![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1787890
¼¼°èÀÇ SiC µð¹ÙÀ̽º ½ÃÀå ¿¹Ãø : Á¦Ç° À¯Çü, Á¤°Ý Àü¾Ð, Àç·á, Á¦Á¶ ¹æ¹ý, Ãâ·Â ¹üÀ§, ¿ëµµ, Áö¿ªº° ºÐ¼®(-2032³â)Silicon Carbide Devices Market Forecasts to 2032 - Global Analysis By Product Type, Voltage Rating, Material, Production Method, Power Range, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ SiC µð¹ÙÀ̽º ½ÃÀåÀº 2025³â¿¡ 40¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 24.7%¸¦ ³ªÅ¸³», 2032³â¿¡´Â 188¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
°íÃâ·Â, °í¿Â, °íÁÖÆÄ ¿ëµµ·Î ÇöÀúÇÑ ¼º´ÉÀ» ¹ßÈÖÇϴ ÷´Ü ¹ÝµµÃ¼ ºÎǰÀ¸·Î ¾Ë·ÁÁø °ÍÀÌ SiC µð¹ÙÀ̽ºÀÔ´Ï´Ù. SiC´Â Á¾·¡ÀÇ ½Ç¸®ÄÜ º£À̽º ±â±âº¸´Ù ¹êµå °¸ÀÌ ³Ð°í, ¿ÀüµµÀ²ÀÌ ³ô°í, Àü°è ÆÄ±«°¡ °ÇÑ µîÀÇ ¶Ù¾î³ Ư¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. SiC µð¹ÙÀ̽º´Â Àü±âÀÚµ¿Â÷, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, ½ÅÀç»ý ¿¡³ÊÁö ½Ã½ºÅÛ, ¿ìÁÖ Ç×°ø ÀÀ¿ë ºÐ¾ß¿¡ »ç¿ëÇϱ⿡ ÀÌ»óÀûÀ̸ç, ÀÌ·¯ÇÑ ÀåÁ¡Àº ¾ö°ÝÇÑ Á¶°Ç¿¡¼µµ º¸´Ù È¿°úÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ±â´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ SiC ±â¼úÀº ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀ̰í Àü·Â ¹Ðµµ¸¦ ³ôÀÌ´Â ´É·ÂÀ» °®±â ¶§¹®¿¡ Â÷¼¼´ë ÀüÀÚ ½Ã½ºÅÛ¿¡¼ Á¡Á¡ ÀαⰡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
¹Ì±¹ ¿¡³ÊÁöºÎÀÇ ÆÑÆ® ½ÃÆ®¿¡ ÀÇÇϸé, SiC ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð ±â±â´Â Á¢ÇպΠ¿Âµµ 600¡É±îÁö °ßµô ¼ö ÀÖ¾î °íÀü¾Ð, °í ½ºÀ§Äª Á֯ļö, °íÀü·ù ¹Ðµµ·Î µ¿ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº Àü·Â ½Ã½ºÅÛ¿¡¼ ¿¡³ÊÁö È¿À²À» Å©°Ô Çâ»ó½Ãŵ´Ï´Ù.
