½ÃÀ庸°í¼­
»óǰÄÚµå
1787899

¼¼°èÀÇ ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀå ¿¹Ãø : Á¦Ç°º°, Àç·áº°, Àû¿ë Çüź°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)

Agricultural Nanotechnology Market Forecasts to 2032 - Global Analysis By Product, Material, Mode of Application, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀåÀº 2025³â 4,312¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È CAGR 12.1%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 9,592¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

³ó¾÷¿ë ³ª³ë±â¼úÀº ³ó¾÷ÀÇ È¿À²¼º, »ý»ê¼º, Áö¼Ó°¡´É¼ºÀ» ³ôÀ̱â À§ÇÑ ³ª³ë½ºÄÉÀÏ Àç·á ¹× µµ±¸ÀÇ Àû¿ëÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ³ó¾à Ç¥Àû¿¡ Àü´Þ, Á¾ÀÚ ¹ß¾Æ °³¼±, Áúº´ °ËÃâ, ÀÛ¹° °Ç°­ »óÅÂÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» °¡´ÉÇϰÔÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ÅõÀÔ Àç·áÀÇ ³¶ºñ¸¦ ¾ø¾Ö°í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÏ°í ¼öÈ®ÀÇ ÁúÀ» Çâ»ó½Ãŵ´Ï´Ù. ³ª³ë°úÇÐÀ» ³ó¾÷¿¡ ÅëÇÕÇÔÀ¸·Î½á Á¤¹Ð³ó¾÷À» Áö¿øÇÏ°í ½Ä·®¾ÈÀü°ú ±âÈÄ º¯È­ µî ¼¼°èÀû °úÁ¦¿¡ ´ëóÇÒ ¼ö ÀÖ½À´Ï´Ù.

±¹Á¦¿¬Çսķ®³ó¾÷±â°ü(FAO)¿¡ µû¸£¸é ³ª³ëÅ×Å©³î·ÎÁö¿¡ ÀÇÇÑ ¼Ö·ç¼ÇÀ» Æ÷ÇÔÇÑ Á¤¹Ð³ó¾÷±â¼úÀ» ä¿ëÇÔÀ¸·Î½á ¹° »ç¿ë·®À» 20-30%, ºñ·á ¼Òºñ·®À» 10-20% »è°¨ÇÒ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.

Á¤¹Ð ³ó¾÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

³ó¾÷ Á¾»çÀÚµéÀº ÀÛ¹°ÀÇ »ý»ê¼º°ú ÀÚ¿ø È¿À²¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Á¤È®ÇÏ°í ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú Àû±ØÀûÀÎ ÅõÀÔ ÀÚÀçÀÇ »ìÆ÷¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±â¼úÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ³ª³ë±â¼úÀº Åä¾ç°ú ½Ä¹°ÀÇ °Ç°­ »óŸ¦ ¸ð´ÏÅ͸µÇϱâ À§ÇÑ ³ª³ë¼¾¼­¿Í ÇÊ¿äÇÑ Àå¼Ò¿¡ ÇÊ¿äÇÑ ½ÃÁ¡¿¡¼­ Á¤È®ÇÏ°Ô ¿µ¾ç¼Ò¸¦ °ø±ÞÇÏ´Â ³ª³ëÁ¶ÇÕ ºñ·á³ª ³ó¾à µî Çõ½ÅÀûÀÎ ÅøÀ» ±âÀçÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â È­Çй°ÁúÀÇ »ç¿ëÀ» ÁÙÀ̰í ȯ°æ¿¡ ´ëÇÑ ÇØ¸¦ ÃÖ¼ÒÈ­ÇÏ¸ç ³ó¾÷ »ý»ê¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¼¼°èÀÇ ½Ä·® ¼ö¿ä°¡ Áõ°¡ÇÏ°í °æÀÛÁö ¸éÀûÀÌ °¨¼ÒÇÔ¿¡ µû¶ó ³ª³ë±â¼ú¿¡ ÀÇÇØ Áö¿øµÇ´Â Á¤¹Ð ³ó¾÷Àº Áö¼Ó°¡´ÉÇϰí È¿À²ÀûÀÎ ³ó¾÷ ½Çõ¿¡ ÇʼöÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù.

