½ÃÀ庸°í¼­
»óǰÄÚµå
1798000

¼¼°èÀÇ ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú ½ÃÀå : ¿¹Ãø - ÄÄÆ÷³ÍÆ®º°, Àü°³º°, ¼¾½Ì ¸ð´Þ¸®Æ¼º°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®(-2032³â)

Remote Sensing Technology For Agriculture Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Deployment, Sensing Modality, Technology, Applications, and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú ½ÃÀåÀº 2025³â¿¡ 36¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 12.9%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 84¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼úÀº À§¼º À̹ÌÁö, Ç×°ø »çÁø ¹× ¼¾¼­ ±â¹Ý ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© Á÷Á¢ ¹°¸®ÀûÀ¸·Î Á¢ÃËÇÏÁö ¾Ê°í ÀÛ¹°, Åä¾ç ¹× ȯ°æ »óȲ¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ´Â °ÍÀÔ´Ï´Ù. ¸ÖƼ½ºÆåÆ®·³, ÇÏÀÌÆÛ½ºÆåÆ®·³, ¿­ À̹Ì¡À» ä¿ëÇÏ¿© ½Ä¹°ÀÇ °Ç°­ »óÅÂ, ¼öºÐ ¼öÁØ, ¿µ¾ç »óÅÂ, ÇØÃæÀÇ ¹ß»ýÀ» °¨½ÃÇÕ´Ï´Ù. ÀÌ ±â¼úÀ» ÅëÇØ ³óºÎ ¹× Á¶»ç¿øÀº ¿ø°ÝÁö¿¡¼­ ³óÁö¸¦ Æò°¡Çϰí Á¤È®Çϰí Àû½Ã¿¡ °ø°£ÀûÀ¸·Î »ó¼¼ÇÑ Á¤º¸¸¦ Á¦°øÇÏ¿© È¿°úÀûÀÎ ÀÛ¹° °ü¸® ¹× ÀÚ¿ø ÃÖÀûÈ­¸¦ µµ¸ðÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹Ì±¹ ³ó¹«ºÎ(USDA)ÀÇ º¸°í¿¡ µû¸£¸é, ¸®¸ðÆ® ¼¾½Ì ±â¼ú¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â Á¤¹Ð³ó¾÷Àº ¹Ì±¹ÀÇ 60% À̻󿡼­ äÅõǰí ÀÖ½À´Ï´Ù.

Á¤¹Ð³ó¾÷ ä¿ë Áõ°¡

È¿À²ÀûÀÎ ³óÀå °ü¸® ¹× ÀÛ¹° ¼öÀ² ÃÖÀûÈ­¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡´Â Á¤¹Ð³ó¾÷¿¡¼­ ¸®¸ðÆ® ¼¾½ÌÀÇ ÅëÇÕ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Åä¾çÀÇ »óÅÂ, ÀÛ¹°ÀÇ °Ç°­ »óÅÂ, °ü°³ÀÇ Çʿ伺 µîÀ» Á¤È®ÇÏ°Ô ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á, ³ó°¡´Â »ý»ê¼ºÀ» ³ôÀ̱â À§ÇÑ µ¥ÀÌÅÍ ÁÖµµ ÀÇ»ç °áÁ¤À» ÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. °í±Þ °¨Áö ±â¼úÀº ³¶ºñ¸¦ ÁÙÀ̰í ÀÚ¿ø ¹èºÐÀ» °³¼±Çϸç Áö¼Ó°¡´É¼ºÀ» ³ôÀÔ´Ï´Ù. Á¤ºÎ¿Í ³ó¾÷ ´Üü´Â ½º¸¶Æ® ³ó¾÷ ½ÇõÀ» ÃßÁøÇÏ°í º¸±Þ¿¡ ´õ¿í ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, Á¤¹Ð ³ó¾÷¿¡¼­ ÀÌ ±â¼úÀÇ ¿ªÇÒÀº ¼¼°èÀÇ Çö´ë ³ó¾÷ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù.

