½ÃÀ庸°í¼­
»óǰÄÚµå
1787878

¼¼°èÀÇ Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê ½ÃÀå ¿¹Ãø : Çüź°, µî±Þº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)

Polyether Modified Polysiloxane Market Forecasts to 2032 - Global Analysis By Form, Grade, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°èÀÇ Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê ½ÃÀåÀº 2025³â¿¡ 14¾ï 6,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 7.2%¸¦ ³ªÅ¸³», 2032³â¿¡´Â 23¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»êÀº Æú¸®¿¡Å׸£¿Í Æú¸®½Ç·Ï»êÀÇ µ¶Æ¯ÇÑ Æ¯¼ºÀ» °áÇÕÇÑ ½Ç¸®ÄÜ °è¸éȰ¼ºÁ¦ÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ¸¹Àº Á¦Çü¿¡¼­ÀÌ ÇÏÀ̺긮µå ±¸Á¶´Â Ź¿ùÇÑ Ç¥¸é Ȱ¼ºÀ¸·Î ÀÎÇØ ½ÀÀ±Á¦, À¯È­Á¦ ¹× ºÐ»êÁ¦·Î¼­ ¸Å¿ì ¿ì¼öÇÑ ±â´ÉÀ»ÇÕ´Ï´Ù. Æú¸®½Ç·Ï»ê °ñ°ÝÀº ³·Àº Ç¥¸é Àå·Â, ÁÁÀº Àü¿¬¼º, ¿­ ¾ÈÁ¤¼ºÀ» Á¦°øÇϸç, Æú¸®¿¡Å׸£ °ñ°ÝÀº À¯±â°è¿Í ¼ö¼º°úÀÇ »ó¿ë¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ±× °á°ú, Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»êÀº ¼¶À¯, ÆÛ½º³ÎÄɾî, µµ·á, ³ó¾÷ µîÀÇ »ê¾÷¿¡¼­ Á¦Á¦ÀÇ ¾ÈÁ¤¼º, Àü¿¬¼º, Á¦Ç° ÀüüÀÇ ¼º´É¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

¹Ì±¹ È­ÇÐȸ(ACS)¿¡ µû¸£¸é, Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»êÀº °è¸éȰ¼ºÁ¦ ¹× ºÐ»êÁ¦ÀÇ ¿ªÇÒ¿¡ ´ëÇØ ³Î¸® ¿¬±¸µÇ°í ¼³°èµÇ¾î ¿Ô½À´Ï´Ù. ¿¹¸¦ µé¾î, ACS Omega ÀâÁö¿¡ °ÔÀçµÈ ¿¬±¸¿¡¼­´Â UV °æÈ­ Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê-¿ì·¹Åº ¾ÆÅ©¸±·¹ÀÌÆ®°¡, -2MPa--20MPaÀÇ ÀÎÀå °­µµ¸¦ ³ªÅ¸³¾ ¼ö ÀÖ¾î, µµ·á³ª Á¢ÂøÁ¦¿¡ À־ÀÇ °ß°íÇÑ ±â°èÀû ¼º´ÉÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

³ó¾÷¿¡¼­ ½´ÆÛ ½ºÇÁ·¹´õ¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡

Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»êÀº ³ó¾à°ú Á¦ÃÊÁ¦ÀÇ Á¦Çü¿¡¼­ ¸Å¿ì È¿°úÀûÀÎ ½´ÆÛ ½ºÇÁ·¹´õ ¹× ½ÀÀ±Á¦ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌµé °è¸éȰ¼ºÁ¦´Â ¼ö¼º ½ºÇÁ·¹ÀÌÀÇ Ç¥¸é Àå·ÂÀ» ÇöÀúÇÏ°Ô ÀúÇϽÃ۱⠶§¹®¿¡ À¯È¿ ¼ººÐÀÌ ±ÕÀÏÇÏ°Ô ºÐ»êµÇ¾î ¿Î½º ÀÙÀ̳ª ÅÐÀÌ ¸¹Àº ÀÙ°ú °°Àº Á¥±â ¾î·Á¿î ½Ä¹° Ç¥¸é¿¡µµ µµ´ÞÇÕ´Ï´Ù. ±× °á°ú, ÇǺ¹·üÀÌ Çâ»óµÇ°í, Åõ¿©·®ÀÌ Àû¾î, °¡È¤ÇÑ È¯°æÇÏ¿¡¼­µµ ³ó¾àÀÇ Èí¼ö°¡ ÃËÁøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼º´É Çâ»ó ¾ÖÁÖ¹øÆ®´Â ƯÈ÷ Á¤¹Ð³ó¾÷±â¼úÀ» µµÀÔÇϰí ÀÖ´Â ±¹°¡¿¡¼­ ¼ö¿ä°¡ ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖÀ¸¸ç, ¼¼°è ³ó¾÷Àº È­ÇÐÁ¦Ç°ÀÇ ÅõÀÔ°ú ȯ°æ¿¡ ´ëÇÑ ¿µÇâÀ» ÁÙÀ̸鼭 »ý»ê¼ºÀ» Çâ»ó½ÃŰ´Â ¾Ð·Â¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù.