±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°ú Ç¥ÁØÈ­ ºÎÁ·

¸íÈ®ÇÑ ÁöħÀÌ ¾øÀ¸¸é ±â¾÷Àº Á¦Ç° °³¹ß, °Ë»ç, »óǰȭ¿¡ ÀÖ¾î ºÒÈ®½Ç¼º¿¡ Á÷¸éÇÏ¿© Çõ½Å°ú ½ÃÀå ÁøÀÔÀ» Áö¿¬½Ãŵ´Ï´Ù. ¾ÈÀü¼º Æò°¡¿Í ½ÂÀÎ °úÁ¤ÀÌ Áö¿ª°£¿¡ Àϰü¼ºÀÌ ¾ø±â ¶§¹®¿¡ ¼¼°èÀÇ µµÀÔÀÌ ¹æÇØµÇ¾î ±¹Á¦ ¹«¿ªÀÇ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ª³ëÀç·áÀÇ µ¶¼º°ú ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡Çϱâ À§ÇÑ Ç¥ÁØÈ­µÈ ÇÁ·ÎÅäÄÝÀÌ Á¸ÀçÇÏÁö ¾Ê±â ¶§¹®¿¡ ¼ÒºñÀÚ, ³ó¾÷ Á¾»çÀÚ, ½ÃÃ¥ ÀÔ¾ÈÀÚµé »çÀÌ¿¡¼­ ¿ì·Á°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ ±ÔÁ¦ °ÝÂ÷´Â ÅõÀÚÀÚÀÇ ½Å·Ú¸¦ ³·Ãß°í Á¤ºÎÀÇ Áö¿øÀ» Á¦ÇÑÇϱ⠶§¹®¿¡ »ê¾÷ÀÌ È¿°úÀûÀ¸·Î ±Ô¸ð¸¦ È®´ëÇÏ°í ³ª³ë ±â¼úÀ» ÁÖ·ù ³ó¾÷ °üÇà¿¡ ÅëÇÕÇÏ´Â °ÍÀ» ¾î·Æ°Ô ¸¸µì´Ï´Ù.

IoT¿Í ½º¸¶Æ® ³ó¾÷ ±â¼úÀÇ ÅëÇÕ

³ª³ë¼¾¼­¸¦ IoT Àåºñ¿Í °áÇÕÇϸé Åä¾çÀÇ °Ç°­ »óÅÂ, ¼öºÐ ¼öÁØ, ÇØÃæ Ȱµ¿, ¿µ¾ç »óÅ¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁýÀÌ °¡´ÉÇϸç Á¤È®ÇÏ°í ½Ã±â ÀûÀýÇÑ ÀÇ»ç °áÁ¤ÀÌ ¿ëÀÌÇÕ´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú´Â ºñ·á ¹× ³ó¾à°ú °°Àº ³ª³ëÈ­µÈ ³ó¾÷ ÅõÀÔ¹°ÀÇ È¿À²¼ºÀ» Çâ»ó½Ã۰í ÇÊ¿äÇÒ ¶§ ÇÊ¿äÇÑ °÷¿¡¸¸ »ìÆ÷ÇÕ´Ï´Ù. °á°úÀûÀ¸·Î ÃÖÀûÈ­´Â ³¶ºñ¸¦ ÁÙÀ̰í ÀÛ¹° ¼öÀ²À» Çâ»ó½Ã۰í Áö¼Ó °¡´ÉÇÑ »ç·Ê¸¦ Áö¿øÇÕ´Ï´Ù. µðÁöÅÐ ³ó¾÷ÀÌ ±â¼¼¸¦ ´Ã¸±¼ö·Ï Ä¿³ØÆ¼µå, ÀÎÅÚ¸®ÀüÆ®, ³ª³ëÈ­µÈ ³ó¾÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÏ°í ±âÁ¸ ³ó¾÷ ½Ã½ºÅÛÀÌ º¯ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¾ö°ÝÇÑ ±ÔÁ¦¿Í À±¸®Àû ¿ì·Á

