![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1797945
¼¼°èÀÇ ±â°èÀû ÀçȰ¿ë ½ÃÀå : ¿¹Ãø - Àç·á À¯Çüº°, ¿ø·áº°, ÀçȰ¿ë ÇÁ·Î¼¼½ºº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)Mechanical Recycling Market Forecasts to 2032 - Global Analysis By Material Type, Source, Recycling Process, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ±â°èÀû ÀçȰ¿ë ½ÃÀåÀº 2025³â¿¡ 277¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 7.7%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 467¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
±â°èÀû ÀçȰ¿ëÀº ÇÃ¶ó½ºÆ½ ¹× ±âŸ ÀçȰ¿ë °¡´ÉÇÑ Æó±â¹°À» ÈÇÐ ±¸Á¶¸¦ º¯°æÇÏÁö ¾Ê°í ȸ¼ö, ºÐ·ù, ¼¼Ã´, ÆÄ¼â ¹× 2Â÷ ¿ø·á·Î Àç°¡°øÇÏ´Â ¹°¸®Àû °øÁ¤ÀÔ´Ï´Ù. ÁÖ·Î ¿°¡¼Ò¼º ÇÃ¶ó½ºÆ½¿¡ Àû¿ëµÇ´Â ÀÌ ¹æ¹ýÀº Á¦Á¶ °øÁ¤¿¡¼ Àç»ç¿ëÇϱâ À§ÇØ Àç·áÀÇ ¹«°á¼ºÀ» À¯ÁöÇÕ´Ï´Ù. ºñ¿ë È¿°úÀûÀÌ°í ³Î¸® äÅõǾî ȯ°æÀûÀ¸·Î À¯¸®Çϱ⠶§¹®¿¡ ¹öÁø ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¼øÈ¯Çü °æÁ¦¿Í Áö¼Ó°¡´ÉÇÑ Æó±â¹° °ü¸® Àü·«ÀÇ Á߿伺À» Áö¼ÓÇϰí ÀÖ½À´Ï´Ù.
¼ÒºñÀÚ ÀÇ½Ä ¹× ÀçȰ¿ë Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
ȯ°æÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¼ÒºñÀÚ ÀÇ½Ä Áõ°¡´Â ±â°èÀû ÀçȰ¿ë »ê¾÷ÀÇ ¸Å¿ì Áß¿äÇÑ ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. Çö´ë ¼ÒºñÀÚ´Â ÀçȰ¿ë Àç·á·Î Á¦Á¶µÈ Á¦Ç°À» ¼±È£Çϰí ÀÖÀ¸¸ç, ´Ù¾çÇÑ ºÐ¾ß¿¡¼ Å« ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ´ëó¿Í ¼øÈ¯Çü °æÁ¦ÀÇ Ã¤ÅÃÀÌ ÀÌ·¯ÇÑ µ¿ÇâÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ±ÔÁ¦ÀÇ ¾Ð·Â°ú ȯ°æ Á¤Ã¥À» ÅëÇØ Á¦Á¶¾÷ü´Â ÀçȰ¿ë Àç·á¸¦ Á¦Ç° Æ÷Æ®Æú¸®¿À¿¡ ÅëÇÕÇØ¾ß ÇÏ¸ç ±â°èÀû ÀçȰ¿ë »ýŰ谡 È®´ëµÇ°í ÀÖ½À´Ï´Ù.
