½ÃÀ庸°í¼­
»óǰÄÚµå
1797912

¼¼°èÀÇ ³»Ãæ°Ý¼º À¯¸® ½ÃÀå ¿¹Ãø - Áß°£Ãþº°, Àç·á À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)

Impact Resistant Glass Market Forecasts to 2032 - Global Analysis By Interlayer (Polyvinyl Butyral (PVB), Ionoplast Polymer, Ethylene Vinyl Acetate (EVA), Polyurethane (PU) and Other Interlayers), Material Type, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³»Ãæ°Ý¼º À¯¸® ½ÃÀåÀº 2025³â¿¡ 339¾ï 9,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â CAGR 9.3%¸¦ ³ªÅ¸³» 633¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

³»Ãæ°Ý¼º À¯¸®´Â ³ôÀº ¾Ð·ÂÀ» °ßµð¸ç Ãæ°ÝÀ» ¹Þ´õ¶óµµ ±úÁöÁö ¾Êµµ·Ï Ưº°È÷ Á¦À۵Ǿú½À´Ï´Ù. ¸ÅÀåÀ̳ª Ç㸮ÄÉÀÎÀÌ ¸¹Àº Áö¿ªÀÇ ºôµù â¹®, ÀÚµ¿Â÷ÀÇ ¾Õ À¯¸® µî º¸¾È°ú ¾ÈÀüÀÌ Áß¿äÇÑ °÷¿¡¼­ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ÀϹÝÀûÀ¸·Î ÀÌ·± À¯ÇüÀÇ À¯¸®´Â ¿©·¯ ÃþÀ¸·Î ±¸¼ºµÇ¾î ÆÄ¼Õ½Ã À¯¸® Á¶°¢À» ¿¬°áÇÏ´Â °­·ÂÇÑ °íºÐÀÚ Áß°£¸·À» °¡Áö¸ç ÀáÀçÀûÀ¸·Î ÇØ·Î¿î ÆÄÆíÀ¸·Î ÀÎÇÑ ºÎ»óÀ» ¹æÁö ÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Ãæ°Ý ¿¡³ÊÁö¸¦ Èí¼ö¡¤ºÐ»êÇÏ°í »ç¶÷°ú Àç»êÀ» ¸ðµÎ º¸È£ÇÏ´Â ´É·ÂÀÌ Àֱ⠶§¹®¿¡ Çö´ëÀÇ °ÇÃàÀ̳ª ¼ö¼ÛÀÇ ¾ÈÀü¿¡´Â ºü¶ß¸± ¼ö ¾ø´Â ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

IQ Glass UK¿¡ µû¸£¸é, ¾ÈÀü ±Û·¹ÀÌ¡À¸·Î Ưº°È÷ ¸¸µé¾îÁø ±Û·¹ÀÌ¡ Àç·á´Â ¼º´É¿¡ µû¶ó ºÐ·ùµÇ¾î¾ß ÇÕ´Ï´Ù. ÇöÀç BS EN 12600Àº BS 6206À» ´ë½ÅÇÏ¿© À¯¸®ÀÇ ³»Ãæ°Ý¼º¿¡ °üÇÑ À¯·´ ÀüüÀÇ ¼º´É ±âÁØÀÌ µÇ°í ÀÖ½À´Ï´Ù.