³ôÀº µµÀÔ ¹× À¯Áö ºñ¿ë

±× ÀåÁ¡¿¡µµ ºÒ±¸ÇÏ°í ¸®¸ðÆ® ¼¾½Ì Àåºñ, ¹«ÀÎ Ç×°ø±â, À§¼º °è¾à ¹× °í±Þ À̹ÌÁö ó¸® µµ±¸¿¡ ´ëÇÑ °í¾×ÀÇ Ãʱâ ÅõÀÚ´Â ¸¹Àº ³óºÎµé¿¡°Ô ¾î·Á¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß¼Ò±Ô¸ð ³óÀå¿¡¼­´Â ¿¹»ê Á¦¾àÀ¸·Î ÀÎÇØ ±â¼ú µµÀÔÀÌ Á¦Çѵ˴ϴÙ. Áö¼ÓÀûÀÎ À¯Áö º¸¼ö, ±³Á¤ ¹× ¼ÒÇÁÆ®¿þ¾î ¾÷µ¥ÀÌÆ®°¡ ¿î¿µ ºñ¿ëÀ» ´Ã¸³´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅ͸¦ ÇØ¼®Çϱâ À§ÇØ ÈÆ·Ã¹ÞÀº ÀηÂÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë À庮Àº ƯÈ÷ °³¹ß µµ»ó Áö¿ª¿¡¼­ÀÇ º¸±ÞÀ» ¹æÇØÇÏ°í ³ó¾÷ ºÐ¾ß¿¡¼­ÀÇ ¸®¸ðÆ® ¼¾½Ì ÅëÇÕÀÇ ¼Óµµ¸¦ ´ÊÃß°í ÀÖ½À´Ï´Ù.

AI ¹× IoT¿ÍÀÇ ÅëÇÕ

¸®¸ðÆ® ¼¾½ÌÀ» ÀΰøÁö´É ¹× IoT Àåºñ¿Í °áÇÕÇÏ¸é ³ó¾÷¿¡ Å« ±âȸ°¡ »ý±é´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ¼¾¼­¿Í À§¼º À̹ÌÁö¿¡¼­ ¾öû³­ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© ¼öÈ®·® ÃßÁ¤, ÇØÃæ °ËÃâ ¹× Áúº´ ¿¹¹æÀ» À§ÇÑ ¿¹Ãø ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. IoT ¿¬°áÀº ÇöÀå ÀåÄ¡¿¡¼­ ³óºÎ ´ë½Ãº¸µå·Î ½Ç½Ã°£ µ¥ÀÌÅÍ Àü¼ÛÀ» º¸ÀåÇÕ´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú´Â ÀÇ»ç °áÁ¤ÀÇ Á¤È®¼ºÀ» Çâ»ó½ÃŰ°í °ü°³ ¹× ½Ãºñ¿Í °°Àº ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­ÇÕ´Ï´Ù. ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ÅëÇÕ ¼Ö·ç¼ÇÀº ¸®¸ðÆ® ¼¾½ÌÀ» ´õ¿í Áö´ÉÀûÀ¸·Î, È¿À²ÀûÀ¸·Î ±×¸®°í ´Ù¾çÇÑ ³ó¾÷ ±Ô¸ð¿¡ °ÉÃÄ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ¾à¼ÓÇÕ´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× »çÀ̹ö º¸¾È À§Çè