±ÔÁ¦±â°üÀº Á¾Á¾ ³ª³ë±â¹Ý Á¦Ç°¿¡ ¾ö°ÝÇÑ ¾ÈÀü¼º°ú ȯ°æ°Ë»ç ¿ä°ÇÀ» ºÎ°úÇÏ¿© ½ÂÀÎ ½ºÄÉÁÙÀÇ Àå±âÈ­¿Í °³¹ß ºñ¿ë Áõ°¡·Î À̾îÁý´Ï´Ù. Àΰ£ÀÇ °Ç°­, »ýŰè, »ý¹°´Ù¾ç¼º¿¡ ´ëÇÑ ³ª³ë¹°ÁúÀÇ ¹ÌÁöÀÇ Àå±âÀûÀÎ ¿µÇâ¿¡ ´ëÇÑ À±¸®Àû ¿ì·Á´Â ´õ¿í ¼ö¿ëÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. ÀÏ¹Ý ½Ã¹ÎÀÇ È¸Àǽɰú ¿¹±âÄ¡ ¾ÊÀº °á°ú¿¡ ´ëÇÑ °øÆ÷½ÉÀº ƯÈ÷ ȯ°æ ¿ËÈ£°¡ °­ÇÑ Áö¿ª¿¡¼­ÀÇ Ã¤¿ëÀ» ¾ïÁ¦Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡, À±¸®Àû »ç¿ë°ú À§Çè Ä¿¹Â´ÏÄÉÀ̼ǿ¡ ´ëÇÑ ÇÕÀÇÀÇ ºÎÁ·Àº Á¦Ç°À» ½ÃÀå¿¡ ³»³õ°íÀÚ ÇÏ´Â ±â¾÷µé¿¡°Ô º¹À⼺À» °¡Á®¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦´Â ÀÌ ºÎ¹®¿¡¼­ ±¤¹üÀ§ÇÑ µµÀÔ°ú Çõ½ÅÀ» ¸·´Â Àå¾Ö¹°ÀÌ µÇ¾ú½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ À¯ÇàÀº ÁÖ·Î °ø±Þ¸Á ¹®Á¦, ³ëµ¿·Â ºÎÁ·, Á¶»ç Áö¿¬À¸·Î ÀÎÇØ ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀå¿¡ Ãʱâ È¥¶õÀ» ÃÊ·¡Çß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ Åº·ÂÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ½Äǰ »ý»ê ½Ã½ºÅÛÀÇ Áß¿äÇÑ Çʿ伺À» ºÎ°¢½ÃÄ×°í, ±× ÈÄ ³ª³ë±â¼ú°ú °°Àº ÷´Ü ³ó¾÷ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¿Í Ã¤ÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ÀÌ º¯È­´Â ³ª³ëºñ·á, ³ª³ë³ó¾à, ³ª³ë¼¾¼­ µîÀÇ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ Ã˱¸Çϰí ÀÌÇØ°ü°èÀÚ°¡ ³óÀÛ¹° »ý»ê¼º Çâ»ó, ȯ°æºÎÇÏ °¨¼Ò, ½Ä·®¾Èº¸ °³¼±À» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥ ½ÃÀåÀ» À¯Åë ÀÌÈÄÀÇ ´ëÆøÀûÀÎ ¼ºÀåÀ¸·Î ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù.