º¸¾È°ú ¾ÈÀü¿¡ ´ëÇÑ ÀÎ½Ä Çâ»ó

±âÈÄ º¯È­´Â Ç㸮ÄÉÀÎ, Åä³×À̵µ, ÆøÇ³¿ì µî ÀÚ¿¬ÀçÇØÀÇ ºóµµ¿Í ½É°¢¼ºÀ» Áõ°¡½ÃÄÑ º¸È£°ÇÀçÀÇ Çʿ伺¿¡ ´ëÇÑ ÀνÄÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ³»Ãæ°Ý¼º À¯¸®´Â ÀÌ·¯ÇÑ ÀçÇØ½Ã À¯¸®°¡ ±úÁö°Å³ª ´©ÃâµÇ´Â °ÍÀ» ¸·±â À§ÇØ »ç¶÷°ú Àç»êÀ» ÁöŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ µµ½Ã Áö¿ªÀÇ ¹üÁËÀ²ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÁÖÅÃ, Á÷Àå ¹× ¼Ò¸ÅÁ¡¿¡¼­º¸´Ù °ß°íÇÏ°í ¾ÈÀüÇÑ Ã¢¹®°ú ¹®ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ³»Ãæ°Ý¼º À¯¸®´Â ¸ðµç »ê¾÷¿¡¼­ ¾ÈÀü¼º°ú º¸¾ÈÀÌ Áß½ÃµÈ °á°ú, ³Î¸® »ç¿ëµÇ°í Çö´ë °ÇÃ๰À̳ª ¸®Æû ÇÁ·ÎÁ§Æ®¿¡ ºü¶ß¸± ¼ö ¾ø°Ô µÇ¾ú½À´Ï´Ù.

³ôÀº Á¦Á¶¡¤½Ã°ø ºñ¿ë

³»Ãæ°Ý¼º À¯¸®´Â ¶ó¹Ì³×À̼Ç, ÅÛÆÛ¸µ, °í±Þ °íºÐÀÚ Áß°£¸·ÀÇ »ç¿ë°ú °°Àº º¹ÀâÇÑ Á¦Á¶ °øÁ¤À» ÇÊ¿ä·Î ÇϹǷΠÀÏ¹Ý À¯¸®º¸´Ù Á¦Á¶ ºñ¿ëÀÌ ³ô½À´Ï´Ù. ÁÖÅà °Ç¼³¾÷ÀÚ, ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ¼ÒºñÀÚ¿¡°Ô´Â ÀÌ·¯ÇÑ ºñ¿ë Áõ°¡°¡ Á¾Á¾ Àü°¡µÇ±â ¶§¹®¿¡ ´õ ºñ½Ñ ¿É¼ÇÀ̵˴ϴÙ. ³»Ãæ°Ý¼º À¯¸®¸¦ ¼³Ä¡ÇÒ ¶§ ¿Ã¹Ù¸¥ ¼³Ä¡¿Í ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ Àü¹®ÀûÀÎ ³ëµ¿·Â°ú Àåºñ°¡ ÇÊ¿äÇϹǷΠºñ¿ëÀÌ ´õ¿í Áõ°¡ÇÕ´Ï´Ù. ³»±¸¼º°ú ¾ÈÀü¼ºÀÇ Àå±âÀûÀÎ ÀåÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸Çϰí Ãʱ⠺ñ¿ëÀÌ ¸¹ÀÌ µå´Â °ÍÀº ¿¹»êÀÌ Á¦ÇÑµÈ ÇÁ·ÎÁ§Æ®¿Í ±¸¸Å·ÂÀÌ ³·Àº Áö¿ª¿¡¼­´Â Å« ºÎÁ¤ÀûÀÎ ¿äÀÎÀÌ µÇ¾î ½ÃÀåÀÇ º¸±ÞÀ» ´ÊÃß°í ÀÖ½À´Ï´Ù.