¸®¸ðÆ® ¼¾½Ì ½Ã½ºÅÛÀº µðÁöÅÐÀ̱⠶§¹®¿¡ »çÀ̹ö À§Çù°ú ¹Î°¨ÇÑ ³ó¾÷ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¹«´Ü ¾×¼¼½º¿¡ Ãë¾àÇÕ´Ï´Ù. ³óÀå °ü¸® Ç÷§Æû ¹× À§¼º ±â¹Ý ½Ã½ºÅÛÀ» ³ë¸®´Â ÇØÄ¿´Â ¾÷¹« ¹æÇØ, µ¥ÀÌÅÍ Á¶ÀÛ ¹× ±ÝÀüÀû ¼Õ½ÇÀ» À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ Ä§ÇØ´Â ³ó¹ÎÀÇ µ¶ÀÚÀûÀÎ ÀÛ¹°¿¡ ´ëÇÑ Àνİú °æ¿µ Àü·«À» À§Çè¿¡ ºü¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ³óÃÌ Áö¿ªÀÇ »çÀ̹ö º¸¾È ´ëÃ¥ÀÌ Ãë¾àÇÏ´Ù¸é À§ÇèÀº ´õ¿í Ä¿Áý´Ï´Ù. ÀÌ·¯ÇÑ À§Çù¿¡ ´ëóÇϱâ À§Çؼ­´Â °ß°íÇÑ ¾Ïȣȭ, ¾ÈÀüÇÑ ³×Æ®¿öÅ©, ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú¿¡ ´ëÇÑ ½Å·Ú¸¦ À¯ÁöÇϱâ À§ÇØ ³óºÎÀÇ ÀǽÄÀÌ ÇÊ¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ ´ëÀ¯ÇàÀ¸·Î ³ó¾÷¿¡¼­ÀÇ ¸®¸ðÆ® ¼¾½Ì µµÀÔÀÌ °¡¼ÓÈ­µÇ¾ú½À´Ï´Ù. ³ó°¡´Â ³óÀÛ¹°ÀÇ ¸ð´ÏÅ͸µ°ú ÇÇÇØ »óȲÀ» ÆÄ¾ÇÇϱâ À§ÇØ À§¼º°ú µå·ÐÀÇ À̹ÌÁö¸¦ ÀÌ¿ëÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±×·¯³ª Çϵå¿þ¾î °ø±Þ¸ÁÀÌ ²÷¾îÁ³±â ¶§¹®¿¡ ÀϺΠµµÀÔÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ¼÷·ÃµÈ ±â¼úÀÚ¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦ÇѵǾî ÀÖ´ø °Íµµ ±â¼ú º¸±ÞÀÇ ¹æÇذ¡ µÇ¾ú½À´Ï´Ù. Ç÷¯½º Ãø¸é¿¡¼­ À̹ø À§±â´Â ºñÁ¢ÃË½Ä µ¥ÀÌÅÍ ÁÖµµÇü ³ó¾÷ ¼Ö·ç¼ÇÀÇ °¡Ä¡¸¦ ºÎ°¢½ÃÄ×½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ¿µ±¸ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¸®¸ðÆ® ¼¾½ÌÀº ÆÒµ¥¹Í ÈÄ ³ó¾÷ Àü·«ÀÇ ÇÙ½É ¿ä¼Ò°¡ µË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó

Çϵå¿þ¾î ºÐ¾ß´Â ³ó¾÷ ¸ð´ÏÅ͸µ¿¡¼­ À§¼º ¼ö½Å±â, ´ÙÁß ½ºÆåÆ®·³ Ä«¸Þ¶ó ¹× ¹«ÀÎ Ç×°ø±â ±â¹Ý ¼¾¼­ÀÇ º¸±Þ¿¡ ÈûÀÔ¾î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¹°¸®Àû ±¸¼º ¿ä¼Ò´Â ¸®¸ðÆ® ¼¾½Ì ½Ã½ºÅÛÀÇ ±â¹ÝÀ» Çü¼ºÇÏ¿© ±¤´ëÇÑ ³óÁö¿¡¼­ µ¥ÀÌÅÍ ¼öÁýÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÷´Ü ¼¾¼­ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ È®´ë¿Í µå·ÐÀÇ Àú°¡°ÝÈ­°¡ ¼ö¿ä¸¦ ´õ¿í ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °íÇØ»óµµ À̹Ì¡ Çϵå¿þ¾î¸¦ ÅëÇÕÇÔÀ¸·Î½á Á¤¹Ðµµ°¡ Çâ»óµÇ¾î Á¤¹Ð ³ó¾÷ ¹× ³óÀå ºÐ¼® ¿ëµµ¿¡ ÇʼöÀûÀÎ Çϵå¿þ¾î°¡ µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È À§¼º ±â¹Ý ½Ã½ºÅÛ ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ôÀº Àü¸Á