¿ø·á¿¡ ÀÇÁ¸ÇÏ°í ³ôÀº »ý»ê ºñ¿ë

½Ç·Ï»ê ´Ü·®Ã¼ ¹× ¿¡Æ¿·» ¿Á»çÀ̵å/ÇÁ·ÎÆÄÀÏ·» ¿Á»çÀ̵å À¯µµÃ¼¿Í °°Àº ¿ø·áÀÇ º¹ÀâÇÑ ÇÕ¼º °øÁ¤ ¹× °¡°Ý º¯µ¿À¸·Î ÀÎÇÑ »ý»ê ºñ¿ëÀÇ ³ôÀÌ´Â Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê ½ÃÀåÀ» Á¦ÇÑÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ƯÈ÷ ÀüÀÚ±â±â³ª ÀǾàǰ°ú °°ÀÌ ³ôÀº ¼øµµ¿Í ¼º´É ±âÁØÀÌ ¿ä±¸µÇ´Â ¿ëµµ¿¡¼­´Â »ý»ê °øÁ¤¿¡ ÷´Ü ±â°è¿Í ¾ö°ÝÇÑ Ç°Áú °ü¸®°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ¸¹Àº Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê(PMP) ¼ººÐÀÇ ±âÃʰ¡ µÇ´Â ¿øÀ¯ ¹× ¼®À¯È­ÇÐ ¿ø·áÀÇ °¡°Ý º¯µ¿Àº Á¦Á¶ ºñ¿ë¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

È­Àåǰ ¹× ÆÛ½º³ÎÄɾîÀÇ Çõ½Å

±ú²ýÇÑ ¶óº§ ±âÁØÀ» ÃæÁ·ÇÏ°í ¶Ù¾î³­ °¨°¢À» Á¦°øÇÏ´Â Çõ½ÅÀûÀÎ ±â´É¼º ¼ººÐÀº ÆÛ½º³ÎÄÉ¾î ºÎ¹®¿¡¼­ ¿©ÀüÈ÷ ³ôÀº ¼ö¿ä°¡ ÀÖ½À´Ï´Ù. PMP´Â ½ºÅ² Äɾî, Çì¾î Äɾî, ½ã ÇÁ·ÎÅØ¼Ç Á¦Ç°¿¡ À¯¿ëÇϸç, ±× ÀÌÀ¯´Â ¼ö¼º°ú À¯¼º µÑ ´ÙÀÇ Á¦Çü¿¡¼­ ¼º´É°ú ÀûÇÕ¼ºÀÇ Æ¯º°ÇÑ ±ÕÇüÀ» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù. È­ÀåǰÀ¸·Î¼­ÀÇ ¸Å·Â°ú ÇǺΰúÇÐÀû ÀÌÁ¡À» À¶ÇÕ½ÃŲ Á¦Ç°ÀÌ ±Þ¼ºÀåÇϰí ÀÖ´Â ÄÚ½º¸Þ½´Æ¼ÄÃÁî »ê¾÷¿¡¼­´Â Åë±â¼ºÀÌ ÀÖÀ» ¼ö ¾ø´Â ÇǸ·À» Çü¼ºÇØ, À¯È­Á¦³ª ÄÁµð¼Å´×Á¦·Î¼­ ±â´ÉÇÏ´Â PMPÀÇ ´É·ÂÀº Èï¹Ì·Î¿î ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ´À½¼ÇÑ, »ç¿ë°¨, Á¦Ç°ÀÇ ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃŰ´Â PMP °è¸éȰ¼ºÁ¦ ¼ö¿ä´Â BB Å©¸², ƾƼµå ¸ðÀ̽ºÃ³¶óÀÌÀú, ¾ÈƼ¿¡ÀÌ¡ ¹Ì¿ë¾×°ú °°Àº ´Ù¸ñÀû ÇÏÀ̺긮µå Á¦Ç°ÀÇ ÀαⰡ ³ô¾ÆÁü¿¡ µû¶ó ´õ¿í µÞ¹ÞħµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