°³¼ö¡¤°³Ãà ÇÁ·ÎÁ§Æ®¿¡¼­ÀÇ Ã¤¿ë È®´ë

¿À·¡µÈ °Ç¹°ÀÇ ³»Ãæ°Ý¼º À¯¸® ¸®³ëº£À̼ÇÀº ¿¡³ÊÁö È¿À²°ú ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ´Â Å« ±âȸÀÔ´Ï´Ù. ƯÈ÷ Ç㸮ÄÉÀÎÀÌ ¸¹Àº Áö¿ªÀ̳ª ¹üÁ˰¡ ¸¹Àº Áö¿ª¿¡¼­´Â ±âÁ¸ÀÇ °ÇÃ๰¿¡ º¸È£ À¯¸®°¡ ¾ø±â ¶§¹®¿¡ ÆÄ¼ÕÀ̳ª º¸¾È Ä§ÇØÀÇ À§ÇèÀÌ ÀÖ½À´Ï´Ù. Áö¿ª»çȸÀÇ °­ÀμºÀ» ³ôÀÌ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÑ °³¼ö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇØ¼­, Á¤ºÎ³ª Áö¹æ ÀÚġü·ÎºÎÅÍ Àå·Á±ÝÀ̳ª º¸Á¶±ÝÀÌ Áö±ÞµÇ´Â ÄÉÀ̽º°¡ ´Ã°í ÀÖ½À´Ï´Ù. ³»Ãæ°Ý¼º À¯¸®´Â °Ç¹° ¼ÒÀ¯ÀÚ°¡ »õ·Î¿î ¹ý·üÀ» ÁؼöÇϰųª º¸Çè µî±ÞÀ» ¿Ã¸®±â À§ÇØ ±¸Á¶¹°À» ¾÷±×·¹À̵åÇÏ´Â È¿À²ÀûÀÎ ¹æ¹ýÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀº ½Ã°ø¼­ºñ½º³ª ¾ÖÇÁÅ͸¶ÄÏ »óǰ¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä¸¦ °¡Á®¿À±â ¶§¹®¿¡ Á¦Á¶¾÷ü¿Í °è¾àÀÚ´Â ¼­ºñ½º Á¦°øÀÇ ÆøÀ» ³ÐÈú ¼ö ÀÖ½À´Ï´Ù.

´Ù¸¥ ¹°Áú°úÀÇ °æÀï

Æú¸®Ä«º¸³×ÀÌÆ®, ¾ÆÅ©¸± ÆÇ, ÷´Ü ÇÃ¶ó½ºÆ½°ú °°Àº ´ëü Àç·á´Â °¡º±°í ³ôÀº ³»Ãæ°Ý¼ºÀ» Á¦°øÇÏ¸ç ¶§·Î´Â Àúºñ¿ëÀ¸·Î ³»Ãæ°Ý¼º À¯¸® ½ÃÀå¿¡ ½É°¢ÇÑ À§ÇùÀ» ÃÊ·¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ÀûÀÀ¼ºÀÌ ³ô°í ¼³Ä¡°¡ ½±±â ¶§¹®¿¡ °ÇÃà¿ë ±Û·¹ÀÌ¡, ÀÚµ¿Â÷¿ë â¹®, º¸È£º® µîÀÇ ¿ëµµ·Î Á¡Á¡ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. À¯¸®°¡ ¿ì¼öÇÑ ±¤ÇÐ Åõ¸í¼º°ú ³»»ó¼ºÀ» Á¦°øÇÑ´Ù´Â »ç½Ç¿¡µµ ºÒ±¸Çϰí, ´ëü Àç·á´Â °­Àμº°ú °æ·®È­ÀÇ °üÁ¡¿¡¼­ À¯¸®¸¦ ÃʰúÇÒ ¼ö ÀÖ½À´Ï´Ù. ³»Ãæ°Ý¼º À¯¸®ÀÇ ¼ºÀåÀº ƯÈ÷ °æ·®Æ¯¼º°ú ºñ¿ëÈ¿°ú°¡ ³ô°Ô Æò°¡µÇ´Â »ê¾÷¿¡¼­ ÀÌ·¯ÇÑ ´ëüǰÀÇ Áö¼ÓÀûÀÎ °³¹ß°ú ºñ¿ëÀý°¨¿¡ ÀÇÇØ Á¦¾àÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ ´ëÀ¯ÇàÀº ¼¼°è °Ç¼³ ¹× ÀÚµ¿Â÷ »ý»êÀÇ °¨¼Ó, Á¦Á¶ Á¤Áö, ¿øÀç·á °ø±Þ üÀÎÀÇ Áö¿¬À¸·Î ÀÎÇØ ³»Ãæ°Ý¼º À¯¸® ½ÃÀå¿¡ ¿ì¼± È¥¶õÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ƯÈ÷ ÀÎÇÁ¶ó¿Í »ó¾÷ ºÐ¾ß¿¡¼­´Â ¿î¿µ Áߴܰú ³ëµ¿·Â ºÎÁ·À¸·Î ÀÎÇØ ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ¾î ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª °æÁ¦°¡ ȸº¹µÇ±â ½ÃÀÛÇß°í, º¸´Ù ¾ÈÀüÇϰí ź·ÂÀûÀÎ ±¸Á¶¹°À» ¸¸µå´Â µ¥ ´Ù½Ã ÃÊÁ¡À» ¸ÂÃ߱⠶§¹®¿¡ ÀçÇØ ´ëÃ¥°ú º¸¾ÈÀ» À§ÇÑ ³»Ãæ°Ý¼º À¯¸®ÀÇ »ç¿ëÀÌ Áõ°¡Çß½À´Ï´Ù. °Ô´Ù°¡ ºÎÈï±â¿¡´Â µµ½Ã ÀÎÇÁ¶ó¿Í ÀÇ·á½Ã¼³¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ¿© »õ·Î¿î ºñÁî´Ï½º ±âȸ°¡ ź»ýÇß½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È Æú¸®ºñ´ÒºÎƼ¶ö(PVB) ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á