³ª³ëºñ·áºÎ¹®Àº ¿¹Ãø±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á

³ª³ëºñ·áºÎ¹®Àº ¿µ¾çºÐÀÇ Èí¼ö¸¦ °³¼±ÇÏ°í »ýŰ迡 ´ëÇÑ ¼Õ»óÀ» ÃÖ¼ÒÈ­ÇÏ°í ³ì»ö³ó¾÷±â¼úÀ» Áøº¸½ÃŰ´Â ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ¿¹Ãø±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á¤¹Ð³ó¾÷ÀÇ »ó½Â°ú Áö¼Ó°¡´ÉÇÑ ÅõÀÔÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ È£ÀÇÀûÀÎ ½ÃÃ¥°ú ÇÔ²² ¼¼°èÀÇ ½Ä·®»ý»êÀ» ÃËÁøÇÒ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÌ ±× »ç¿ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÃÖ÷´Ü ±â¼ú°ú °ß°íÇÑ ¿¬±¸ ³ë·ÂÀº Çö´ë ³ó¹ý¿¡ ±Þ¼ÓÇÑ ÅëÇÕÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È ¿¬±¸±â°ü ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È ¿¬±¸ ±â°ü ºÎ¹®Àº °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿¬±¸±â°üÀº ÀÛ¹°ÀÇ »ý»ê¼º°ú Áö¼Ó°¡´É¼º Çâ»óÀ» ¸ñÇ¥·Î ºñ·á, ³ó¾à, ¹ÙÀÌ¿À¼¾¼­¿ë ÃÖ÷´Ü ³ª³ëÁ¦Á¦¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø°ú »êÇÐ Çù·ÂÀ» ÅëÇØ ÀÌµé ±â°üÀº ½ÇÇè½Ç ¿¬±¸¿Í ÇöÀå ÀÀ¿ë °£ÀÇ °ÝÂ÷¸¦ ¸Þ¿ì´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù. ±×µéÀÇ ³ë·ÂÀº Á¦Ç° °³¹ßÀ» °¡¼ÓÈ­ÇÏ°í ½Å·Ú¼ºÀ» ³ôÀÌ°í ³ó¾÷¿¡¼­ ³ª³ë ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½Ä·® ¾Èº¸¿¡ ´ëÇÑ °ü½É Áõ°¡, Á¤¹Ð ³ó¾÷ÀÇ ±Þ¼ÓÇÑ µµÀÔ, Áö¼Ó °¡´ÉÇÑ ³ó¾÷¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àεµ³ª Áß±¹°ú °°Àº ±¹°¡µéÀº ÀÛ¹° ¼öÀ²À» ³ôÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ ³ª³ë ´ëÀÀ ºñ·á, ¼¾¼­, ³ó¾à¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. »ýºÐÇØ¼º ³ª³ëÀç·áÀÇ Áøº¸¿Í ÇÔ²², ģȯ°æ »ç·Ê¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁö¸é¼­ ÀÌ Áö¿ªÀ» ³ó¾÷Çõ½ÅÀÇ ÇÖ½ºÆÌÀ¸·Î ÀÚ¸®¸Å±èÇØ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç °­·ÂÇÑ ¿¬±¸ ÀÌ´Ï¼ÅÆ¼ºê, ÷´Ü ³ó¾÷ ±â¼ú ¹× Áö¼Ó °¡´ÉÇÑ »ç·Ê¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ À̸¦ µÞ¹ÞħÇÕ´Ï´Ù. ¹Ì±¹Àº ³óÀÛ¹°ÀÇ »ý»ê¼ºÀ» ³ôÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ´Â ³ª³ëºñ·á, ¼¾¼­, ½º¸¶Æ® Àü´Þ ½Ã½ºÅÛÀÇ Çõ½ÅÀ» À̲ø°í ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Áö¿ø ½ÃÃ¥, Çаè¿Í »ê¾÷ÀÇ Á¦ÈÞ, À¯±â³ó»ê¹°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±âÈ£ÀÇ °íÁ¶°¡ ÇÑÃþ ´õ ä¿ëÀ» °¡¼Ó½Ã۰í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤¡¤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç°ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀå : Á¦Ç°º°