»õ·Î¿î ¹ÙÀÌ¿À°è °è¸éȰ¼ºÁ¦¿Í ³ì»ö °è¸éȰ¼ºÁ¦ÀÇ °æÀï

ÀüÅëÀûÀÎ PMP ±â¹Ý Á¦Á¦´Â ½Ä¹°¼º ±â¸§, ´ç, ¾Æ¹Ì³ë»ê µîÀÇ Àç»ý °¡´É ÀÚ¿øÀ¸·Î ¸¸µé¾îÁø ¹ÙÀÌ¿À °è¸é Ȱ¼ºÁ¦¿Í ³ì»ö °è¸é Ȱ¼ºÁ¦ÀÇ »ó½Â¿¡ ÀÇÇÑ °æÀï À§Çù¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. Àúµ¶¼º, »ýºÐÇØ¼º, ±ÔÁ¦ Áؼö·Î ÀÎÇØ ÀÌ·¯ÇÑ ´ë¾ÈÀº ¼¶À¯, °¡Á¤ ÀÇ·á, °³ÀÎ °ü¸® ¹× ³ó¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, È¿¼Ò·Î ¼ö½ÄµÈ õ¿¬ Æú¸®¸Ó³ª ¹ßÈ¿ À¯·¡ÀÇ ¹ÙÀÌ¿À °è¸éȰ¼ºÁ¦ µîÀÇ ¹ÙÀÌ¿ÀÅ×Å©³î·¯ÁöÀÇ Áøº¸¿¡ ÀÇÇØ ±âÁ¸ ½Ç¸®ÄÜ°è °è¸éȰ¼ºÁ¦¿Í µ¿µîÇϰųª ±× ÀÌ»óÀÇ ¼º´ÉÀ» °¡Áö´Â ģȯ°æ ´ë¿ëǰÀÌ °¡´ÉÇÏ°Ô µÇ¾î ¿Ô½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¹ß»ý Ãʱ⿡´Â ³ëµ¿·Â ºÎÁ·, ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ, »ê¾÷ Ȱµ¿ÀÇ ÀúÇÏ·Î ½ÃÀåÀÌ È¥¶õ½º·¯¿ö, ÁÖ·Î ÀÏ·ºÆ®·Î´Ð½º, °Ç¼³, ÀÚµ¿Â÷ »ê¾÷ µîÀÇ Áß¿äÇÑ ÃÖÁ¾ ¿ëµµ ºÎ¹®¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ¼ÒºñÀÚÀÇ °ü½ÉÀÌ Ã»°á°ú ¼¿ÇÁ Äɾî·Î ÇâÇÔ¿¡ µû¶ó PMP°¡ ÄÁµð¼Å³Ê³ª À¯È­Á¦·Î »ç¿ëµÇ´Â ÆÛ½º³ÎÄÉ¾î ¹× À§»ý ¿ëǰ°ú °°Àº ºÎ¹®¿¡¼­ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. °Ô´Ù°¡ PMP ±â¹Ý ¾ÖÁê¹øÆ® ¼ö¿ä´Â ±Ùº»ÀûÀÎ ¼ºÁú·ÎºÎÅÍ ³ó¾÷ ºÎ¹®¿¡¼­µµ °ßÁ¶ÇÏ°Ô º¯È­Çß½À´Ï´Ù. °æÁ¦°¡ ȸº¹À» ÇâÇØ, ģȯ°æ Áö¼Ó°¡´ÉÇÑ Á¦Á¶¾÷ÀÌ ÁöÁöµÊ¿¡ µû¶ó, °í¼º´ÉÀÇ ³·Àº VOC PMP Á¦Á¦¿¡ ´ëÇÑ °ü½ÉÀº ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ³ô¾ÆÁ³°í, ÀϽÃÀûÀÎ ÈÄÅð¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀº Àå±âÀûÀÎ ¼ºÀåÀ» ÀÌ·ç¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ³ó¾÷ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È ³ó¾÷ ºÎ¹®ÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸ ÀÌ´Â ³ó¾à Á¦Á¦ÀÇ È¿À² Çâ»ó¿¡ ÇʼöÀûÀÎ ±â´É ¶§¹®ÀÔ´Ï´Ù. PMP È­ÇÕ¹°Àº Ç¥¸é Àå·ÂÀ» ±ØÀûÀ¸·Î ÀúÇϽÃŰ°í ½Ä¹° Ç¥¸éÀÇ ÇǺ¹·üÀ» ³ôÀÏ ¼ö Àֱ⠶§¹®¿¡ ³ó¾à, Á¦ÃÊÁ¦, ¿±¸é ºñ·áÀÇ ½´ÆÛ ½ºÇÁ·¹´õ ¹× ½ÀÀ±Á¦·Î ÀÚÁÖ »ç¿ëµË´Ï´Ù. À¯È¿¼ººÐÀÇ Ä§Åõ¿Í Èí¼ö¸¦ È®½ÇÈ÷ Çâ»ó½ÃÅ´À¸·Î½á, È­ÇÐÁ¦Ç°ÀÇ ÅõÀÔ·®À» ÁÙÀ̸鼭 ÀÛ¹°ÀÇ ¼öÀ²À» ´Ã¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ PMP ±â¹Ý ³ó¾÷¿ë º¸Á¶Á¦ ¼ö¿ä´Â Á¤¹ÐÇϰí Áö¼Ó °¡´ÉÇÑ ³ó¹ýÀÌ ¼¼°èÀûÀ¸·Î, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ¶óƾ¾Æ¸Þ¸®Ä«¿Í °°Àº °í¼ºÀå Áö¿ª¿¡¼­ÁöÁöµÊ¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