¿¹Ãø±â°£ Áß Æú¸®ºñ´ÒºÎƼ¶ö(PVB) ºÐ¾ß°¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ Àü¸ÁÀÔ´Ï´Ù. Æú¸®ºñ´ÒºÎƼ¶ö(PVB)Àº ¿ì¼öÇÑ À¯¸® Á¢Âø¼º, ³ôÀº Åõ¸í¼º, À¯¿¬¼º, ³»Ãæ°Ý¼ºÀ¸·Î ÀÎÇØ ÀûÃþ ¾ÈÀü À¯¸®ÀÇ Áß°£¸· Àç·á·Î °¡Àå ÀαⰡ ÀÖ½À´Ï´Ù. PVB´Â Ãæ°Ý ¿¡³ÊÁö¸¦ È¿À²ÀûÀ¸·Î Èí¼öÇÏ¿© À¯¸®°¡ ÀáÀçÀûÀ¸·Î À¯ÇØÇÑ ÆÄÆíÀ¸·Î ±úÁö´Â °ÍÀ» ¹æÁöÇÕ´Ï´Ù. °Ô´Ù°¡ PVB´Â ¿ì¼öÇÑ UV Â÷´Ü°ú Â÷À½¼ºÀ¸·Î °ÅÁÖÀÚÀÇ Æí¾ÈÇÔ°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. PVB´Â °ÇÃà¿ë ±Û·¹ÀÌ¡, ÀÚµ¿Â÷ ÇÁ·ÐÆ® ±Û·¡½º, ¸¹Àº »ê¾÷ ¿ëµµ¿¡ »ç¿ëµÇ¸ç, ½Å·Ú¼º, Àú·ÅÇÏ°í ´Ù¾çÇÑ À¯¸® À¯Çü°úÀÇ È£È¯¼ºÀ¸·Î ¼¼°èÀûÀ¸·Î ÁÖµµÀûÀÎ ÁöÀ§¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

ÀûÃþ À¯¸® ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀûÃþ À¯¸® ºÐ¾ß´Â °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±×°ÍÀÇ ÁÖµÈ ÀÌÀ¯´Â ´õ ³ªÀº ¾ÈÀü¼º, ¹æÀ½¼º, UV Àý´Ü ±â´ÉÀÌ°í °ÇÃà, °ÇÃà, ÀÚµ¿Â÷ ½Åû¿¡¼­ ¾ÆÁÖ ÀαⰡ ÀÖ½À´Ï´Ù. 2Ãþ ÀÌ»óÀÇ À¯¸®¸¦ Æú¸®ºñ´ÒºÎƼ¶ö(PVB)°ú °°Àº Áß°£¸·À¸·Î Á¢ÇÕÇÏ¿© Á¢ÇÕ À¯¸®¸¦ Çü¼ºÇÕ´Ï´Ù. ¶ÇÇÑ, À̰Ϳ¡ ÀÇÇØ ³»Ãæ°Ý¼ºÀÌ Çâ»óµÇ¾î À¯¸®°¡ ±úÁ®µµ ÀÏüȭµÈ »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÕÆÇÀ¯¸®´Â °ÇÃ๰°ú ÀÚµ¿Â÷ÀÇ ¾ÈÀü±âÁØÀ» Áß½ÃÇÏ´Â ±ÔÁ¦ÀÇ ³ô¾ÆÁü°ú ¿¡³ÊÁö È¿À²°ú ¹æÀ½Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó ³»Ãæ°Ý¼º À¯¸® ½ÃÀå¿¡¼­ ±Þ¼ÓÇÑ º¸±Þ°ú ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù.

