ¼Ö·ç¼Ç°ú ¿¬±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ¸ç ¼±µµÇϰí ÀÖ½À´Ï´Ù. ¼öÈ®·®À» ÃÖÀûÈ­ÇÏ°í ºñ¿ëÀ» Àý°¨ÇÏ´Â Á¤¹Ð³ó¾÷¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä°¡ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ³ó¾÷À» Áö¿øÇÏ´Â Á¤ºÎ Á¤Ã¥À¸·Î ½ÃÀå È®´ë°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÷´Ü Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ ºÏ¹Ì ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå Ã߻ꡤ¿¹Ãø¡¤CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷ ½ÃÀå : ³óÀå ±Ô¸ðº°

  • ¼Ò±Ô¸ð ³óÀå
  • Áß±Ô¸ð ³óÀå
  • ´ë±Ô¸ð ³óÀå

Á¦6Àå ¼¼°èÀÇ ³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î
  • AI ¼­ºñ½º

Á¦7Àå ¼¼°èÀÇ ³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷ ½ÃÀå : ±â¼úº°

  • ±â°èÇнÀ°ú µö·¯´×
  • ¿¹Ãø ºÐ¼®
  • ÄÄÇ»ÅÍ ºñÀü

Á¦8Àå ¼¼°èÀÇ ³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷ ½ÃÀå : ¿ëµµº°

  • ³¯¾¾ ÃßÀû
  • Á¤¹Ð³ó¾÷
  • ³ó¾÷ ·Îº¿
  • °¡Ãà °¨½Ã
  • ³ë¹«°ü¸®
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ³ó°¡
  • ³ó¾÷ ºñÁî´Ï½º
  • ³ó¾÷ Á¶»ç±â°ü
  • Á¤ºÎ±â°ü
  • ¾Ö±×¸®Å×Å© ±â¾÷

Á¦10Àå ¼¼°èÀÇ ³ó¾÷¿ë AI-Á¤¹Ð³ó¾÷ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, Á¶ÀÎÆ® º¥Ã³
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Deere & Company
  • IBM Corporation
  • Microsoft Corporation
  • Google LLC
  • The Climate Corporation
  • Farmers Edge Inc.
  • Granular Inc.
  • AgEagle Aerial Systems Inc.
  • Descartes Labs, Inc.
  • Raven Industries Inc.
  • AGCO Corporation
  • Gamaya SA
  • Bayer AG
  • Trimble Inc.
  • Topcon Positioning Systems, Inc.
  • Taranis
  • CropX Technologies
  • PrecisionHawk Inc.
  • Prospera Technologies Ltd.
  • OneSoil
KSA 25.08.04

According to Stratistics MRC, the Global AI in Agriculture - Precision Farming Market is accounted for $5.9 billion in 2025 and is expected to reach $30.4 billion by 2032 growing at a CAGR of 26.3% during the forecast period. AI in Agriculture - Precision Farming refers to the integration of artificial intelligence technologies into farming practices to improve agricultural accuracy and control. It involves the use of data-driven algorithms, pattern recognition, and autonomous systems to analyze and act upon field-specific variables. This approach enhances decision-making in farming operations by enabling the real-time processing of environmental and biological data. It represents a shift from traditional broad-scale agricultural practices to fine-tuned, high-resolution, and site-specific farming techniques.

According to NASSCOM, by 2025, approximately USD 90 billion of value will be added to the agriculture sector through data and AI technologies in India.

Market Dynamics:

Driver:

Advancements in AI and IoT technologies

The convergence of artificial intelligence with Internet of Things (IoT) devices is revolutionizing precision farming by enabling data-driven decision-making at the field level. Spurred by the integration of satellite imagery, soil sensors, and AI algorithms, farmers can now monitor crop health, irrigation needs, and pest threats in real-time. Backed by government and private sector investments in agri-tech innovation, AI adoption is accelerating across both developed and emerging economies. Motivated by the global food security challenge, AI-enabled precision farming is becoming essential for scalable and sustainable agriculture.