À×Å© ¹× ÆäÀÎÆ® ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È À×Å© ¹× ÆäÀÎÆ® ºÎ¹®Àº °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ê¾÷, °ÇÃà, ÀÚµ¿Â÷ ¿ëµµ·Î °í¼º´É, ³·Àº VOCÀÇ ¼ö¼º À×Å©¡¤µµ·áÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÌ, ÀÌ ±ÞÈ®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»êÀº À¯µ¿¼º, ·¹º§¸µ¼º, ¼ÒÆ÷¼º, Å©·¹ÀÌÅÍ ¹æÁö µîÀÇ Áß¿äÇÑ ¹èÇÕ Æ¯¼ºÀ» °³¼±ÇÏ¿© ´Ù¾çÇÑ ¼öÁö°è¿ÍÀÇ ¿ì¼öÇÑ »ó¿ë¼ºÀ» º¸ÀåÇÕ´Ï´Ù. °Ô´Ù°¡ ÃÖÁ¾ »ç¿ëÀÚ°¡ ¿À·¡ Áö¼ÓµÇ´Â ģȯ°æ ¸¶¹«¸®¸¦ ¿ä±¸ÇÏ´Â °¡¿îµ¥, ¹èÇÕÀÚ´Â ¾ö°ÝÇÑ ¼º´É°ú ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϱâ À§ÇØ PMP ±â¹Ý ÷°¡Á¦¸¦ »ç¿ëÇÕ´Ï´Ù. ±× °á°ú SMP´Â ¼¼°èÀÇ ÆäÀÎÆ® ¹× À×Å© ÀÀ¿ë ºÐ¾ß¿¡¼­ ³Î¸® »ç¿ëµË´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡ÀÇ È£È²ÀûÀÎ ÃÖÁ¾ ¿ëµµ ºÎ¹®, ³ó¾÷ÀÇ Áý¾àÈ­, ±Þ¼ÓÇÑ »ê¾÷È­¿¡ °ßÀÎµÈ °ÍÀÔ´Ï´Ù. PMP°¡ °è¸éȰ¼ºÁ¦, ·¹º§¸µÁ¦, ½´ÆÛ ½ºÇÁ·¹´õ·Î¼­ ³Î¸® ÀÌ¿ëµÇ°í ÀÖ´Â °Ç¼³, ¼¶À¯, ³ó¾÷ ¼½ÅͷκÎÅÍÀÇ °­ÇÑ ¼ö¿ä°¡, ÀÌ Áö¿ªÀÇ ¿ìÀ§¼ºÀ» ÁöÁöÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼¼°è ½ÃÀå ÁöÀ§´Â PMP ±â¹Ý Á¦Ç°ÀÇ »ý»ê±¹°ú ¼Òºñ±¹À¸·Î¼­ Áß±¹ÀÇ Áß¿äÇÑ ¿ªÇÒ¿¡ ÀÇÇØ ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ªÀÇ ¼ºÀåÀº Á¤ºÎÀÇ Áö¿ø ±ÔÁ¦, Áö¼Ó °¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁö°í, Á¦Á¶ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡µµ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ±¹°¡µéÀº Çö´ëÀûÀÎ ³ó¹ý¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, PMP ±â¹Ý º¸Á¶Á¦´Â ¹°°ú ³ó¾àÀÇ È¿À²¼ºÀ» ³ôÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. µ¿½Ã¿¡, ƯÈ÷ °ÉÇÁ Çù·Â ȸÀÇ(GCC) ±¹°¡¿¡¼­´Â ÷´Ü ÆäÀÎÆ®, ½Ç¶õÆ® ¹× °ÇÃàÀÚÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ ÆäÀÎÆ®, À×Å© ¹× Á¢ÂøÁ¦¿¡¼­ PMPÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ±¹°¡µéÀº ¸ðµç »ê¾÷¿¡¼­ °í¼º´É ÷°¡Á¦¸¦ °è¼Ó äÅÃÇϰí Áö¼Ó °¡´ÉÇÑ »ê¾÷ °üÇàÀ¸·Î ÀüȯÇϰí Àֱ⠶§¹®¿¡ PMPsÀÇ ¼¼°è¿¡¼­ °¡Àå ºü¸¥ ¼ºÀå ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤¡¤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê ½ÃÀå : Çüź°