°¡Àå Á¡À¯À²ÀÌ ³ôÀº Áö¿ª

¿¹Ãø±â°£ Áß Áß±¹, Àεµ, ÀϺ»ÀÇ ÀÚµ¿Â÷ »ý»ê·® Áõ°¡, °Ç¼³È°µ¿ Ȱ¼ºÈ­, ±Þ¼ÓÇÑ µµ½ÃÈ­·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½ÃÀå ¹ßÀüÀÇ ÁÖ¿ä ¿äÀÎÀº ½ÅÈï±¹ ½ÃÀåÀÇ ÀÎÇÁ¶ó Á¤ºñ, ¾ÈÀü¹ýÀÇ ¾ö°ÝÈ­, ³»Ãæ°Ý¼º À¯¸® ¹× ¿¡³ÊÁö Àý¾àÇü À¯¸®¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ Áö½Ä Áõ°¡ÀÔ´Ï´Ù. °Ô´Ù°¡ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÁÖÅà ¹× »ó¾÷ ºÎ¹®¿¡¼­ Ãæ°Ý À¯¸® ¼ö¿ä¸¦ µÞ¹ÞħÇÏ´Â °ÍÀº ¼±µµÀûÀÎ Á¦Á¶ ¾÷üÀÇ ±¤´ë ÇÑ Á¸Àç¿Í ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡À̸ç, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è À¯¼öÀÇ Áö¿ª ½ÃÀåÀÌ µÇ¾ú½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³²¾ÆÇÁ¸®Ä«, »ç¿ìµð¾Æ¶óºñ¾Æ, ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)°ú °°Àº ±¹°¡¿¡¼­ »ó¾÷ °Ç¼³, ½º¸¶Æ® ½ÃƼ ±¸»ó, ÀÎÇÁ¶ó Á¤ºñ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ´Ù´Â °ÍÀÌ ÀÌ·¯ÇÑ ±Þ¼ÓÇÑ È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÷´Ü À¯¸® ±â¼úÀÇ »ç¿ëÀº °ÇÃ๰ÀÇ ¾ÈÀü¼º¿¡ ´ëÇÑ ÀǽÄÀÇ Çâ»ó°ú ¿¡³ÊÁö È¿À²°ú ³»Ãæ°Ý¼º¿¡ °üÇÑ ¾ö°ÝÇÑ ¹ý·ü¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«Àº ÀÚµ¿Â÷ »ê¾÷ÀÌ ¼ºÀåÇϰí, °í±ÞÂ÷³ª ¾ÈÀü¼º Áß½ÃÀÇ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í Àֱ⠶§¹®¿¡ ³»Ãæ°Ý¼º À¯¸® ½ÃÀåÀ¸·Î¼­´Â ÇöÀç ¼¼°è¿¡¼­ °¡Àå ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ±¸ºÐ
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­·Ð

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • ºÐ¼® ¹üÀ§
  • ºÐ¼® ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • ºÐ¼® Á¢±Ù
  • ºÐ¼® ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª ¹ÙÀÌ·¯½º °¨¿°(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±ÞÀÚÀÇ Çù»ó·Â
  • ¹ÙÀ̾îÀÇ Çù»ó·Â
  • ´ëü Á¦Ç°ÀÇ À§Çù
  • ½Å±Ô ÁøÃâ±â¾÷ÀÇ À§Çù
  • ±â¾÷ °£ °æÀï

Á¦5Àå ¼¼°èÀÇ ³»Ãæ°Ý¼º À¯¸® ½ÃÀå : Áß°£Ãþº°

  • Æú¸®ºñ´ÒºÎƼ¶ö(PVB)
  • ÀÌ¿À³ëÇÃ¶ó½ºÆ® Æú¸®¸Ó
  • ¿¡Æ¿·» ºñ´Ò ¾Æ¼¼Å×ÀÌÆ®(EVA)
  • Æú¸®¿ì·¹Åº(PU)
  • ±âŸ Áß°£Ãþ