  • ¼­·Ð
  • ³ª³ë »ìÃæÁ¦
  • ³ª³ë Á¦ÃÊÁ¦
  • ³ª³ë ºñ·á
  • ³ª³ë ¹ÙÀÌ¿À¼¾¼­
  • ³ª³ë Ŭ·¹ÀÌ
  • ±âŸ

Á¦6Àå ¼¼°èÀÇ ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀå : Àç·áº°

  • ¼­·Ð
  • ±Ý¼Ó
  • °íºÐÀÚ
  • ÁöÁú ±â¹Ý
  • ½Ç¸®ÄÜ ±â¹Ý
  • ź¼Ò ³ª³ëÆ©ºê
  • Ç®·¯·»
  • ±âŸ

Á¦7Àå ¼¼°èÀÇ ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀå : Àû¿ë Çüź°

  • ¼­·Ð
  • ¿±¸é »ìÆ÷Á¦
  • Åä¾ç Àû¿ë¿ë
  • Á¾ÀÚ Ã³¸®
  • Á¦¾î¹æÃâÁ¦Á¦

Á¦8Àå ¼¼°èÀÇ ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • ÀÛ¹° º¸È£
  • Åä¾ç °³·®
  • ºñ·á Àü´Þ ½Ã½ºÅÛ
  • Á¤¹Ð ³ó¾÷
  • ¹° Á¤È­ ¹× °ü°³
  • ¼öÈ® ÈÄ °ü¸®
  • ±âŸ

Á¦9Àå ¼¼°è ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼­·Ð
  • ³ó¾÷Çùµ¿Á¶ÇÕ
  • ¿¬±¸±â°ü
  • ³ó¾àȸ»ç
  • ³óºÎ

Á¦10Àå ¼¼°èÀÇ ³ó¾÷¿ë ³ª³ë±â¼ú ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä °³¹ß

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Nanosys Inc.
  • Oxford Instruments plc
  • Nanoco Group plc
  • ThalesNano Inc.
  • Nano Green Sciences Inc.
  • ASML Holding
  • Elemental Enzymes
  • Valent BioSciences
  • Advanced Nano Products Co., Ltd.
  • Krilltech NanobIoTecnologia Ltda
  • Unibaio SA
  • NanoScientifica
  • NanobIoTech
  • CENmat
  • Geolife Agritech India Pvt. Ltd.
  • Peak Nano
KTH 25.08.18

According to Stratistics MRC, the Global Agricultural Nanotechnology Market is accounted for $431.22 billion in 2025 and is expected to reach $959.21 billion by 2032 growing at a CAGR of 12.1% during the forecast period. Agricultural nanotechnology involves the application of nanoscale materials and tools to enhance the efficiency, productivity, and sustainability of agricultural practices. It enables targeted delivery of agrochemicals, improved seed germination, disease detection, and real-time monitoring of crop health. This technology reduces input waste, minimizes environmental impact, and boosts yield quality. By integrating nanoscience into farming, it supports precision agriculture and addresses global challenges like food security and climate change.

According to the Food and Agriculture Organization of the United Nations (FAO), the adoption of precision agriculture technologies, including nanotechnology-based solutions, can lead to a 20-30% reduction in water usage and a 10-20% decrease in fertilizer consumption.

Market Dynamics:

Driver:

Increasing demand for precision farming solutions

Farmers are seeking technologies that enable accurate, real-time monitoring and targeted application of inputs to improve crop productivity and resource efficiency. Nanotechnology offers innovative tools like nanosensors for soil and plant health monitoring, and nanoformulated fertilizers and pesticides that deliver nutrients precisely where and when needed. This leads to decreased use of chemicals, minimized environmental harm, and improved agricultural productivity. As global food demand rises and arable land decreases, precision farming supported by nanotechnology is becoming essential for sustainable and efficient agricultural practices.