  • ¼­·Ð
  • ¿ÀÀÏ
  • °íü

Á¦6Àå ¼¼°èÀÇ Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê ½ÃÀå : µî±Þº°

  • ¼­·Ð
  • Àú
  • Áß
  • °í

Á¦7Àå ¼¼°èÀÇ Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼­·Ð
  • ³ó¾÷
  • ÇÃ¶ó½ºÆ½ °¡°ø
  • À×Å© ¹× ÄÚÆÃ
  • È­Àåǰ ¹× ÆÛ½º³ÎÄɾî
  • ÆÞÇÁ ¹× Á¾ÀÌ
  • Á¢ÂøÁ¦ ¹× ½Ç¶õÆ®
  • ¼¶À¯
  • ±âŸ

Á¦8Àå ¼¼°èÀÇ Æú¸®¿¡Å׸£ º¯¼º Æú¸®½Ç·Ï»ê ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä °³¹ß

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • BASF SE
  • Momentive Performance Materials Inc.
  • Gelest, Inc.
  • Wacker Chemie AG
  • Evonik Industries AG
  • Dow Chemical Company
  • Shin-Etsu Chemical Co., Ltd.
  • Elkem ASA
  • Siltech Corporation
  • BRB International BV
  • SILIBASE SILICONE
  • Hangzhou Topwin Technology Development Co., Ltd.
  • AB Speciality Silicones
  • Supreme Silicones Ltd
KTH 25.08.14

According to Stratistics MRC, the Global Polyether Modified Polysiloxane Market is accounted for $1.46 billion in 2025 and is expected to reach $2.38 billion by 2032 growing at a CAGR of 7.2% during the forecast period. Polyether-modified polysiloxane is a type of silicone surfactant that combines the unique properties of both polyethers and polysiloxanes. In many formulations, this hybrid structure works incredibly well as a wetting agent, emulsifier, and dispersant due to its exceptional surface activity. Low surface tension, good spreading properties, and thermal stability are provided by the polysiloxane backbone, while the polyether segments improve compatibility with organic and aqueous systems. Consequently, polyether-modified polysiloxanes are widely used in formulation stability, spreadability, and overall product performance in industries like textiles, personal care, coatings, and agriculture.

According to the American Chemical Society (ACS), polyether-modified siloxanes have been widely studied and engineered for surfactant and dispersion roles. For example, a study published in ACS Omega describes how UV-cured polyether-modified polysiloxane-urethane acrylates can exhibit tensile strengths ranging from ~2 to ~20 MPa-highlighting their robust mechanical performance in coatings and adhesives.