Á¦6Àå ¼¼°èÀÇ ³»Ãæ°Ý¼º À¯¸® ½ÃÀå : Àç·á À¯Çüº°

  • Á¢ÇÕ À¯¸®
  • °­È­ À¯¸®
  • ±âŸ Àç·á À¯Çü
    • Æú¸®Ä«º¸³×ÀÌÆ®
    • ¾ÆÅ©¸±

Á¦7Àå ¼¼°èÀÇ ³»Ãæ°Ý¼º À¯¸® ½ÃÀå : ¿ëµµº°

  • ÆÄ»çµå, Ŀư ¿ù ¹× â¹®
  • ±¸Á¶¿ë À¯¸® ¹× ¹Ù´Ú
  • À©µå ½ºÅ©¸° ¹× »çÀÌµå ¶óÀÌÆ®
  • º¸¾È ¹× ¹æÆø ¼³Ä¡

Á¦8Àå ¼¼°èÀÇ ³»Ãæ°Ý¼º À¯¸® ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • °Ç¼³ ¹× ÀÎÇÁ¶ó
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ³»Ãæ°Ý¼º À¯¸® ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä µ¿Çâ

  • °è¾à, »ç¾÷ Á¦ÈÞ ¹× Çù·Â, ÇÕÀÛ »ç¾÷
  • ±â¾÷ ÇÕº´¡¤Àμö(M&A)
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®Àå
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • PPG Industries, Inc.
  • Central Glass Company
  • NSG ±×·ì(Pilkington)
  • AGC Inc.
  • Saint-Gobain
  • Vitro Inc
  • Corning
  • Fuyao Glass Industry Group
  • Schott AG
  • CGS Holding Co., Ltd
  • Sisecam Group
  • Taiwan Glass Inc
  • Guardian Industries Inc
  • Xinyi Glass Inc
  • Apogee Enterprises, Inc.
KTH

According to Stratistics MRC, the Global Impact Resistant Glass Market is accounted for $33.99 billion in 2025 and is expected to reach $63.34 billion by 2032 growing at a CAGR of 9.3% during the forecast period. Impact-resistant glass is made specifically to endure high pressures and not break when struck. It is frequently used in places where security and safety are crucial, like storefronts, building windows in hurricane-prone areas, and automobile windshields. Usually composed of several layers, this kind of glass frequently has a strong polymer interlayer that keeps the glass pieces together in the event of breakage, preventing injuries from potentially harmful shards. Moreover, it is an essential component of contemporary construction and transportation safety because of its capacity to absorb and disperse impact energy, protecting both people and property.

According to IQ Glass UK, Glazing materials that are specifically made for use as safety glazing materials should be classified according to their performance. BS EN 12600 has now replaced BS 6206 as a European-wide performance standard for the impact resistance of glass.

Market Dynamics:

Driver:

Raising security and safety awareness

Climate change has increased the frequency and severity of natural disasters like hurricanes, tornadoes, and severe storms, raising awareness of the need for protective building materials. Impact-resistant glass is essential for protecting people and property because it keeps glass from breaking and leaking during such incidents. Additionally, the need for stronger, more secure windows and doors in residences, workplaces, and retail establishments has increased due to the rising crime rates in urban areas. Impact-resistant glass is becoming widely used as a result of the increased emphasis on safety and security across all industries, making it an essential part of contemporary building and remodeling projects.

Restraint:

High costs of production and installation

Impact-resistant glass is usually more expensive to produce than regular glass because it requires intricate manufacturing procedures like lamination, tempering, and the use of advanced polymer interlayers. It is a more costly choice for home builders, automakers, and consumers because these increased expenses are frequently passed on to them. Costs are further increased by the need for specialized labor and equipment to ensure correct fitting and performance when installing impact-resistant glass. Notwithstanding the long-term advantages of durability and safety, the higher initial cost can be a major turnoff for projects with tight budgets or in areas with lower purchasing power, slowing market adoption.

