![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1787917
¼¼°èÀÇ Àü»êÀ¯Ã¼¿ªÇÐ ½ÃÀå ¿¹Ãø : ±¸¼º ¿ä¼Òº°, ¹èÆ÷ À¯Çüº°, Â÷¿øº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)Computational Fluid Dynamics Market Forecasts to 2032 - Global Analysis By Component (Software and Services), Deployment Type (On-Premise and Cloud-Based), Dimension, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Àü»êÀ¯Ã¼¿ªÇÐ ½ÃÀåÀº 2025³â 31¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 9.2%¸¦ ³ªÅ¸³»¸ç 2032³â¿¡´Â 57¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
À¯Ã¼¿ªÇÐÀÇ ÇÑ ºÐ¾ßÀÎ Àü»êÀ¯Ã¼¿ªÇÐ(CFD)Àº ¼öÄ¡±â¼ú°ú ¾Ë°í¸®ÁòÀ» ÀÌ¿ëÇÏ¿© À¯Ã¼ÀÇ È帧À» ºÐ¼®ÇÏ¿© ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. CFD´Â ÄÄÇ»Å͸¦ »ç¿ëÇÏ¿© ¾×ü¿Í ±âü°¡ Ç¥¸é°ú ¾î¶»°Ô »óÈ£ ÀÛ¿ëÇÏ´ÂÁö ½Ã¹Ä·¹À̼ÇÇÔÀ¸·Î½á È帧ÀÇ °Åµ¿, ¾Ð·Â ºÐÆ÷ ¹× ¿Âµµ º¯È¿¡ ´ëÇÑ ½Ã°¢Àû ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¿¡³ÊÁö, °Ç° °ü¸® µîÀÇ ºÐ¾ß¿¡¼´Â ¿£Áö´Ï¾î¸µ ¹× ¼³°è ÃÖÀûÈ¿¡ ÇʼöÀûÀÔ´Ï´Ù. CFD ¸ðµ¨Àº ¼º´ÉÀ» Çâ»ó½ÃŰ°í ½ÇÁ¦ À¯Ã¼ ¿ªÇÐÀ» ³ôÀº Á¤È®µµ·Î ¿¹ÃøÇÏ¸ç ¹°¸®Àû ÇÁ·ÎÅäŸÀÔÀÇ Çʿ伺À» ÁÙÀ̱⠶§¹®¿¡ Å×½ºÆ® ¹× ±â¼ú Çõ½ÅÀ» º¸´Ù Àú·ÅÇÑ °¡°ÝÀ¸·Î ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.
°·ÂÇÑ ½Ã¹Ä·¹ÀÌ¼Ç ±â´É
°í°¡ÀÇ ¹°¸®Àû ÇÁ·ÎÅäŸÀÔ¿¡ ´ëÇÑ Çʿ伺À» Á¦°ÅÇÏ´Â ÀÌ·¯ÇÑ °í±Þ µµ±¸´Â Á¦Ç° °³¹ß ±â°£À» ´ÜÃàÇÕ´Ï´Ù. ½ÇÁ¦ ȯ°æÀ» ½Ã¹Ä·¹À̼ÇÇÔÀ¸·Î½á ¿£Áö´Ï¾î´Â ¼³°èÀÇ È¿À²¼º, ¾ÈÀü¼º ¹× ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ½Ã°¢ÈÀÇ Çâ»óÀº ¿À·ùÀÇ Á¶±â ¹ß°ßÀ» °¡´ÉÇÏ°Ô Çϰí, ±Íȯ°ú ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã¹Ä·¹À̼ÇÀº ¿¡³ÊÁö, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ µî ºÐ¾ßÀÇ ±â¼ú Çõ½Å°ú ±ÔÁ¤ Áؼö¿¡ ÇʼöÀûÀÔ´Ï´Ù. CFD ÅøÀº ó¸® ´É·ÂÀÌ Çâ»óµÊ¿¡ µû¶ó ´õ ³Î¸® ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾î º¸´Ù Æø³ÐÀº »ê¾÷¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.