´ÙÁß »çÀÌŬ ÈÄ Ç°Áú ¿È
±â°èÀû ÀçȰ¿ë °øÁ¤Àº °øÁ¤ »çÀÌŬÀ» ¹Ýº¹ÇÏ´Â µ¿¾È ÁßÇÕü »ç½½ÀÌ ¿ÈµÇ°í Àç·áÀÇ ¼º´É°ú Àû¿ë ¹üÀ§°¡ Á¦Çѵȴٴ ¹®Á¦¸¦ º»ÁúÀûÀ¸·Î ¾È°í ÀÖ½À´Ï´Ù. ÀçȰ¿ëÀ» ¹Ýº¹ÇÒ ¶§¸¶´Ù ºÐÀÚ·®ÀÌ ÀúÇÏµÇ°í ±â°èÀû Ư¼ºÀÌ ¼Õ»óµÇ¹Ç·Î ÃÖÁ¾ ¿ëµµÀÇ Ç°Áú¿¡ ÇѰ谡 »ý±é´Ï´Ù. °Ô´Ù°¡, Àç°¡°ø Áß ¿ ÀÀ·Â°ú Àü´Ü ÀÀ·ÂÀº Àç·áÀÇ ¿È¸¦ ÃËÁøÇÕ´Ï´Ù. ÀÌ ¿È´Â ½ÇÇà °¡´ÉÇÑ ÀçȰ¿ë »çÀÌŬ ¼ö¸¦ Á¦ÇÑÇÏ°í °á±¹ ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦ÇÕ´Ï´Ù.
FMCG ¹× Æ÷Àå ´ë±â¾÷°úÀÇ Á¦ÈÞ
±â°èÀû ÀçȰ¿ë ±â¾÷°ú FMCG(ÀÏ¿ë¼ÒºñÀç) Á¦Á¶¾÷ü °£ÀÇ Àü·«Àû Á¦ÈÞ´Â Å« ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀº Æó¼â ·çÇÁ ÀçȰ¿ë ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô Çϰí ÀϰüµÈ ¿ø·á °ø±Þ°ú º¸ÁõµÈ Àμö °è¾àÀ» º¸ÀåÇÕ´Ï´Ù. FMCG ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Çå½ÅÀº ÀçȰ¿ë Æ÷ÀåÀç·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÕ´Ï´Ù. ¶ÇÇÑ, °í±Þ ÀçȰ¿ë ±â¼ú°ú ÀÎÇÁ¶ó °³¹ß¿¡ ´ëÇÑ °øµ¿ ÅõÀÚ´Â ½ÃÀå ħÅõ¸¦ È®´ëÇϰí ÀçȰ¿ë »ç¾÷ÀÚÀÇ Àå±â ¼öÀÍ¿øÀ» ¼ö¸³ÇÏ´Â »óÈ£ À¯ÀÍÇÑ °ü°è¸¦ âÃâÇÕ´Ï´Ù.
Æó±â¹° È帧ÀÇ ¿À¿°
¼ÒºñÀÚ »ç¿ë ÈÄ Æó±â¹° È帧ÀÇ ¿À¿°Àº ±â°èÀû ÀçȰ¿ë »ç¾÷¿¡ Å« À§ÇùÀ̸ç Àç·áÀÇ Ç°Áú°ú ó¸® È¿À²À» ÀúÇϽÃŵ´Ï´Ù. À̹°Áú, Á¢ÂøÁ¦ ¹× ´ÙÃþ Æ÷ÀåÀº ºÐ¸®¿¡ ¾î·Á¿òÀ» ¾ß±âÇϰí ó¸® ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. °Ô´Ù°¡, ¿À¿°µÈ ¿ø·á´Â ¼öÀ²À» °¨¼Ò½Ã۰í Ãß°¡ÀûÀÎ Á¤Á¦ ´Ü°è¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. Àϰü¼ºÀÌ ¾ø´Â Æó±â¹° ¼öÁý ¹æ¹ý°ú ºÒÃæºÐÇÑ ºÐ·ù ÀÎÇÁ¶ó´Â ¿À¿° ¹®Á¦¸¦ ´õ¿í ¾ÇȽÃÄÑ ¿ø·á¸¦ ±â°èÀû ÀçȰ¿ë¿¡ ÀûÇÕÇÏÁö ¾Ê°Ô ÇÏ°í ½ÃÀå È®´ë ±âȸ¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº °ø±Þ¸ÁÀÇ Áߴܰú »ó¾÷Àû °ø±Þ¿øÀ¸·ÎºÎÅÍÀÇ Æó±â¹° ¹ß»ýÀÇ °¨¼Ò¸¦ ÅëÇØ ±â°èÀû ÀçȰ¿ë ½ÃÀåÀ» ÇöÀúÇÏ°Ô È¥¶õ½ÃÄ×½À´Ï´Ù. ºÀ¼â Á¶Ä¡´Â ȸ¼ö Ȱµ¿À» °¨¼Ò½ÃŰ´Â ¹Ý¸é, ÀÏȸ¿ë Æ÷ÀåÀÇ ¼Òºñ¸¦ Áõ°¡ ½ÃÄ×½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Àνİú ¼øÈ¯Çü °æÁ¦¿¡ ´ëÇÑ ³ë·ÂÀ» °¡¼ÓÈÇß½À´Ï´Ù. ȸº¹ Ãø¸é¿¡¼ Æó±â¹° °ü¸® ÀÎÇÁ¶ó ¹× ÀçȰ¿ë ´É·Â È®´ë¿¡ ´Ù½Ã ÃÊÁ¡À» ¸ÂÃß°í ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀåÀ» À§ÇØ ÀÚ¸®¸¦ Àâ°Ô µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Æú¸®¿¡Æ¿·»Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET) ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á