Restraint:

Lack of regulatory frameworks and standardization

Without clear guidelines, companies face uncertainty in product development, testing, and commercialization, which delays innovation and market entry. Inconsistent safety assessments and approval processes across regions hinder global adoption and create barriers for international trade. Additionally, the absence of standardized protocols for evaluating nanomaterial toxicity and environmental impact raises concerns among consumers, farmers, and policymakers. This regulatory gap reduces investor confidence and limits government support, making it difficult for the industry to scale effectively and integrate nanotechnology into mainstream agricultural practices.

Opportunity:

Integration with IoT and smart farming technologies

Combining nanosensors with IoT devices enables real-time data collection on soil health, moisture levels, pest activity, and nutrient status, facilitating precise and timely decision-making. This synergy enhances the efficiency of nano-enabled agro-inputs like fertilizers and pesticides by ensuring they are applied only when and where needed. The resulting optimization reduces waste, boosts crop yields, and supports sustainable practices. As digital agriculture gains momentum, the demand for connected, intelligent, and nano-enhanced farming solutions is expected to rise significantly, transforming traditional agricultural systems.

Threat:

Stringent regulations and ethical concerns

Regulatory bodies often impose strict safety and environmental testing requirements for nano-based products, leading to prolonged approval timelines and increased development costs. Ethical concerns regarding the unknown long-term effects of nanomaterials on human health, ecosystems, and biodiversity further hinder acceptance. Public skepticism and fear of unintended consequences reduce adoption, particularly in regions with strong environmental advocacy. Additionally, lack of consensus on ethical use and risk communication adds complexity for companies trying to bring products to market. These challenges create hurdles for widespread implementation and innovation in the sector.

Covid-19 Impact:

The COVID-19 pandemic caused initial disruptions to the agricultural nanotechnology market, primarily due to supply chain issues, labor shortages, and slowed research. However, the crisis also highlighted the critical need for resilient and sustainable food production systems, subsequently accelerating investment and adoption of advanced agricultural technologies like nanotechnology. This shift has driven increased demand for solutions such as nano-fertilizers, nano-pesticides, and nano-sensors, pushing the market towards significant post-pandemic growth as stakeholders prioritize enhanced crop productivity, reduced environmental impact, and improved food security.

The nano fertilizers segment is expected to be the largest during the forecast period

The nano fertilizers segment is expected to account for the largest market share during the forecast period, due to their role in improving nutrient uptake, minimizing ecological damage, and advancing green farming techniques. The growing need to boost global food production, coupled with the rise of precision agriculture and favourable government policies promoting sustainable inputs, are fueling their use. Cutting-edge technologies and robust research efforts continue to drive their rapid integration into modern farming practices.

The research institutes segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the research institutes segment is predicted to witness the highest growth rate, driven by fostering innovation through advanced studies and experimentation. They develop cutting-edge nanoformulations for fertilizers, pesticides, and biosensors aimed at improving crop productivity and sustainability. With support from government funding and academic-industry collaborations, these institutions help bridge the gap between lab research and field application. Their efforts accelerate product development, enhance credibility, and promote the adoption of nanotechnology in agriculture.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by rising food security concerns, rapid adoption of precision farming, and government support for sustainable agriculture. Countries like India and China are investing in nano-enabled fertilizers, sensors, and pesticides to boost crop yields and reduce environmental impact. Growing awareness of eco-friendly practices, along with advancements in biodegradable nanomaterials, continues to drive market growth positioning the region as a hotspot for agricultural innovation.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, fuelled by strong research initiatives, advanced farming technologies, and growing demand for sustainable practices. The U.S. leads with innovations in nano-fertilizers, sensors, and smart delivery systems that enhance crop productivity and reduce environmental impact. Supportive government policies, collaborations between academia and industry, and rising consumer preference for organic produce further accelerate adoption.

Key players in the market

Some of the key players in Agricultural Nanotechnology Market include Nanosys Inc., Oxford Instruments plc, Nanoco Group plc, ThalesNano Inc., Nano Green Sciences Inc., ASML Holding, Elemental Enzymes, Valent BioSciences, Advanced Nano Products Co., Ltd., Krilltech Nanobiotecnologia Ltda, Unibaio S.A., NanoScientifica, Nanobiotech, CENmat, Geolife Agritech India Pvt. Ltd., and Peak Nano.