½ÀµæÀÇ ³À̵µ
CFD ¼ÒÇÁÆ®¿þ¾î¸¦ »ç¿ëÇÏ·Á¸é À¯Ã¼ ¿ªÇÐ, ¿¿ªÇÐ ¹× ¼öÄ¡ °è»ê ±â¹ý¿¡ ´ëÇÑ °í±Þ Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺À¸·Î ÀÎÇØ ä¿ëÀº ÷´Ü ±â¼úÀ» °¡Áø Àü¹®°¡ ¹× Àü¹® »ê¾÷À¸·Î Á¦ÇѵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. Áß¼Ò±â¾÷°ú ½Å±Ô »ç¿ëÀÚ´Â ±â¼úÀû À庮°ú °í°¡ÀÇ ±³À° ºñ¿ëÀ¸·Î °íÅë¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ¹èÆ÷¿¡´Â ½Ã°£°ú ¸®¼Ò½º°¡ ÇÊ¿äÇÕ´Ï´Ù. À̴ ƯÈ÷ ½ÅÈï °æÁ¦±¹°ú ºñ±â¼ú°è ÃÖÁ¾ »ç¿ëÀÚ¿¡°Ô º¸´Ù ±¤¹üÀ§ÇÑ ½ÃÀå ħÅõ¸¦ ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
½ÅÈï±¹°ú Ŭ¶ó¿ìµå ±â¹Ý ä¿ë
Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀº ´ë±Ô¸ð ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼±Çà ÅõÀÚ ¾øÀÌ È®Àå °¡´ÉÇÑ ½Ã¹Ä·¹À̼ǰú °í¼Ó 󸮸¦ ½ÇÇöÇÕ´Ï´Ù. ÇÏÀÌ¿£µå CFD ¼Ö·ç¼ÇÀº ±¸µ¶ ¸ðµ¨À» ÅëÇØ ½ÅÈï ±â¾÷°ú Áß¼Ò±â¾÷ÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾î ½ÃÀå ħÅõ°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¿ø°Ý ¾×¼¼½º¿Í ½Ç½Ã°£ Çù¾÷Àº ±¹Á¦ ÆÀÀÇ ¼³°è È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº ¿¹Ãø Á¤È®µµ¸¦ Çâ»ó½Ã۰í R&D »çÀÌŬÀ» °¡¼ÓÈÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý CFD´Â °í±Þ ½Ã¹Ä·¹À̼ÇÀ» ¹ÎÁÖÈÇÏ°í ¾÷°è¿¡¼ ±¤¹üÀ§ÇÑ »ç¿ëÀ» ÃËÁøÇÕ´Ï´Ù.
´ëü µµ±¸¿ÍÀÇ Ãæµ¹
AI¸¦ Ȱ¿ëÇÑ ½Ã¹Ä·¹À̼ǰú °æÇè ¹ýÄ¢À» ±â¹ÝÀ¸·Î ÇÏ´Â ¸ðµ¨¸µ°ú °°Àº º¸´Ù ºü¸¥ ÅϾî¶ó¿îµå ½Ã°£À» ½ÇÇöÇÒ ¼ö Àֱ⠶§¹®¿¡ »ç¿ëÀÚ´Â ÀÌ·¯ÇÑ ¼±Åÿ¡ ¸Å·áµÇ°í ÀÖ½À´Ï´Ù. ¸¹Àº ºÐ¾ß¿¡¼ µ¶¸³Çü CFD ¼ÒÇÁÆ®¿þ¾îº¸´Ù ÅëÇÕ ¸ÖƼÇÇÁ÷½º Ç÷§ÆûÀÌ Áö¿øµÇ±â ¶§¹®¿¡ CFD ½ÃÀå Á¡À¯À²Àº ¶³¾îÁö°í ÀÖ½À´Ï´Ù. »ó¿ë CFD Á¦»ê¾÷ü´Â ¿ÀǼҽº ¼ÒÇÁÆ®¿þ¾î°¡ ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î Á¦°øÇÏ´Â ¿É¼Ç¿¡ µµÀüÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü¹®°¡°¡ ¾Æ´Ñ »ç¶÷µéÀº ÀÚµ¿È ±â´É°ú Äڵ尡 ÇÊ¿ä ¾ø´Â ÀÎÅÍÆäÀ̽º¸¦ °®Ãá ¼ÒÇÁÆ®¿þ¾î¿¡ ¸Å·áµÇ¾î ±âÁ¸ CFDÀÇ »ç¿ëÀ» Á¦ÇÑÇÕ´Ï´Ù. °æÀïÀÌ Ä¡¿Çϱ⠶§¹®¿¡ CFD °ø±Þ¾÷ü´Â ²÷ÀÓ¾øÀÌ ±â¼ú Çõ½ÅÀ» ¼öÇàÇØ¾ß ÇÏ¸ç °³¹ß ºñ¿ëÀÌ »ó½ÂÇÏ°í ½ÃÀå¿¡ ¿¹Ãø ºÒ°¡´É¼ºÀÌ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ ´ëÀ¯ÇàÀº Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¿¡³ÊÁö µîÀÇ ºÎ¹®¿¡¼ »ê¾÷¿î¿µ, ¿¬±¸°³¹ß Ȱµ¿, ½Å±Ô ÇÁ·ÎÁ§Æ®ÀÇ Àü°³¸¦ ´ÊÃß°í Àü»êÀ¯Ã¼¿ªÇÐ ½ÃÀåÀ» Å©°Ô È¥¶õ½ÃÄ×½À´Ï´Ù. °ø±Þ¸Á Áߴܰú ÀÚº» ÁöÃâ °¨¼Ò·Î ÇÁ·ÎÁ§Æ®°¡ ¿¬±âµÇ¾ú°í CFD ¼ÒÇÁÆ®¿þ¾î ¼ö¿ä´Â ÀϽÃÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ °¡»ó Å×½ºÆ®, ¿ø°Ý ½Ã¹Ä·¹À̼Ç, È¿À²ÀûÀÎ ¼³°è ÇÁ·Î¼¼½ºÀÇ Çʿ伺À» ºÎ°¢½ÃÄÑ µðÁöÅÐ º¯ÇõÀ» °¡¼ÓÈÇß½À´Ï´Ù. »ê¾÷°è°¡ »õ·Î¿î ÀÛ¾÷ ¸ðµ¨¿¡ ÀûÀÀÇÔ¿¡ µû¶ó CFD ÅøÀº ¼³°è¸¦ ÃÖÀûÈÇÏ°í ºÒÈ®½ÇÇÑ ½Ã´ë¿¡ »ý»ê¼ºÀ» À¯ÁöÇÏ´Â µ¥ ´Ù½Ã Çѹø Á߿伺À» ³ô¿´½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