¿¹Ãø ±â°£ µ¿¾È °íÇØ»óµµ À̹Ì¡, ¸ÖƼ½ºÆåÆ®·³ ºÐ¼®, ºó¹øÇÑ Àç¹æ¹® ±â´ÉÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ À§¼º ±â¹Ý ½Ã½ºÅÛ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À§¼º Ç÷§ÆûÀº ±¤¿ªÀ» Ä¿¹öÇÒ ¼ö ÀÖÀ¸¹Ç·Î ±¤´ëÇÑ ³ó¾÷Áö¿ª ¸ð´ÏÅ͸µ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î À§¼º µ¥ÀÌÅÍ ¼­ºñ½º¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÊÀ¸·Î½á ¹Î°£ ¹× Á¤ºÎ ³ó¾÷±â°ü ¸ðµÎ ä¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿ìÁÖ ±â°ü°ú ³ó¾÷ ±â¼ú ±â¾÷ °£ÀÇ ÆÄÆ®³Ê½ÊÀº Çõ½ÅÀ» ÃËÁøÇϰí À§¼º ±â¹Ý ³ó¾÷ ¸ð´ÏÅ͸µÀÇ Á¤È®¼º°ú ºóµµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ´ë±Ô¸ð ³ó¾÷ Ȱµ¿, ½º¸¶Æ® ³ó¾÷À» À§ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê, Àα¸ Áõ°¡·Î ÀÎÇÑ ½Ä·® ¼ö¿ä Áõ°¡ µîÀÇ ¿äÀÎÀÔ´Ï´Ù. Àεµ, Áß±¹, ÀϺ» µîÀÇ ±¹°¡µéÀº À§¼º ±â¹Ý ³ó¾÷ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ³óÃÌ Áö¿ªÀÇ ÀÎÅÍ³Ý ¿¬°áÀÌ È®´ëµÊ¿¡ µû¶ó ¸®¸ðÆ® ¼¾½Ì Ç÷§Æû¿¡ ´ëÇÑ ¾×¼¼½º°¡ Çâ»óµÇ¾ú½À´Ï´Ù. °Ô´Ù°¡ ´ë±Ô¸ð ³óÀå ¹× ³ó¾÷ »ç¾÷¿¡ ÀÇÇÑ Á¤¹Ð ³ó¾÷ ÅøÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ¾î, Áö¿ª Àüü¿¡¼­ ¸®¸ðÆ® ¼¾½Ì ±â¼úÀÇ ÅëÇÕÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â °­·ÂÇÑ ±â¼ú ÀÎÇÁ¶ó, Á¤¹Ð ³ó¾÷ÀÇ Á¶±â µµÀÔ, ´ë±Ô¸ð ¿¬±¸°³¹ß ÅõÀÚ ¶§¹®ÀÔ´Ï´Ù. ÁÖ¿ä ³ó¾÷ ±â¼ú ±â¾÷ÀÇ Á¸Àç ¹× À§¼º ¼­ºñ½º Á¦°ø ¾÷ü¿ÍÀÇ Á¦ÈÞ°¡ ÀÌ Áö¿ªÀÇ ±â¼ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù ³óºÎµéÀº µå·Ð, AI ºÐ¼®, IoT ÀåÄ¡¸¦ ¸®¸ðÆ® ¼¾½Ì ½Ã½ºÅÛ¿¡ ºü¸£°Ô ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ȯ°æ ÀǽÄÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Áö¿ø Á¤Ã¥Àº ºÏ¹Ì ³ó¾÷ ºÎ¹® ½ÃÀå È®´ë¸¦ ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

»ç¿ëÀÚ Á¤ÀÇ ¹«·á Á¦°ø :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú ½ÃÀå : Àü°³º°

  • À§¼º ±â¹Ý ½Ã½ºÅÛ
  • µå·Ð ±â¹Ý ½Ã½ºÅÛ
  • Áö»ó ±â¹Ý ½Ã½ºÅÛ

Á¦7Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú ½ÃÀå : ¼¾½Ì ¸ð´Þ¸®Æ¼º°

  • ÆÐ½Ãºê ¼¾½Ì
  • ¾×Ƽºê ¼¾½Ì

Á¦8Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú ½ÃÀå : ±â¼úº°

  • ±¤ÇÐ
  • ·¹ÀÌ´õ
  • ¶óÀÌ´õ
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú ½ÃÀå : ¿ëµµº°

  • ÀÛ¹° ¸ð´ÏÅ͸µ
  • Åä¾ç ¸ð´ÏÅ͸µ
  • ¼öÀ² ¸ÅÇÎ
  • °ü°³ °ü¸®
  • ÇØÃæ ¹× º´ ¸ð´ÏÅ͸µ
  • ÇÊµå ¸ÅÇÎ
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ³ó¾÷¿ë ¸®¸ðÆ® ¼¾½Ì ±â¼ú ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • John Deere(Deere & Company)
  • Bayer CropScience(Climate Corporation/FieldView)
  • Corteva Granular
  • IBM's The Weather Company
  • Indigo Agriculture
  • AGCO Corporation
  • Ag Leader Technology
  • Trimble Inc.
  • Agribotix
  • ClearAg Operations
  • Conservis Corporation
  • FlyPix AI
  • EOS Data Analytics
  • AgroScout
  • Yara International ASA
AJY 25.09.01

According to Stratistics MRC, the Global Remote Sensing Technology For Agriculture Market is accounted for $3.6 billion in 2025 and is expected to reach $8.4 billion by 2032 growing at a CAGR of 12.9% during the forecast period. Remote sensing technology for agriculture is the use of satellite imagery, aerial photography, and sensor-based systems to collect data about crops, soil, and environmental conditions without direct physical contact. It employs multispectral, hyperspectral, and thermal imaging to monitor plant health, moisture levels, nutrient status, and pest infestations. This technology enables farmers and researchers to assess agricultural fields remotely, providing accurate, timely, and spatially detailed information for effective crop management and resource optimization.