Key Developments:

In March 2025, Oxford Instruments announces the release of MQC-R, its all-new time domain NMR (TD-NMR) benchtop research system for academia and industry. Providing flexible, non-invasive and non-destructive analysis of the physical and chemical properties of materials, the MQC-R characterises liquids, gels, emulsions, and solids.

In May 2024, ASML and Eindhoven University of Technology (TU/e) have signed an agreement on a significant expansion of their collaboration. They will conduct more joint research and train more PhD students in areas such as plasma physics, mechatronics, optics and AI, based on common roadmaps. The expansion is an investment in the unique position of the Brainport region in the field of semiconductors.

Products Covered:

  • Nano Pesticides
  • Nano Herbicides
  • Nano Fertilizers
  • Nano Biosensors
  • Nanoclays
  • Other Products

Materials Covered:

  • Metallic
  • Polymeric
  • Lipid-based
  • Silicon-based
  • Carbon Nanotubes
  • Fullerenes
  • Other Materials

Mode of Applications Covered:

  • Foliar Spray
  • Soil Application
  • Seed Treatment
  • Controlled Release Formulations

Applications Covered:

  • Crop Protection
  • Soil Improvement
  • Fertilizer Delivery Systems
  • Precision Farming
  • Water Purification & Irrigation
  • Post-Harvest Management
  • Other Applications

End Users Covered:

  • Agricultural Cooperatives
  • Research Institutes
  • Agrochemical Companies
  • Farmers

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Agricultural Nanotechnology Market, By Product

  • 5.1 Introduction
  • 5.2 Nano Pesticides
  • 5.3 Nano Herbicides
  • 5.4 Nano Fertilizers
  • 5.5 Nano Biosensors
  • 5.6 Nanoclays
  • 5.7 Other Products

6 Global Agricultural Nanotechnology Market, By Material

  • 6.1 Introduction
  • 6.2 Metallic
  • 6.3 Polymeric
  • 6.4 Lipid-based
  • 6.5 Silicon-based
  • 6.6 Carbon Nanotubes
  • 6.7 Fullerenes
  • 6.8 Other Materials

7 Global Agricultural Nanotechnology Market, By Mode of Application

  • 7.1 Introduction
  • 7.2 Foliar Spray
  • 7.3 Soil Application
  • 7.4 Seed Treatment
  • 7.5 Controlled Release Formulations

8 Global Agricultural Nanotechnology Market, By Application

  • 8.1 Introduction
  • 8.2 Crop Protection
  • 8.3 Soil Improvement
  • 8.4 Fertilizer Delivery Systems
  • 8.5 Precision Farming
  • 8.6 Water Purification & Irrigation
  • 8.7 Post-Harvest Management
  • 8.8 Other Applications

9 Global Agricultural Nanotechnology Market, By End User

  • 9.1 Introduction
  • 9.2 Agricultural Cooperatives
  • 9.3 Research Institutes
  • 9.4 Agrochemical Companies
  • 9.5 Farmers

10 Global Agricultural Nanotechnology Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Nanosys Inc.
  • 12.2 Oxford Instruments plc
  • 12.3 Nanoco Group plc
  • 12.4 ThalesNano Inc.
  • 12.5 Nano Green Sciences Inc.
  • 12.6 ASML Holding
  • 12.7 Elemental Enzymes
  • 12.8 Valent BioSciences
  • 12.9 Advanced Nano Products Co., Ltd.
  • 12.10 Krilltech Nanobiotecnologia Ltda
  • 12.11 Unibaio S.A.
  • 12.12 NanoScientifica
  • 12.13 Nanobiotech
  • 12.14 CENmat
  • 12.15 Geolife Agritech India Pvt. Ltd.
  • 12.16 Peak Nano
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