¼ÒÇÁÆ®¿þ¾î ºÎ¹®Àº º¹ÀâÇÑ À¯Ã¼ ºÐ¼®À» À§ÇÑ °í±Þ ½Ã¹Ä·¹ÀÌ¼Ç ±â´ÉÀ» ÅëÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º °³¼± ¹× AI¿ÍÀÇ ÅëÇÕ µî CFD ¼ÒÇÁÆ®¿þ¾îÀÇ Áö¼ÓÀûÀÎ ±â´É °È·Î ¾÷°è Àüü¿¡¼ ä¿ëÀÌ Áõ°¡. ºñ¿ë È¿À²ÀûÀÎ °¡»ó Å×½ºÆ®´Â ¹°¸®Àû ÇÁ·ÎÅäŸÀÔÀÇ Çʿ伺À» ÁÙ¿© ½Ã°£°ú ¸®¼Ò½º¸¦ Àý¾àÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý CFD Ç÷§ÆûÀº ½Ç½Ã°£ ºÐ¼®À» À§ÇÑ È®Àå °¡´ÉÇϰí Á¢±ÙÇϱ⠽¬¿î ÄÄÇ»ÆÃ ÆÄ¿ö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °á°úÀûÀ¸·Î ¿¡³ÊÁö¿Í °°Àº ¾÷°è¿¡¼´Â È¿À²ÀûÀÎ Á¦Ç° ¼³°è ¹× ÃÖÀûȸ¦ À§ÇØ CFD ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀÇ·á ¹× ÀÇ·á±â±â ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ Àü¸Á
¿¹Ãø ±â°£ µ¿¾È ÈíÀÔ±â, ÀΰøÈ£Èí±â, Ç÷·ù ½Ã¹Ä·¹ÀÌÅÍ µîÀÇ ±â±â ¼³°èÀÇ Á¤¹Ðµµ°¡ Çâ»óµÇ±â ¶§¹®¿¡ ÇコÄÉ¾î ¹× ÀÇ·á±â±â ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. CFD´Â ÀÇ·á±â±âÀÇ °¡»ó Å×½ºÆ®¸¦ °¡´ÉÇÏ°Ô ÇÏ°í ¹°¸®Àû ÇÁ·ÎÅäŸÀÔÀÇ Çʿ伺À» ÁÙÀÌ°í °³¹ß ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù. ´õ ³ªÀº Áø´Ü ¹× Ä¡·á °èȹÀ» À§ÇØ È¯ÀÚº° ÇØºÎÇÐÀû ±¸Á¶¸¦ ¸ðµ¨¸µÇÏ¿© °³ÀÎÈµÈ ÀǷḦ Áö¿øÇÕ´Ï´Ù. ÀÌ ºÐ¾ß´Â ³·Àº ħ½À ¼ö¼ú°ú °í±Þ Áø´Ü µµ±¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÌÀÍÀ» ¾ò°í ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î CFD´Â Çõ½ÅÀ» °¡¼ÓÈÇϰí ÀÇ·á ±â¼úÀÇ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº »ê¾÷ÈÀÇ ÁøÀü, ½º¸¶Æ® ¸Å´ºÆÑ󸵿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê, ÀÚµ¿Â÷ ¹× ÀüÀÚ ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼´Â Á¦Ç° ¼³°è ¹× ¿¡³ÊÁö È¿À²À» ÃÖÀûÈÇϱâ À§ÇØ CFD µµ±¸¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¼÷·Ã ¿£Áö´Ï¾î Áõ°¡¿Í »ê¾÷ÀÇ µðÁöÅÐ º¯ÇõÀÇ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ç×°ø¿ìÁÖ ¹× ½ÅÀç»ý¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ ½Ã¹Ä·¹ÀÌ¼Ç ±â¹Ý ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖÀ¸¸ç ¾Æ½Ã¾ÆÅÂÆò¾çÀº CFD ¼Ö·ç¼ÇÀÇ À¯¸ÁÇÑ ±â¹ÝÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ºÏ¹Ì´Â Ç×°ø¿ìÁÖ, ¹æÀ§, ÇコÄÉ¾î ºÐ¾ß¿¡¼ ¿Õ¼ºÇÑ R&D Ȱµ¿À» ÅëÇØ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¿¡´Â ÁÖ¿ä CFD ¼ÒÇÁÆ®¿þ¾î °³¹ß ±â¾÷ÀÌ ÀÖÀ¸¸ç °¢ »ê¾÷¿¡ ´ëÇÑ ±â¼ú µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Á¤¹Ð ¿£Áö´Ï¾î¸µ, ½º¸¶Æ® ÀÎÇÁ¶ó ¹× ¿¡³ÊÁö Àý¾àÀÌ Áß¿äÇϸç Á¦Ç° °³¹ß »çÀÌŬ¿¡¼ CFD ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼®À¯, °¡½º ¹× HVAC ¿ëµµ¿¡¼ÀÇ »ç¿ëÀÌ Áõ°¡ÇÏ¿© ²ÙÁØÇÑ ¼ºÀåÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±ÔÁ¦ ȯ°æ°ú µðÁöÅÐ Æ®À© Àü·«Àº ÷´Ü ½Ã¹Ä·¹ÀÌ¼Ç ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Computational Fluid Dynamics Market is accounted