Restraint:

Lack of technological expertise among farmers

The adoption of AI-based precision agriculture is constrained by the limited digital literacy and technical know-how among a significant portion of the farming community. Driven by generational gaps and resistance to change, many farmers are hesitant to shift from traditional practices to data-intensive models. Backed by insufficient smartphone and internet penetration in certain agricultural zones, the digital infrastructure required for AI functionality remains underdeveloped. Fueled by these gaps, addressing the knowledge divide is crucial for widespread adoption of precision agriculture solutions.

Opportunity:

Increased crop yield and efficiency

AI-powered precision farming unlocks significant opportunities for enhancing crop productivity while minimizing input costs and environmental impact. Spurred by real-time data analytics and adaptive learning models, farmers can tailor fertilization, irrigation, and pesticide application with unprecedented precision. Fueled by cloud-based dashboards and farm management software, even smallholders are beginning to benefit from AI's optimization potential. Guided by precision algorithms that fine-tune decisions at the plot level, yield improvements are becoming both measurable and repeatable.

Threat:

Potential for cyberattacks on farming systems

The digitalization of agriculture through AI and IoT technologies exposes farming systems to increasing cybersecurity vulnerabilities. Driven by the interconnectivity of smart devices and cloud platforms, hackers can exploit weak points to disrupt operations or manipulate data. Spurred by the rising use of automated machinery and autonomous drones, any system breach could result in significant field-level damage or financial loss. Motivated by these risks, stakeholders must integrate robust cyber-defense mechanisms as part of their precision farming strategies.

Covid-19 Impact:

The COVID-19 pandemic reshaped global agriculture, with AI-driven precision farming gaining traction amid labor shortages and supply chain disruptions. Spurred by mobility restrictions and reduced workforce availability, farmers increasingly turned to automation and remote monitoring tools. Driven by the urgency to ensure uninterrupted food production, AI platforms facilitated timely interventions and input adjustments. Motivated by the resilience AI tools offered during the crisis, the post-COVID era is seeing deeper integration of precision farming systems.

The small farms segment is expected to be the largest during the forecast period

The small farms segment is expected to account for the largest market share during the forecast period, owing to widespread initiatives promoting digital inclusion among smallholder farmers.AI technologies offer cost-effective solutions for small farms, improving yields and efficiency. The affordability of scalable AI tools, such as mobile apps and sensors, supports adoption. Government subsidies for small farmers enhance access to precision farming technologies. The need for sustainable practices in small-scale farming drives market growth. These solutions empower small farms to compete with larger operations through enhanced productivity.

The hardware segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the hardware segment is predicted to witness the highest growth rate, impelled by rising demand for sensors, drones, and automated equipment in precision agriculture. Advanced hardware enables precise monitoring of soil, weather, and crop conditions, improving farming outcomes. The affordability and scalability of modern farming hardware fuel market expansion. Technological advancements in durable and energy-efficient devices drive adoption. The integration of hardware with AI software enhances precision farming capabilities. Growing investments in smart farming equipment support the segment's rapid growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by strong agricultural dependence and rising government support for smart farming technologies. Countries like China and India are investing heavily in AI and IoT to boost food production. Government initiatives, such as India's Digital Agriculture Mission, promote AI adoption. The growing use of drones and sensors in agriculture strengthens the region's market position. Rising urbanization and food demand further fuel market growth in Asia Pacific.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR attributed to high levels of agri-tech innovation and widespread use of advanced farming equipment. The U.S. leads with significant investments in AI-driven farming solutions and research. High demand for precision farming to optimize yields and reduce costs drives growth. Government policies supporting sustainable agriculture accelerate market expansion. The adoption of advanced hardware and software solutions boosts North America's rapid market growth.