According to a report by the United States Department of Agriculture (USDA), precision agriculture, which heavily relies on remote sensing technologies, has been adopted by over 60% of U.S.

Market Dynamics:

Driver:

Increasing adoption of precision agriculture

The rising need for efficient farm management and optimized crop yields is fueling the integration of remote sensing in precision agriculture. By enabling accurate monitoring of soil conditions, crop health, and irrigation needs, farmers can make data-driven decisions to boost productivity. Advanced sensing methods reduce wastage, improve resource allocation, and enhance sustainability. Governments and agricultural organizations are promoting smart farming practices, further spurring adoption. Consequently, the technology's role in precision farming is becoming indispensable for modern agricultural systems worldwide.

Restraint:

High implementation and maintenance costs

Despite its advantages, the high initial investment in remote sensing equipment, drones, satellite subscriptions, and advanced imaging tools poses a challenge for many farmers. Small and medium-sized farms, in particular, face budgetary constraints that limit technology adoption. Ongoing maintenance, calibration, and software updates add to operational costs. Additionally, the need for trained personnel to interpret data increases expenses. These cost barriers hinder widespread deployment, especially in developing regions, slowing the pace of remote sensing integration in the agricultural sector.

Opportunity:

Integration with AI and IoT

Combining remote sensing with artificial intelligence and IoT devices presents significant opportunities for agriculture. AI algorithms can analyze vast datasets from sensors and satellite imagery, enabling predictive analytics for yield estimation, pest detection, and disease prevention. IoT connectivity ensures real-time data transmission from field devices to farmers' dashboards. This synergy enhances decision-making accuracy and automates processes such as irrigation and fertilization. As technology advances, these integrated solutions promise to make remote sensing more intelligent, efficient, and accessible across diverse farming scales.

Threat:

Data privacy and cybersecurity risks

The digital nature of remote sensing systems makes them vulnerable to cyber threats and unauthorized access to sensitive agricultural data. Hackers targeting farm management platforms or satellite-based systems can disrupt operations, manipulate data, or cause financial losses. Data breaches could compromise farmers' proprietary crop insights and operational strategies. Weak cybersecurity measures in rural deployments exacerbate the risk. Addressing these threats requires robust encryption, secure networks, and farmer awareness to maintain trust in remote sensing technologies for agricultural use.

Covid-19 Impact:

The COVID-19 pandemic accelerated the adoption of remote sensing in agriculture due to restrictions on physical field inspections. Farmers increasingly relied on satellite and drone imagery for monitoring crops and assessing damage. However, disruptions in hardware supply chains delayed some installations. Limited access to skilled technicians also hindered technology deployment. On the positive side, the crisis highlighted the value of contactless, data-driven farming solutions. This shift is expected to have a lasting impact, with remote sensing becoming a core element of post-pandemic agricultural strategies.

The hardware segment is expected to be the largest during the forecast period

The hardware segment is expected to account for the largest market share during the forecast period period, propelled by the widespread use of satellite receivers, multispectral cameras, and drone-based sensors in agricultural monitoring. These physical components form the foundation of remote sensing systems, enabling data collection across vast farmlands. Growing investments in advanced sensor technology and increasing affordability of drones have further boosted demand. Additionally, the integration of high-resolution imaging hardware enhances accuracy, making hardware indispensable for precision agriculture and field analysis applications.