for $3.1 billion in 2025 and is expected to reach $5.7 billion by 2032 growing at a CAGR of 9.2% during the forecast period. A subfield of fluid mechanics known as computational fluid dynamics (CFD) analyses and resolves fluid flow issues using numerical techniques and algorithms. CFD offers visual insights into flow behaviour, pressure distribution, and temperature changes by using computers to simulate how liquids and gases interact with surfaces. In sectors including aerospace, automotive, energy, and healthcare, it is essential to engineering and design optimisation. Because CFD models improve performance, anticipate real-world fluid dynamics with high accuracy, and lessen the need for physical prototypes, they make testing and innovation more affordable.
Powerful simulation capabilities
Product development periods are sped up by these sophisticated tools, which eliminate the need for expensive physical prototypes. By simulating real-world settings, engineers may enhance the effectiveness, safety, and performance of designs. Improved visualisation reduces rework and expenses by helping to spot errors early. These simulations are essential for innovation and compliance in sectors including energy, automotive, and aerospace. CFD tools become more widely available as processing capacity increases, increasing their use in a wider range of industries.
Steep learning curve
Mastery of CFD software requires advanced knowledge of fluid mechanics, thermodynamics, and numerical methods. This complexity often limits adoption to highly skilled professionals and specialized industries. Small businesses and new users may struggle with the technical barriers and high training costs. As a result, implementation becomes time-consuming and resource-intensive. This deters broader market penetration, especially in emerging economies and among non-technical end users.
Emerging and cloud-based adoption
Cloud solutions provide for scalable simulations and speedier processing without requiring significant upfront infrastructure investments. High-end CFD solutions are increasingly available to startups and SMEs through subscription models, increasing market penetration. Remote accessibility and real-time collaboration increase design efficiency for international teams. Cloud-based AI and machine learning integration improves prediction accuracy and expedites R&D cycles. All things considered, cloud-based CFD democratises sophisticated simulation, propelling its broad industry use.