Àü±âÀÚµ¿Â÷(EV)ÀÇ º¸±Þ È®´ë
SiC µð¹ÙÀ̽º ½ÃÀåÀ» ¹Ð¾î ¿Ã¸®´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â Àü±âÀÚµ¿Â÷(EV) »ê¾÷ÀÔ´Ï´Ù. SiC ±â¹Ý MOSFET°ú ´ÙÀÌ¿Àµå´Â ±âÁ¸ ½Ç¸®ÄÜ Àåºñº¸´Ù ³ôÀº Àü¾Ð°ú ¿Âµµ¸¦ °ßµð°í È¿À²À» Çâ»ó½ÃŰ°í ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ¾î EV ÆÄ¿öÆ®·¹ÀÎ, ÀÚµ¿Â÷ ÃæÀü±â(OBC), DC-DC ÄÁ¹öÅÍ¿¡¼ÀÇ »ç¿ëÀÌ Á¡Á¡ ´Ã¾î³ª°í ÀÖ½À´Ï´Ù. Ç×¼Ó °Å¸®ÀÇ ¿¬Àå, ³Ã°¢ ½Ã½ºÅÛÀÇ ¼ÒÇüÈ, ±Þ¼Ó ÃæÀüÀº ¸ðµÎ ÀÌ·¯ÇÑ Æ¯¼ºÀÇ ÀåÁ¡À̸ç, EV ½ÃÀå¿¡¼ Áß¿äÇÑ ÆÇ¸Å Æ÷ÀÎÆ®°¡ µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ EVÀÇ »ý»êÀÌ ¼¼°èÀûÀ¸·Î °è¼Ó Áõ°¡Çϰí ÀÖÀ¸¸ç Á¤ºÎÀÇ ±ÔÁ¦°¡ Á¡Â÷ Àüµ¿È¸¦ ÃßÁøÇϰí Àֱ⠶§¹®¿¡ SiC ±â±â ¼ö¿ä´Â ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¾öû³ Á¦Á¶ ºñ¿ë ¹× Àç·á ºñ¿ë
SiC µð¹ÙÀ̽ºÀÇ Á¦Á¶ ºñ¿ëÀÌ ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ºÎǰ¿¡ ºñÇØ ³ô´Ù´Â °ÍÀÌ SiC µð¹ÙÀ̽ºÀÇ º¸±ÞÀ» ¹æÇØÇÏ´Â °¡Àå Å« Àå¾Ö Áß ÇϳªÀÔ´Ï´Ù. SiC °áÁ¤Àº ¼ºÀåÀÌ ¾î·Æ°í °¡°ø¿¡ ½Ã°£ÀÌ °É¸®°í ¼öÀ²µµ ³·±â ¶§¹®¿¡ °íǰÁúÀÇ SiC ¿þÀÌÆÛ¸¦ Á¦Á¶ÇÏ´Â ºñ¿ëÀº ÇöÀúÇÏ°Ô ³ô¾ÆÁý´Ï´Ù. ¿¹¸¦ µé¾î, SiC ¿þÀÌÆÛ´Â °í¿ÂÀÇ ÈÇÐ ±â»ó ¼ºÀå¹ý(CVD)À» ÇÊ¿ä·Î Çϸç, °áÇÔÀÌ ¾ø´Â °áÁ¤ ±¸Á¶¸¦ ¾ò±â°¡ ¾î·Á¿î ¹Ý¸é, ½Ç¸®ÄÜ ¿þÀÌÆÛ´Â È®¸³µÈ °æÁ¦ÀûÀ¸·Î ÃÖÀûÈµÈ ÀÎÇÁ¶ó·Î ´ë·® »ý»êµË´Ï´Ù. °Ô´Ù°¡, SiC ±âÆÇ°ú ¿¡ÇÇÅÃ¼È ÃþÀº ½Ç¸®ÄÜÀÇ ¸î ¹è °í°¡ÀÔ´Ï´Ù.