Market Dynamics:

Driver:

Growing need for super-spreaders in agriculture

Agricultural applications have been transformed by polyether-modified polysiloxanes, which function as extremely effective super-spreaders and wetting agents in pesticide and herbicide formulations. Because these surfactants significantly reduce the surface tension of aqueous sprays, active ingredients can disperse uniformly and reach plant surfaces that are difficult to wet, like waxy or hairy leaves. This result in better coverage, lower dosage needs, and enhanced agrochemical uptake-even in harsh environmental circumstances. Such performance-enhancing adjuvants are anticipated to become much more in demand, particularly in nations implementing precision farming techniques, as global agriculture faces mounting pressure to increase productivity while reducing chemical inputs and environmental impact.

Restraint:

Dependency on raw materials and high production costs

The high cost of production, which is mostly caused by the intricate synthesis process and the price volatility of raw materials like siloxane monomers and ethylene oxide/propylene oxide derivatives, is one of the main factors limiting the market for polyether-modified polysiloxane. Sophisticated machinery and strict quality control are necessary for the production process, particularly for applications like electronics or pharmaceuticals that demand high purity and performance standards. Furthermore, changes in the price of crude oil and petrochemical feedstocks, which are the foundation of many PMP components, can have a big impact on manufacturing costs.

Opportunity:

Innovation in cosmetics and personal care

Innovative, functional ingredients that meet clean-label standards and provide superior sensory experiences are still in high demand in the personal care sector. PMPs are useful in skin care, hair care, and sun protection products because they provide a special balance of performance and compatibility with formulations that are both water- and oil-based. In the burgeoning cosmeceuticals industry, where products blend cosmetic appeal with dermatological benefits, their capacity to form breathable, non-greasy films and function as emulsifiers and conditioning agents offers exciting opportunities. The demand for PMP surfactants that improve spread ability, feel, and product stability will be further supported by the rising popularity of multipurpose, hybrid products like BB creams, tinted moisturizers, and anti-aging serums.

Threat:

Competition from new bio-based and green surfactants

Traditional PMP-based formulations are facing an increasing competitive threat from the rise of bio-based and green surfactants, which are made from renewable resources like plant oils, sugars, and amino acids. Because of their low toxicity, biodegradability, and regulatory compliance, these substitutes are being used more and more in textile, home care, personal care, and agricultural applications. Moreover, biotechnology advancements such as enzymatically modified natural polymers and fermentation-derived biosurfactants are making it possible for environmentally friendly substitutes to perform on par with or better than traditional silicone-based surfactants.

Covid-19 Impact:

The COVID-19 pandemic affected the market for polyether modified polysiloxane (PMP) in a variety of ways. The market was disrupted in the early stages of the outbreak by labor shortages, global supply chain disruptions, and decreased industrial activity, which primarily affected important end-use sectors like electronics, construction, and the automotive industry. But as consumers' attention turned more to cleanliness and self-care, demand soared in areas like personal care and hygiene products, where PMPs are used as conditioners and emulsifiers. Furthermore, the demand for PMP-based adjuvants remained steady in the agricultural sector because of their essential nature. Interest in high-performance, low-VOC PMP formulations increased over time as economies started to recover and green, sustainable manufacturing gained traction, setting up the market for long-term growth despite temporary setbacks.

The agriculture segment is expected to be the largest during the forecast period

The agriculture segment is expected to account for the largest market share during the forecast period, motivated by its vital function in improving agrochemical formulations' efficiency. Because PMP compounds can dramatically lower surface tension and increase coverage on plant surfaces, they are frequently used as super-spreaders and wetting agents in pesticides, herbicides, and foliar fertilizers. By ensuring improved active ingredient penetration and absorption, this raises crop yields while using less chemical input. Moreover, the demand for PMP-based agricultural adjuvants is increasing as precision and sustainable farming methods gain traction worldwide, particularly in high-growth regions like Asia-Pacific and Latin America.

The ink & coatings segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the ink & coatings segment is predicted to witness the highest growth rate. The growing need for high-performance, low-VOC waterborne paints and coatings in industrial, architectural, and automotive applications is driving this quick expansion. Important formulation characteristics like flow, leveling, defoaming, and anti-cratering are improved by polyether-modified polysiloxanes, which also guarantee outstanding compatibility with a range of resin systems. Additionally, formulators are using PMP-based additives to satisfy strict performance and regulatory requirements as end users seek long-lasting, eco-friendly finishes. As a result, SMPs are being widely used in coatings and ink applications worldwide.