Competition from alternative tools
Users are drawn to these options because they have faster turnaround times, like AI-driven simulations or empirical modelling. CFD's market share is declining as a result of many sectors favouring integrated multi-physics platforms over stand-alone CFD software. Commercial CFD providers are challenged by open-source software, which also offer affordable alternatives. Additionally, non-experts are drawn to software with automated features and no-code interfaces, which restricts the use of traditional CFD. Because of the intense competition, CFD suppliers must constantly innovate, which raises development costs and creates unpredictability in the market.
Covid-19 Impact
The Covid-19 pandemic significantly disrupted the Computational Fluid Dynamics (CFD) market by delaying industrial operations, R&D activities, and new project deployments across sectors such as aerospace, automotive, and energy. Supply chain interruptions and reduced capital expenditure led to project postponements and a temporary decline in CFD software demand. However, the crisis also highlighted the need for virtual testing, remote simulation, and efficient design processes, accelerating digital transformation. As industries adapted to new working models, CFD tools gained renewed importance in optimizing designs and maintaining productivity during uncertain times.
The software segment is expected to be the largest during the forecast period
The software segment is expected to account for the largest market share during the forecast period, due to advanced simulation capabilities for complex fluid flow analysis. Continuous enhancements in CFD software, such as improved user interfaces and integration with AI, increase adoption across industries. Cost-effective virtual testing reduces the need for physical prototypes, saving time and resources. Cloud-based CFD platforms enable scalable and accessible computing power for real-time analysis. As a result, industries like and energy increasingly relies on CFD software for efficient product design and optimization.
The healthcare & medical devices segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the healthcare & medical devices segment is predicted to witness the highest growth rate, due to enhanced precision in device design, such as inhalers, ventilators, and blood flow simulators. CFD enables virtual testing of medical equipment, reducing the need for physical prototypes and lowering development costs. It supports personalized medicine by modeling patient-specific anatomy for better diagnosis and treatment planning. The segment benefits from increased demand for minimally invasive procedures and advanced diagnostic tools. Overall, CFD accelerates innovation and improves performance in healthcare technologies.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to increasing industrialization, government initiatives in smart manufacturing, and rising investments in automotive and electronics sectors. Countries like China, India, Japan, and South Korea are adopting CFD tools for optimizing product designs and energy efficiency. The region benefits from a growing pool of skilled engineers and digital transformation in industries. Furthermore, demand for simulation-based analysis in aerospace and renewable energy systems is boosting market growth, making Asia Pacific a high-potential hub for CFD solutions.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR fuelled by robust R&D activities in aerospace, defense, and healthcare sectors. The presence of major CFD software developers in the U.S. and Canada enhances technological adoption across industries. Emphasis on precision engineering, smart infrastructure, and energy conservation fosters deeper integration of CFD in product development cycles. Additionally, rising use in oil & gas and HVAC applications supports steady growth. The region's regulatory environment and digital twin strategies further stimulate demand for advanced simulation technologies.
Key players in the market
Some of the key players profiled in the Computational Fluid Dynamics Market include ANSYS Inc., Siemens Digital Industries Software, Dassault Systemes, Altair Engineering, Autodesk Inc., PTC Inc., NUMECA International, Convergent Science, Hexagon AB, COMSOL Inc., Flow Science Inc., OpenCFD Ltd., EXA Corporation, SimScale GmbH, Stymer Technologies Pvt. Ltd. and The MathWorks, Inc.
In June 2025, ANSYS and Synopsys announced that their proposed $35 billion merger has successfully cleared all required global regulatory reviews, except for China, where the approval process is in its final stages. This strategic merger aims to enhance digital engineering and simulation capabilities across semiconductor and system industries.
In May 2025, ANSYS partnered with AMD, Baker Hughes, and Oak Ridge National Laboratory to achieve a 96% reduction in CFD simulation runtime using ANSYS Fluent on AMD Instinct GPUs. This breakthrough highlights ANSYS's leadership in high-performance computing and boosts simulation efficiency for complex engineering workflows across industries.
In May 2024, Siemens launched Simcenter X, a cloud-based SaaS platform that delivers Simcenter STAR-CCM+ with high-performance computing (HPC) on a pay-as-you-go model, removing hardware barriers and enabling scalable, flexible CFD simulation across diverse engineering teams.