½º¸¶Æ® ±×¸®µå ¹× Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ°úÀÇ ÅëÇÕ
SiC ±â±â´Â ¼¼°è ¿¡³ÊÁö ¹Í½º°¡ Àç»ý¿¡³ÊÁö¿øÀ¸·Î ÀüȯÇÏ´Â °¡¿îµ¥, ž籤 ÀιöÅÍ, dz·Â Åͺó, ÃàÀüÁö ½Ã½ºÅÛ, ½º¸¶Æ® ±×¸®µå ¿ëµµ¿¡ ÀÖ¾î¼ Àü·Â º¯È¯ È¿À²°ú ½Ã½ºÅÛÀÇ ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ´Â À§Ä¡¿¡ ÀÖ½À´Ï´Ù. ƯÈ÷ À¯Æ¿¸®Æ¼ ½ºÄÉÀÏ ¼³ºñ¿¡¼´Â SiC ±â¹Ý ±¸¼º ¿ä¼Ò°¡ ´õ ³ôÀº Àü¾Ð°ú Á֯ļö¿¡¼ ÀÛµ¿ÇϹǷΠº¸´Ù ÄÄÆÑÆ®Çϰí È¿°úÀûÀÎ ÀιöÅͰ¡ °¡´ÉÇÕ´Ï´Ù. °Ô´Ù°¡, ½º¸¶Æ® ±×¸®µåÀÇ Çö´ëÈ´Â °í¼Ó ½ºÀ§Äª, Á¤È®ÇÑ Á¦¾î, ¾ç¹æÇâ ÆÄ¿ö Ç÷ο츦 °¡´ÉÇÏ°Ô ÇÏ´Â °í¼º´É ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¸¦ ÇÊ¿ä·Î Çϸç, ¸ðµÎ SiCÀÇ ÀåÁ¡ÀÔ´Ï´Ù. ûÁ¤ ¿¡³ÊÁö¿Í ±×¸®µå ȸº¹·ÂÀº Á¤ºÎ¿Í ¿¡³ÊÁö ȸ»ç·ÎºÎÅÍ ¸¹Àº ÅõÀÚ¸¦ ¹Þ°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ºÎ¹®¿¡¼ SiC ±â¼úÀÇ °·ÂÇÑ ¼ºÀå ȯ°æÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
°ø±Þ¸ÁÀÇ ¾àÁ¡°ú Àç·á ºÎÁ·
°í¼øµµ SiC ±âÆÇ°ú ¿þÀÌÆÛ´Â ¿©ÀüÈ÷ ¼Ò¼ö°ø±Þ¾÷ü¿¡ ÀÇÇØ »ý»êµÇ°í Àֱ⠶§¹®¿¡ SiC °ø±Þ¸ÁÀº ¿©ÀüÈ÷ Á¦¾àÀ» ¹Þ°í ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¹«¿ªÁ¦ÇÑ, ÀÚ¿¬ÀçÇØ, ³ëµ¿·Â ºÎÁ·, ÁöÁ¤ÇÐÀû ºÒ¾ÈÁ¤ µî¿¡ ÀÇÇØ °ø±ÞÀÌ Áß´ÜµÇ¸é ±â±âÀÇ À̿밡´É¼º°ú ºñ¿ë¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î COVID-19 ÆÒµ¥¹Í°ú °°Àº »ç°ÇÀº ±¹Á¦ ¹ÝµµÃ¼ °ø±Þ¸ÁÀÇ ¾àÁ¡À» µå·¯³»°í ÀÌ¹Ì °æÀïÀÌ ½ÉÇÑ SiC ¿þÀÌÆÛ ½ÃÀåµµ À¯»çÇÑ È¥¶õ¿¡ ÀÇÇØ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ SiC ¿þÀÌÆÛ Á¦Á¶´Â ¿¡³ÊÁö Áý¾àÀûÀÌ°í ½Ã°£ÀÌ °É¸®±â ¶§¹®¿¡ ½Å¼ÓÇÑ ½ºÄÉÀÏ ¾÷ÀÌ ºÒ°¡´ÉÇÏ¿© ¼ö¿ä ±ÞÁõÀ̳ª ¹°·ù ¹®Á¦ÀÇ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù.