The satellite-based systems segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the satellite-based systems segment is predicted to witness the highest growth rate, influenced by advancements in high-resolution imaging, multispectral analysis, and frequent revisit capabilities. Satellite platforms enable wide-area coverage, making them ideal for monitoring large agricultural regions. The growing availability of affordable satellite data services is increasing adoption among both commercial and government agricultural bodies. Furthermore, partnerships between space agencies and agri-tech firms are fostering innovation, enhancing the precision and frequency of satellite-based agricultural monitoring.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fueled by extensive agricultural activity, government initiatives for smart farming, and rising food demand due to population growth. Countries such as India, China, and Japan are investing heavily in satellite-based agricultural monitoring systems. Expanding rural internet connectivity is improving access to remote sensing platforms. Additionally, increasing adoption of precision agriculture tools by large-scale farms and agri-businesses is accelerating the integration of remote sensing technologies across the region.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by strong technological infrastructure, early adoption of precision farming, and significant R&D investments. The presence of leading agri-tech companies and collaborations with satellite service providers are fueling innovation in the region. Farmers in the U.S. and Canada are rapidly integrating drones, AI analytics, and IoT devices with remote sensing systems. Supportive policies, coupled with growing environmental awareness, are further boosting market expansion in North America's agricultural sector.

Key players in the market

Some of the key players in Remote Sensing Technology For Agriculture Market include John Deere (Deere & Company), Bayer CropScience (Climate Corporation/FieldView), Corteva Granular, IBM's The Weather Company, Indigo Agriculture, AGCO Corporation, Ag Leader Technology, Trimble Inc., Agribotix, ClearAg Operations, Conservis Corporation, FlyPix AI, EOS Data Analytics, AgroScout, and Yara International ASA.

Key Developments:

In May 2025, John Deere acquires Sentera, integrating advanced aerial field scouting imagery and analytics to the John Deere Operations Center(TM). This enhances capabilities for plant-level health assessments, stress detection, and weed mapping to drive data-based crop decisions.

In May 2025, Ceres AI integrated its advanced data analytics into Bayer's Climate FieldView platform, creating a unified data ecosystem. The collaboration delivers actionable risk intelligence to farmers, insurers, and capital stakeholders, enhancing underwriting accuracy, enabling hybrid parametric insurance models, and empowering better farm investment decisions through AI-powered field insights.

In May 2025, AGCO Corporation integrated advanced remote sensing into its FendtONE platform, enabling real-time crop and soil monitoring through satellite and drone data. The update improves variable-rate technology for seed and fertilizer application, enhancing yield optimization and resource efficiency.

Components Covered:

  • Hardware
  • Software
  • Services

Deployments Covered:

  • Satellite-Based Systems
  • Drone-Based Systems
  • Ground-Based Systems

Sensing Modalities Covered:

  • Passive Sensing
  • Active Sensing

Technologies Covered:

  • Optical
  • Radar
  • LiDAR
  • Other Technologies

Applications Covered:

  • Crop Monitoring
  • Soil Monitoring
  • Yield Mapping
  • Irrigation Management
  • Pest and Disease Monitoring
  • Field Mapping
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Remote Sensing Technology For Agriculture Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global Remote Sensing Technology For Agriculture Market, By Deployment

  • 6.1 Introduction
  • 6.2 Satellite-Based Systems
  • 6.3 Drone-Based Systems
  • 6.4 Ground-Based Systems

7 Global Remote Sensing Technology For Agriculture Market, By Sensing Modality

  • 7.1 Introduction
  • 7.2 Passive Sensing
  • 7.3 Active Sensing

8 Global Remote Sensing Technology For Agriculture Market, By Technology

  • 8.1 Introduction
  • 8.2 Optical
  • 8.3 Radar
  • 8.4 LiDAR
  • 8.5 Other Technologies

9 Global Remote Sensing Technology For Agriculture Market, By Application

  • 9.1 Introduction
  • 9.2 Crop Monitoring
  • 9.3 Soil Monitoring
  • 9.4 Yield Mapping
  • 9.5 Irrigation Management
  • 9.6 Pest & Disease Monitoring
  • 9.7 Field Mapping
  • 9.8 Other Applications

10 Global Remote Sensing Technology For Agriculture Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.10 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.5 South Korea
    • 10.4.6 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 John Deere (Deere & Company)
  • 12.2 Bayer CropScience (Climate Corporation/FieldView)
  • 12.3 Corteva Granular
  • 12.4 IBM's The Weather Company
  • 12.5 Indigo Agriculture
  • 12.6 AGCO Corporation
  • 12.7 Ag Leader Technology
  • 12.8 Trimble Inc.
  • 12.9 Agribotix
  • 12.10 ClearAg Operations
  • 12.11 Conservis Corporation
  • 12.12 FlyPix AI
  • 12.13 EOS Data Analytics
  • 12.14 AgroScout
  • 12.15 Yara International ASA
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