Region with largest share:

During the forecast period, the Asia-Pacific region is expected to hold the largest market share, driven by nations like China, India, and Japan's booming end-use sectors, agricultural intensification, and fast industrialization. Strong demand from the construction, textile, and agricultural sectors-where PMPs are extensively utilized as surfactants, leveling agents, and super-spreaders-supports the region's dominance. Asia-Pacific's position in the world market is further reinforced by China's substantial role as a producer and consumer of PMP-based products. Furthermore, the region's growth is also aided by supportive government regulations, rising awareness of sustainable farming methods, and rising investments in manufacturing infrastructure.

Region with highest CAGR:

Over the forecast period, the Middle East & Africa (MEA) region is anticipated to exhibit the highest CAGR, driven by growing industrial diversification, infrastructure development, and agricultural expansion. The region's nations are making significant investments in contemporary farming methods, where PMP-based adjuvants are essential for increasing water and pesticide efficiency. At the same time, the use of PMPs in paints, inks, and adhesives is increasing due to the growing demand for advanced coatings, sealants, and construction materials, particularly in the Gulf Cooperation Council (GCC) countries. Moreover, MEA nations are anticipated to become the world's fastest-growing market for PMPs as they continue to embrace high-performance additives across all industries and shift toward sustainable industrial practices.

Key players in the market

Some of the key players in Polyether Modified Polysiloxane Market include BASF SE, Momentive Performance Materials Inc., Gelest, Inc., Wacker Chemie AG, Evonik Industries AG, Dow Chemical Company, Shin-Etsu Chemical Co., Ltd., Elkem ASA, Siltech Corporation, BRB International BV, SILIBASE SILICONE, Hangzhou Topwin Technology Development Co., Ltd., AB Speciality Silicones and Supreme Silicones Ltd.

Key Developments:

In April 2025, BASF and the University of Toronto have signed a Master Research Agreement (MRA) to streamline innovation projects and increase collaboration between BASF and Canadian researchers. This partnership is part of a regional strategy to extend BASF's collaboration with universities in North America into Canada. This is a great achievement for BASF, as it marks the company's first MRA with a Canadian university.

In March 2025, Momentive Performance Materials group (Momentive) and silicon products manufacturer Jiangxi Hungpai Material have signed a definitive agreement to establish a joint venture focused on the manufacturing and sale of silanes in Asia. The partnership combines Momentive's materials expertise with Hungpai's manufacturing capabilities of silane products, including organofunctional silanes, said Momentive.

In August 2023, Evonik has recently solidified an agreement that holds the potential to significantly impact the methyl methacrylate (MMA) production landscape. The agreement entails the upscaling and production of a tailored catalyst to support Rohm's upcoming MMA manufacturing facility in Bay City, Texas, USA. Set to open its doors in 2024, this advanced plant signifies a leap forward in Rohm's production capabilities.

Forms Covered:

  • Oil
  • Solid

Grades Covered:

  • Low
  • Medium
  • High

End Users Covered:

  • Agriculture
  • Plastic Processing
  • Ink and Coatings
  • Cosmetics and Personal Care
  • Pulp and Paper
  • Adhesives and Sealants
  • Textile
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Polyether Modified Polysiloxane Market, By Form

  • 5.1 Introduction
  • 5.2 Oil
  • 5.3 Solid

6 Global Polyether Modified Polysiloxane Market, By Grade

  • 6.1 Introduction
  • 6.2 Low
  • 6.3 Medium
  • 6.4 High

7 Global Polyether Modified Polysiloxane Market, By End User

  • 7.1 Introduction
  • 7.2 Agriculture
  • 7.3 Plastic Processing
  • 7.4 Ink and Coatings
  • 7.5 Cosmetics and Personal Care
  • 7.6 Pulp and Paper
  • 7.7 Adhesives and Sealants
  • 7.8 Textile
  • 7.9 Other End Users

8 Global Polyether Modified Polysiloxane Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 BASF SE
  • 10.2 Momentive Performance Materials Inc.
  • 10.3 Gelest, Inc.
  • 10.4 Wacker Chemie AG
  • 10.5 Evonik Industries AG
  • 10.6 Dow Chemical Company
  • 10.7 Shin-Etsu Chemical Co., Ltd.
  • 10.8 Elkem ASA
  • 10.9 Siltech Corporation
  • 10.10 BRB International BV
  • 10.11 SILIBASE SILICONE
  • 10.12 Hangzhou Topwin Technology Development Co., Ltd.
  • 10.13 AB Speciality Silicones
  • 10.14 Supreme Silicones Ltd
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