Key players in the market

Some of the key players in AI in Agriculture - Precision Farming Market include Deere & Company, IBM Corporation, Microsoft Corporation, Google LLC, The Climate Corporation, Farmers Edge Inc., Granular Inc., AgEagle Aerial Systems Inc., Descartes Labs, Inc., Raven Industries Inc., AGCO Corporation, Gamaya SA, Bayer AG, Trimble Inc., Topcon Positioning Systems, Inc., Taranis, CropX Technologies, PrecisionHawk Inc., Prospera Technologies Ltd., and OneSoil.

Key Developments:

In June 2025, Deere & Company launched an AI-powered precision farming platform integrating satellite imagery and IoT sensors. It provides real-time crop health monitoring, enabling farmers to optimize yields and reduce resource waste through data-driven insights and automated field management.

In May 2025, IBM Corporation introduced Watson AgriSense, an AI-driven solution for predictive analytics. It analyzes soil data to optimize management practices, enhancing yield forecasts and reducing costs through precise resource allocation for sustainable farming operations.

In April 2025, Microsoft Corporation unveiled Azure FarmSync, a cloud-based AI tool for automated irrigation and pest detection. It leverages real-time data to optimize water use and protect crops, improving efficiency and sustainability for precision agriculture.

In February 2025, Trimble Inc. unveiled an AI-based variable-rate seeding system to maximize planting efficiency based on soil conditions.

Farm Sizes Covered:

  • Small Farms
  • Mid-Sized Farms
  • Large Farms

Components Covered:

  • Hardware
  • Software
  • AI-as-a-Service

Technologies Covered:

  • Machine Learning & Deep Learning
  • Predictive Analytics
  • Computer Vision

Applications Covered:

  • Weather Tracking
  • Precision Farming
  • Agriculture Robots
  • Livestock Monitoring
  • Labor Management
  • Other Applications

End Users Covered:

  • Farmers
  • Agribusinesses
  • Agriculture Research Institutes
  • Government Agencies
  • Agritech Companies

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global AI in Agriculture - Precision Farming Market, By Farm Size

  • 5.1 Introduction
  • 5.2 Small Farms
  • 5.3 Mid-Sized Farms
  • 5.4 Large Farms

6 Global AI in Agriculture - Precision Farming Market, By Component

  • 6.1 Introduction
  • 6.2 Hardware
  • 6.3 Software
  • 6.4 AI-as-a-Service

7 Global AI in Agriculture - Precision Farming Market, By Technology

  • 7.1 Introduction
  • 7.2 Machine Learning & Deep Learning
  • 7.3 Predictive Analytics
  • 7.4 Computer Vision

8 Global AI in Agriculture - Precision Farming Market, By Application

  • 8.1 Introduction
  • 8.2 Weather Tracking
  • 8.3 Precision Farming
  • 8.4 Agriculture Robots
  • 8.5 Livestock Monitoring
  • 8.6 Labor Management
  • 8.7 Other Applications

9 Global AI in Agriculture - Precision Farming Market, By End User

  • 9.1 Introduction
  • 9.2 Farmers
  • 9.3 Agribusinesses
  • 9.4 Agriculture Research Institutes
  • 9.5 Government Agencies
  • 9.6 Agritech Companies

10 Global AI in Agriculture - Precision Farming Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Deere & Company
  • 12.2 IBM Corporation
  • 12.3 Microsoft Corporation
  • 12.4 Google LLC
  • 12.5 The Climate Corporation
  • 12.6 Farmers Edge Inc.
  • 12.7 Granular Inc.
  • 12.8 AgEagle Aerial Systems Inc.
  • 12.9 Descartes Labs, Inc.
  • 12.10 Raven Industries Inc.
  • 12.11 AGCO Corporation
  • 12.12 Gamaya SA
  • 12.13 Bayer AG
  • 12.14 Trimble Inc.
  • 12.15 Topcon Positioning Systems, Inc.
  • 12.16 Taranis
  • 12.17 CropX Technologies
  • 12.18 PrecisionHawk Inc.
  • 12.19 Prospera Technologies Ltd.
  • 12.20 OneSoil
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