Æú¸®¿¡Æ¿·»Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET) ºÎ¹®Àº À½·á º´ ¹× ½Äǰ Æ÷Àå¿¡ ³Î¸® »ç¿ëµÇ¸ç ¼ÒºñÀÚ »ç¿ë ÈÄ Æó±â¹°À» ´ë·®À¸·Î ¹ß»ýÇϹǷΠ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Àç·á °íÀ¯ÀÇ ÀçȰ¿ë¼º°ú È®¸³µÈ ȸ¼ö ÀÎÇÁ¶ó°¡ ½ÃÀåÀÇ ÁÖµµÀû ÁöÀ§¸¦ Áö¿øÇÕ´Ï´Ù. PETÀÇ ÈÇÐÀû ¾ÈÁ¤¼º°ú °¡°ø Ư¼ºÀº ±â°èÀû ÀçȰ¿ë ÀÛ¾÷¿¡ ¸Å¿ì ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ º´¿¡¼ º´À¸·ÎÀÇ ÀçȰ¿ëÀ» ÃËÁøÇÏ´Â ±ÔÁ¦ ³ë·Â°ú ÀçȰ¿ë ÇÔ·®ÀÇ Àǹ«È°¡ ÁøÇàµÇ°í ÀÖ´Â °Íµµ PET ½ÃÀå ¿ìÀ§¼ºÀ» °ÈÇϰí Áö¼ÓÀûÀÎ ¼ºÀåÀ» È®½ÇÈ÷ Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, ÈÇÕ¹° ¹× Æç·¿È ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, ÈÇÕ¹° ¹× Æç¸´È ºÐ¾ß´Â Á¦Á¶ ¿ëµµ¿¡¼ °íǰÁú Àç»ý Æç¸´ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Ã³¸® ¹æ¹ýÀº Á¤¹ÐÇÑ Æ¯¼º º¯°æ ¹× ¿À¿° Á¦°Å¸¦ °¡´ÉÇÏ°Ô Çϰí, ±î´Ù·Î¿î ÃÖÁ¾ ¿ëµµ¿¡ ÀûÇÕÇÑ Àç·á¸¦ »ý»êÇÕ´Ï´Ù. º¹ÇÕ ÀåºñÀÇ ±â¼úÀû Áøº¸·Î °¡°ø È¿À²°ú »ý»ê ǰÁúÀÌ Çâ»óµË´Ï´Ù. ±× ¹ÛÀÇ Æ¯ÀüÀ¸·Î´Â ÀÚµ¿Â÷ ¾÷°è¿Í °Ç¼³ ¾÷°è¿¡¼ÀÇ ÀçȰ¿ëÀç ä¿ëÀÇ È®´ë°¡ ÀÖ¾î ½ÃÀåÀÇ ´ëÆøÀûÀÎ È®´ë¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, Á¾ÇÕÀûÀÎ Æó±â¹° °ü¸® ÀÎÇÁ¶ó, Àû±ØÀûÀÎ ¼øÈ¯ °æÁ¦ Á¤Ã¥Àº À¯·´ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ È®´ë »ý»êÀÚ Ã¥ÀÓÀÇ Æ²°ú ÀçȰ¿ë ÇÔ·®ÀÇ Àǹ«È´Â ±â°èÀû ÀçȰ¿ë Àç·áÀÇ ÀϰüµÈ ¼ö¿ä¸¦ ÃËÁøÇÕ´Ï´Ù. °Ô´Ù°¡, È®¸³µÈ ȸ¼ö ½Ã½ºÅÛ°ú ÷´Ü ¼±º° ±â¼úÀ» ÅëÇØ °íǰÁú ¿ø·á¸¦ È®º¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀçȰ¿ë ³ë·Â¿¡ ´ëÇÑ Á¤ºÎÀÇ °·ÂÇÑ Áö¿ø°ú ó¸® ´É·Â¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ°¡ À¯·´ÀÇ ÁÖµµÀû ÁöÀ§¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¦Á¶ °ÅÁ¡ È®´ë, µµ½ÃÈ ÁøÀü, ½ÅÈï°æÁ¦±Ç ȯ°æ ÀÇ½Ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °¡Ã³ºÐ ¼Òµæ Áõ°¡ ¹× ¼Òºñ ÆÐÅÏÀÇ º¯È·Î ÀÎÇØ ÀçȰ¿ë °¡´ÉÇÑ Æó±â¹° È帧ÀÌ ´ë·®À¸·Î ¹ß»ýÇÕ´Ï´Ù. ¶ÇÇÑ Æó±â¹° °ü¸® ÀÎÇÁ¶ó Á¤ºñ¸¦ ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÀçȰ¿ë ±â¼ú¿¡ ´ëÇÑ ÇØ¿Ü ÅõÀÚ°¡ ½ÃÀå È®´ë¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºñ¿ë °æÀï·Â ÀÖ´Â Á¦Á¶ ȯ°æ°ú Áö¼Ó °¡´ÉÇÑ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è¿¡¼ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ±â°èÀû ÀçȰ¿ë ½ÃÀåÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Mechanical Recycling Market is accounted for $27.7 billion in 2025 and is expected to reach $46.7 billion by 2032 growing at a CAGR of 7.7% during the forecast period. Mechanical recycling is a physical process that involves collecting, sorting, cleaning, shredding, and reprocessing