SiC µð¹ÙÀ̽º ½ÃÀå¿¡¼ COVID-19ÀÇ ´ëÀ¯ÇàÀº ´Ù¾çÇÑ ÇüÅ·Î, ±×·¯³ª ÇöÀúÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °øÀå Æó¼â, ³ëµ¿·Â ºÎÁ·, °ø±Þ¸Á È¥¶õÀº ´Ü±âÀûÀÎ ½ÃÀå È¥¶õÀ» ÀÏÀ¸Ä×°í, ÁÖ·Î SiC ¿þÀÌÆÛ¿Í ÀåºñÀÇ Á¦Á¶¿Í ³³Ç°¿¡ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦ÇÑÀº »ê¾÷ Á¦Á¶ ¹× ÀÚµ¿Â÷ »ê¾÷°ú °°Àº º´¸ñ Çö»ó°ú ÁøÇà ÁßÀÎ ÇÁ·ÎÁ§Æ®ÀÇ Áö¿¬À¸·Î À̾îÁ³½À´Ï´Ù. ±×·¯³ª Àü±â, Àç»ý¿¡³ÊÁö ¹× µðÁöÅÐ ÀÎÇÁ¶ó·ÎÀÇ Àüȯ°ú °°Àº Àå±âÀûÀÎ µ¿Çâµµ À¯Çà¿¡ ÀÇÇØ °¡¼ÓȵǾú½À´Ï´Ù. °æÁ¦°¡ ȸº¹À» ÇâÇÔ¿¡ µû¶ó Áö¼Ó°¡´ÉÇÑ ±â¼ú°ú °ß°íÇÑ °ø±Þ¸ÁÀÌ Áß¿äÇØÁö¸é¼ SiC Á¦Á¶¿¡ ´ëÇÑ ¹Î°£ ½Ö¹æÀÇ ÅõÀÚ°¡ ÃËÁøµÇ°í, À¯Çà ÈÄ °·ÂÇÑ ¼ºÀå¿¡ ´ëÇÑ ±æÀÌ ¿·È½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È SiC MOSFET ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
SiC MOSFET ºÎ¹®Àº ÁÖ·Î ¸ðÅÍ ±¸µ¿, »ê¾÷¿ë Àü¿ø, Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, Àü±âÀÚµ¿Â÷(EV)¿Í °°Àº °íÀü¾Ð, °íÈ¿À² ¿ëµµ¿¡ ³Î¸® »ç¿ëµÇ±â ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º¸´Ù ºü¸¥ ½ºÀ§Äª ¼Óµµ, º¸´Ù ³·Àº Àüµµ ¼Õ½Ç, º¸´Ù ³ôÀº ¿Âµµ ¹× Àü¾Ð¿¡¼ÀÇ µ¿ÀÛÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á, ÀÌ·¯ÇÑ Æ®·£Áö½ºÅÍ´Â Á¾·¡ÀÇ ½Ç¸®ÄÜ MOSFETÀ» ´É°¡ÇÕ´Ï´Ù. °Ô´Ù°¡ SiC MOSFET ¼ö¿ä´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í Àü·Â ½Ã½ºÅÛ ¼³°èÀÚµéÀÌ Àü±âÈ¿Í ¿¡³ÊÁö È¿À²È¸¦ Á¡Á¡ ÃßÁøÇÔ¿¡ µû¶ó ±Þ¼ÓÈ÷ Áõ°¡Çϰí ÀÖÀ¸¸ç, SiC µð¹ÙÀ̽º ¹× ¿¡ÄڽýºÅÛÀÇ ÁÖ¿ä Á¦Ç° Ä«Å×°í¸®°¡ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÈÇÐ ±â»ó ¼ºÀå(CVD) ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È ÈÇÐ ±â»ó ¼ºÀå(CVD) ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. MOSFET ¹× ¼îƮŰ ´ÙÀÌ¿Àµå¿Í °°Àº °í±Þ SiC ÆÄ¿ö µð¹ÙÀ̽º¸¦ Á¦Á¶Çϱâ À§Çؼ´Â SiC ±âÆÇ »ó¿¡ °íǰÁúÀÇ ¿¡ÇÇÅÃ¼È ÃþÀ» Çü¼ºÇØ¾ß Çϸç CVD´Â ÀÌ °øÁ¤¿¡ ÇʼöÀûÀÔ´Ï´Ù. »ê¾÷¿ë ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, Àü±âÀÚµ¿Â÷¿¡ ÇÊ¿äÇÑ °íÀü¾Ð, ³·Àº °áÇÔ Àåºñ¸¦ ¸¸µé±â À§ÇØÀÌ °øÁ¤Àº Ãþ µÎ²², µµÇÎ ·¹º§ ¹× ±ÕÀÏ ¼ºÀ» Á¤È®ÇÏ°Ô Á¦¾î ÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ¾ö°ÝÇÑ Ç°Áú°ú È¿À² ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â CVDÀÇ ´É·ÂÀº ƯÈ÷ ÀÚµ¿Â÷¿Í ¿¡³ÊÁö ºÎ¹®¿¡¼ °í¼º´É SiC µð¹ÙÀ̽º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±× äÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, »ê¾÷ ÀÚµ¿È, Àü±âÀÚµ¿Â÷ »ý»êÀÇ È®°íÇÑ Á¸Àç°¨À¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á¤ºÎÀÇ °·ÂÇÑ Áö¿ø, ½Å¼ÓÇÑ »ê¾÷È, ·Î¿È, ¹Ì¾²ºñ½ÃÀü±â, STMicroelectronics µî ´ë±â¾÷ÀÇ Á¸Àç·Î Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡°¡ SiC ±â±âÀÇ ¼Òºñ¿Í »ý»êÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±¹³» ¹ÝµµÃ¼ Á¦Á¶ ¹× ±â¼ú ÀÎÇÁ¶ó ÅõÀÚ Áõ°¡·Î SiC Çõ½Å, Á¦Á¶ ¹× ÃÖÁ¾ »ç¿ëÀÚ¿ëµµÀÇ ÁÖ¿ä Áß½ÉÁö°¡ µÇ¾úÀ¸¸ç, ÀÌ Áö¿ª ¼¼°è ½ÃÀå Á¡À¯À²¿¡¼ Áö¼ÓÀûÀÎ ÀÌÁ¡À» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ºÏ¹Ì´Â ¹æÀ§, Ç×°ø¿ìÁÖ, ½ÅÀç»ý¿¡³ÊÁö, Àü±âÀÚµ¿Â÷±â¼úÀÇ ½Å¼ÓÇÑ °³¹ß¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹ CHIPS ¹ý°ú SiC¿Í °°Àº ¿ÍÀÌµå ¹êµå°¸ ±â¼úÀ» ¼±È£ÇÏ´Â ¿¡³ÊÁöºÎ ÀÚ±Ý Á¦°ø ÇÁ·Î±×·¥°ú °°Àº °·ÂÇÑ Á¤ºÎ ÇÁ·Î±×·¥ÀºÀÌ Áö¿ªÀÇ ¹ÝµµÃ¼ Á¦Á¶ ÇöÁöȸ¦ Áö¿øÇÕ´Ï´Ù. ÇØ¿Ü °ø±Þ¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ ¿ùÇÁ½ºÇǵå, ¿Â¼¼¹ÌÄÁ´öÅÍ, Á¦³Ê·² ÀÏ·ºÆ®¸¯ µî ´ë±â¾÷µéÀº ¹Ì±¹ ³» SiC Á¦Á¶ ´É·Â°ú ¿¬±¸°³¹ß Ȱµ¿À» °ÈÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ºÏ¹Ì°¡ Àü·«Àû ¹æÀ§±â¼ú°ú °íÈ¿À² ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ÁßÁ¡À» µÎ°Ô µÇ¾î ÀÖ´Â °Íµµ SiC ±â±â ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ¾î ¿¹Ãø±â°£ Áß¿¡ °¡Àå ¼ºÀå·üÀÌ ³ôÀº Áö¿ªÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Silicon Carbide (SiC) Devices Market is accounted for $4.02 billion in 2025 and is expected to reach $18.88 billion by 2032 growing at a CAGR of 24.7% during the forecast period. Advanced semiconductor components known for their remarkable performance in high-power, high-temperature, and high-frequency applications are silicon carbide (SiC) devices. SiC has a better characteristic than conventional silicon-based devices, including a wider band gap, increased thermal conductivity, and a stronger electric field breakdown. SiC devices are perfect for use in electric vehicles, power electronics, renewable energy systems, and aerospace applications because of these benefits, which allow them to function more effectively and dependably under challenging conditions. Moreover, SiC technology is becoming more and more popular in next-generation electronic systems due to its capacity to lower energy losses and boost power density.