Opportunity:

Growing uptake in renovation and retrofit projects

Impact-resistant glass retrofits for older buildings present a huge opportunity to improve energy efficiency and safety. The lack of protective glazing in many existing structures, particularly in hurricane-prone or high-crime areas, leaves them open to damage and security breaches. More and more incentives and subsidies are being provided by governments and local authorities for retrofitting projects aimed at enhancing community resilience. Impact-resistant glass is an efficient way for building owners to upgrade their structures to comply with new codes or raise their insurance ratings. Because of the ongoing demand for installation services and aftermarket goods brought about by this trend, manufacturers and contractors are able to broaden their service offerings.

Threat:

Competition from other substances

Alternative materials like polycarbonate, acrylic sheets, and advanced plastics, which provide high impact resistance at a lower weight and occasionally lower cost, pose a serious threat to the market for impact-resistant glass. Because of their adaptability and simplicity of installation, these materials are being utilized more and more in applications such as construction glazing, automotive windows, and protective barriers. Alternatives can occasionally outperform glass in terms of toughness and weight savings, despite the fact that glass provides superior optical clarity and scratch resistance. The growth of impact-resistant glass may be constrained by the ongoing development and cost reduction of these alternatives, particularly in industries where lightweight characteristics and cost-effectiveness are valued highly.

Covid-19 Impact:

The COVID-19 pandemic first caused disruptions in the market for impact-resistant glass by slowing down construction and automobile production globally, causing manufacturing shutdowns, and delaying supply chains for raw materials. Particularly in the infrastructure and commercial sectors, lockdowns and labor shortages caused project delays and decreased demand. However, the use of impact-resistant glass for disaster preparedness and security increased as economies started to recover and there was a renewed emphasis on creating safer, more resilient structures. Additionally, new opportunities were created during the recovery phase by increased investments in urban infrastructure and healthcare facilities.

The polyvinyl butyral (PVB) segment is expected to be the largest during the forecast period

The polyvinyl butyral (PVB) segment is expected to account for the largest market share during the forecast period. Polyvinyl Butyral (PVB) is the most popular interlayer material for laminated safety glass because of its superior glass adhesion, high clarity, flexibility, and resistance to impact. It efficiently absorbs impact energy, keeping the glass from breaking into potentially harmful fragments. Moreover, PVB improves occupant comfort and safety by providing good UV protection and acoustic insulation. It maintains its leading market position worldwide because of its demonstrated dependability, affordability, and compatibility with a variety of glass types, which make it the go-to option for architectural glazing, automobile windshields, and numerous industrial applications.

The laminated glass segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the laminated glass segment is predicted to witness the highest growth rate. This is mostly because of its better safety features, improved sound insulation, and UV protection, which make it very popular in construction, architecture, and automotive applications. Two or more layers of glass are joined by an interlayer, like polyvinyl butyral (PVB), to form laminated glass. Additionally, this improves impact resistance and keeps the glass together even when it breaks. Laminated glass is experiencing rapid adoption and growth in the impact-resistant glass market due to growing regulatory emphasis on safety standards in buildings and vehicles as well as rising demand for energy-efficient and soundproof materials.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by the nations of China, India, and Japan's rising automobile production, growing construction activities, and fast urbanization. Growth in the market is largely driven by the region's developing infrastructure, stricter safety laws, and growing consumer knowledge of impact-resistant and energy-efficient glass options. Furthermore, supporting demand for impact-resistant glass in the residential and commercial sectors throughout Asia-Pacific results in the vast presence of large manufacturers and growing investments in smart city projects, which positions APAC region as the world's leading regional market.

Region with highest CAGR:

Over the forecast period, the Middle East & Africa region is anticipated to exhibit the highest CAGR. Growing investments in commercial construction, smart city initiatives, and infrastructure development in nations like South Africa, Saudi Arabia, and the United Arab Emirates are driving this quick expansion. The use of advanced glass technologies is being fueled by rising building safety awareness as well as strict laws pertaining to energy efficiency and impact resistance. Moreover, the Middle East and Africa is currently the fastest-growing market segment in the world for impact-resistant glass due to the region's growing automotive industry and increased demand for luxury and safety-focused automobiles.