plastic or other recyclable waste materials into secondary raw materials without altering their chemical structure. Primarily applied to thermoplastics, this method preserves material integrity for reuse in manufacturing. It is cost-effective, widely adopted, and environmentally favorable, reducing dependency on virgin resources. It remains a cornerstone in circular economy and sustainable waste management strategies.
Growing consumer awareness & demand for recycled products
The escalating consumer consciousness regarding environmental sustainability has emerged as a pivotal market driver for the mechanical recycling industry. Modern consumers increasingly prefer products manufactured from recycled materials, creating substantial demand across various sectors. Corporate sustainability initiatives and circular economy adoption have amplified this trend. Additionally, regulatory pressures and environmental policies have compelled manufacturers to integrate recycled content into their product portfolios, thereby expanding the mechanical recycling ecosystem.
Quality degradation after multiple cycles
Mechanical recycling processes inherently suffer from polymer chain degradation during repeated processing cycles, limiting material performance and application scope. Each recycling iteration reduces molecular weight and compromises mechanical properties, creating quality limitations for end-use applications. Moreover, thermal and shear stresses during reprocessing contribute to material deterioration. This degradation constrains the number of viable recycling cycles, ultimately restricting market growth.
Partnerships with FMCG & packaging giants
Strategic collaborations between mechanical recycling companies and fast-moving consumer goods manufacturers present significant growth opportunities. These partnerships enable closed-loop recycling systems, ensuring consistent feedstock supply and guaranteed off-take agreements. FMCG companies' sustainability commitments drive demand for recycled packaging materials. Furthermore, joint investments in advanced recycling technologies and infrastructure development create mutually beneficial relationships, expanding market penetration and establishing long-term revenue streams for recycling operators.