According to a fact sheet by the U.S. Department of Energy, SiC power electronic devices can withstand junction temperatures up to 600 °C and can operate at higher voltage, higher switching frequency, and with greater current density. These capabilities lead to significant energy efficiency gains in power systems.
Growing uptake of electric cars (EVs)
One of the major factors propelling the market for SiC devices is the electric vehicle (EV) industry. Because SiC-based MOSFETs and diodes can withstand higher voltages and temperatures than conventional silicon devices, improve efficiency, and minimize energy losses, they are being utilized more and more in EV powertrains, on-board chargers (OBCs), and DC-DC converters. Longer driving ranges, smaller cooling systems, and quicker charging are all benefits of these characteristics that are important selling points in the EV market. Additionally, the demand for SiC devices is anticipated to rise sharply as EV production continues to increase globally and government regulations favor electrification more and more.
Exorbitant production and material expenses
The high cost of manufacturing SiC devices in comparison to conventional silicon-based components is one of the biggest obstacles preventing their widespread use. Because SiC crystals are difficult to grow, processing takes longer, and yields are lower, the cost of producing high-quality SiC wafers is significantly higher. For example, SiC wafers need high-temperature chemical vapor deposition (CVD) and have difficulties in obtaining defect-free crystal structures, whereas silicon wafers are mass-produced on well-established and economically optimized infrastructure. Furthermore, SiC substrates and epitaxial layers continue to be several times more expensive than silicon.
Integration with smart grid and renewable energy systems
SiC devices are positioned to improve power conversion efficiency and system reliability in solar inverters, wind turbines, battery storage systems, and smart grid applications as the world's energy mix moves toward renewable sources. Particularly in utility-scale installations, SiC-based components can function at higher voltages and frequencies, enabling more compact and effective inverters. Moreover, the modernization of the smart grid necessitates high-performance power electronics that can facilitate fast switching, precise control, and bi-directional power flow-all of which are advantages of SiC. Clean energy and grid resiliency are receiving significant investments from governments and energy companies, which is fostering a strong growth environment for SiC technologies in these fields.
Supply chain weaknesses and material scarcity
High-purity SiC substrates and wafers are still produced by a small number of suppliers, making the SiC supply chain still rather constrained and concentrated. The availability and cost of devices can be greatly impacted by disruptions in this supply, which can be brought on by trade restrictions, natural disasters, labor shortages, or geopolitical instability. Events like the COVID-19 pandemic, for instance, revealed weaknesses in international semiconductor supply chains, and the already competitive SiC wafer market may be impacted by similar disruptions. Furthermore, SiC wafer manufacturing's energy-intensive and time-consuming nature prevents quick scale-up, leaving the sector susceptible to unforeseen demand spikes or logistical problems.
In the market for silicon carbide (SiC) devices, the COVID-19 pandemic had a mixed but noticeable effect. Factory closures, labor shortages, and supply chain disruptions caused short-term market disruptions that primarily affected the manufacturing and delivery of SiC wafers and devices. These limitations resulted in bottlenecks in industries like industrial manufacturing and the automotive sector as well as delays in ongoing projects. But long-term trends like the move toward electrification, renewable energy, and digital infrastructure-all of which depend on SiC devices to enable high-efficiency power conversion-were also accelerated by the pandemic. The increased emphasis on sustainable technologies and robust supply chains as economies started to recover spurred both public and private investment in SiC manufacturing, paving the way for strong post-pandemic growth.