Key players in the market

Some of the key players in Impact Resistant Glass Market include PPG Industries, Inc., Central Glass Company, NSG Group (Pilkington), AGC Inc., Saint-Gobain, Vitro Inc, Corning, Fuyao Glass Industry Group, Schott AG, CGS Holding Co., Ltd, Sisecam Group, Taiwan Glass Inc, Guardian Industries Inc, Xinyi Glass Inc and Apogee Enterprises, Inc.

Key Developments:

In August 2025, PPG announced the extension of its joint venture agreement in India with Asian Paints Ltd. The 15-year renewal will allow the companies to continue serving the country's industrial, protective, marine, packaging, automotive and powder coatings customers with industry-leading solutions that solve customers' biggest challenges. The extension will take effect in 2026 and run through 2041.

In June 2025, NSG Group recently announced its newest photovoltaic solar array at Pilkington, its Ottawa facility, which will supply about 3.9 gigawatt hours of renewable electricity annually. The new array owned and operated by Atlanta-based SolAmerica, will provide energy to the facility for the next 15 years under a power purchase agreement. The build is powered by over 5,000 advanced thin film Series 7 solar modules manufactured by First Solar using NSG Group's solar energy glass products.

In June 2025, AGC Biologics, your friendly CDMO expert, will commence cell therapy process development and clinical manufacturing services, at AGC Inc.'s Yokohama Technical Center, marking the latest step in the global expansion of the company's Global Cell and Gene Technologies Division. The improved geographical footprint allows AGC Biologics to better serve customers requiring autologous and allogeneic products across all markets, with cell therapy manufacturing now available in three continents.

Interlayers Covered:

  • Polyvinyl Butyral (PVB)
  • Ionoplast Polymer
  • Ethylene Vinyl Acetate (EVA)
  • Polyurethane (PU)
  • Other Interlayers

Material Types Covered:

  • Laminated Glass
  • Tempered Glass
  • Other Material Types

Applications Covered:

  • Facades, Curtain Walls & Windows
  • Structural Glazing & Floors
  • Windscreens & Side-lites
  • Security & Blast-Resistant Installations

End Users Covered:

  • Construction and Infrastructure
  • Automotive and Transportation
  • Aerospace & Defense
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Impact Resistant Glass Market, By Interlayer

  • 5.1 Introduction
  • 5.2 Polyvinyl Butyral (PVB)
  • 5.3 Ionoplast Polymer
  • 5.4 Ethylene Vinyl Acetate (EVA)
  • 5.5 Polyurethane (PU)
  • 5.6 Other Interlayers

6 Global Impact Resistant Glass Market, By Material Type

  • 6.1 Introduction
  • 6.2 Laminated Glass
  • 6.3 Tempered Glass
  • 6.4 Other Material Types
    • 6.4.1 Polycarbonate
    • 6.4.2 Acrylic

7 Global Impact Resistant Glass Market, By Application

  • 7.1 Introduction
  • 7.2 Facades, Curtain Walls & Windows
  • 7.3 Structural Glazing & Floors
  • 7.4 Windscreens & Side-lites
  • 7.5 Security & Blast-Resistant Installations

8 Global Impact Resistant Glass Market, By End User

  • 8.1 Introduction
  • 8.2 Construction and Infrastructure
  • 8.3 Automotive and Transportation
  • 8.4 Aerospace & Defense
  • 8.5 Other End Users

9 Global Impact Resistant Glass Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 PPG Industries, Inc.
  • 11.2 Central Glass Company
  • 11.3 NSG Group (Pilkington)
  • 11.4 AGC Inc.
  • 11.5 Saint-Gobain
  • 11.6 Vitro Inc
  • 11.7 Corning
  • 11.8 Fuyao Glass Industry Group
  • 11.9 Schott AG
  • 11.10 CGS Holding Co., Ltd
  • 11.11 Sisecam Group
  • 11.12 Taiwan Glass Inc
  • 11.13 Guardian Industries Inc
  • 11.14 Xinyi Glass Inc
  • 11.15 Apogee Enterprises, Inc.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