Contamination in waste streams
Contamination in post-consumer waste streams poses a substantial threat to mechanical recycling operations, compromising material quality and processing efficiency. Foreign materials, adhesives, and multi-layer packaging create separation challenges and increase processing costs. Moreover, contaminated feedstock reduces yield rates and necessitates additional purification steps. Inconsistent waste collection practices and inadequate sorting infrastructure exacerbate contamination issues, potentially rendering materials unsuitable for mechanical recycling and limiting market expansion opportunities.
The COVID-19 pandemic significantly disrupted the mechanical recycling market through supply chain interruptions and reduced waste generation from commercial sources. Lockdown measures decreased collection activities while increasing single-use packaging consumption. However, the pandemic also accelerated sustainability awareness and circular economy initiatives. Recovery phases have witnessed renewed focus on waste management infrastructure and recycling capacity expansion, positioning the market for sustained growth.
The polyethylene terephthalate (PET) segment is expected to be the largest during the forecast period
The polyethylene terephthalate (PET) segment is expected to account for the largest market share during the forecast period due to its widespread application in beverage bottles and food packaging, generating substantial post-consumer waste volumes. The material's inherent recyclability and established collection infrastructure support its market leadership position. PET's chemical stability and processing characteristics make it highly suitable for mechanical recycling operations. Furthermore, regulatory initiatives promoting bottle-to-bottle recycling and increasing recycled content mandates strengthen PET's market dominance, ensuring continued growth.
The compounding & pelletizing segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the compounding & pelletizing segment is predicted to witness the highest growth rate due to increasing demand for high-quality recycled pellets in manufacturing applications. This processing method enables precise property modification and contamination removal, producing materials suitable for demanding end-use applications. Technological advancements in compounding equipment enhance processing efficiency and output quality. Additionally, the segment benefits from growing automotive and construction industry adoption of recycled materials, driving substantial market expansion.
During the forecast period, the Europe region is expected to hold the largest market share, owing to stringent environmental regulations, comprehensive waste management infrastructure, and aggressive circular economy policies. The region's extended producer responsibility frameworks and recycled content mandates drive consistent demand for mechanically recycled materials. Additionally, well-established collection systems and advanced sorting technologies ensure high-quality feedstock availability. Furthermore, strong governmental support for recycling initiatives and substantial investments in processing capacity reinforce Europe's leadership position.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR due to expanding manufacturing bases, increasing urbanization, and growing environmental awareness across emerging economies. Rising disposable incomes and changing consumption patterns generate substantial recyclable waste streams. Moreover, government initiatives promoting waste management infrastructure development and foreign investments in recycling technologies accelerate market expansion. Additionally, the region's cost-competitive manufacturing environment and growing demand for sustainable materials position Asia Pacific as the fastest-growing mechanical recycling market globally.
Key players in the market
Some of the key players in Mechanical Recycling Market include BASF SE, TOMRA Systems ASA, Trinseo, TotalEnergies, Eastman Chemical Company, Dow Inc., Coperion GmbH, Covestro AG, LG Chem, LyondellBasell Industries, Veolia, Suez, KW Plastics, MBA Polymers, Plastipak, and PureCycle Technologies.
In February 2025, Trinseo introduced the first and only transparent dissolution recycled polystyrene (rPS) product in the European market, specifically designed for direct food contact applications. Starting February 2025 Trinseo can sell food contact approved rPS compliant with the EU Regulation 2022/1616, which governs the use of recycled plastic materials intended to come into direct contact with food.
In December 2024, BASF has teamed up with Endress+Hauser and TechnoCompound as well as the Universities of Bayreuth and Jena to study how the mechanical recycling of plastics can be improved. With funding from the German Federal Ministry of Education and Research (BMBF), the SpecReK project aims to reliably and precisely identify the composition of plastic waste during the recycling process and thus improve the quality of recycled plastics. This will be achieved by combining state-of-the-art measuring techniques with artificial intelligence (AI).
In November 2023, Collaborative research project OMNI directed by Recycleye, Valorplast, and TotalEnergies to enhance the circularity of polypropylene (PP) food packaging led to ground-breaking results. The new technology based on Artificial Intelligence (AI) and computer vision, coupled with an efficient decontamination process, provides a high-performing marketable solution to tackle the challenge of mechanically recycling polypropylene for food-contact applications.