The SiC MOSFETs segment is expected to be the largest during the forecast period
The SiC MOSFETs segment is expected to account for the largest market share during the forecast period, mainly due to their extensive use in high-voltage, high-efficiency applications like motor drives, industrial power supplies, renewable energy systems, and electric vehicles (EVs). By enabling faster switching speeds, lower conduction losses, and operation at higher temperatures and voltages, these transistors outperform conventional silicon MOSFETs. Moreover, the demand for SiC MOSFETs is rising quickly as automakers and power system designers move more and more toward electrification and energy efficiency, making them the leading product category in the larger SiC device ecosystem.
The chemical vapor deposition (CVD) segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the chemical vapor deposition (CVD) segment is predicted to witness the highest growth rate. In order to produce sophisticated SiC power devices like MOSFETs and Schottky diodes, high-quality epitaxial layers must be deposited on SiC substrates, and CVD is vital to this process. In order to create high-voltage, low-defect devices that are needed in industrial power electronics, renewable energy systems, and electric vehicles, this process enables exact control over layer thickness, doping levels, and uniformity. Additionally, the ability of CVD to meet stringent quality and efficiency requirements is driving its adoption as the need for higher-performance SiC devices increases, particularly in the automotive and energy sectors.
During the forecast period, the Asia-Pacific region is expected to hold the largest market share, propelled by its robust presence in power electronics, industrial automation, and the production of electric vehicles. Due to strong government support, quick industrialization, and the presence of significant players like ROHM, Mitsubishi Electric, and STMicroelectronics, nations like China, Japan, and South Korea are at the forefront of SiC device consumption and production. Furthermore, Asia-Pacific is now a major center for SiC innovation, fabrication, and end-user applications due to rising investments in domestic semiconductor manufacturing and technology infrastructure, guaranteeing the region's sustained dominance in the global market share.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, propelled by quick developments in defense, aerospace, renewable energy, and electric car technologies. Strong government programs, like the U.S. CHIPS Act and Department of Energy funding programs that give priority to wide-bandgap technologies like SiC, help the region localize semiconductor manufacturing. In an effort to lessen dependency on foreign supply chains, major companies like Wolfspeed, ON Semiconductor, and General Electric are increasing their SiC manufacturing capabilities and R&D activities in the United States. Moreover, the demand for SiC devices is also being driven by North America's increasing emphasis on strategic defense technologies and high-efficiency energy infrastructure, which will make it the region with the fastest rate of growth during the forecast period.
Key players in the market
Some of the key players in Silicon Carbide (SiC) Devices Market include Infineon Technologies AG, NXP Semiconductors, Microchip Technology Inc., BASiC Semiconductor Co., Ltd., Renesas Electronics Corporation, Fuji Electric Co., Ltd., ON Semiconductor, Mitsubishi Electric Corporation, Coherent Corp., Wolfspeed, Inc., STMicroelectronics N.V., ROHM Co., Ltd., Toshiba Corporation, GeneSiC Semiconductor Inc. and Littelfuse, Inc.
In June 2025, NXP Semiconductors has announced the conclusion of the acquisition of Vienna-based TTTech Auto, a pioneer in the development of distinctive safety-critical technologies and middleware for software-defined vehicles (SDVs). The open and modular NXP CoreRide platform and TTTech Auto's MotionWise safety middleware help automakers get past obstacles to software and hardware integration while lowering complexity and development efforts and boosting the scalability and cost-effectiveness needed for next-generation vehicles.
In May 2025, Fuji Electric Co. Ltd (Fuji Electric) has been awarded the contract to supply the complete set of power generation equipment for the Muara Laboh Stage 2 geothermal power project of PT Supreme Energy Muara Laboh (SEML) in West Sumatra, Indonesia. The project has a planned installed capacity of 80 MW and is targeting commercial operations by 2027.
In February 2025, Teradyne and Infineon Technologies AG have announced that they have entered into a strategic agreement to advance power semiconductor test. As part of the agreement, Teradyne will acquire part of Infineon's automated test equipment team in Regensburg, Germany. For its part, Infineon will enter into a service agreement to secure continued manufacturing support as well as enhanced flexibility to respond to internal demand for this specialized test equipment as well as benefit from Teradyne's economy of scale.