![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1802962
¼¼°èÀÇ 3D ÇÁ¸°Æ® ÄÜÅ©¸®Æ® ½ÃÀå ¿¹Ãø(-2032³â) : ¿ÀÆÛ¸µº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®3D-Printed Concrete Market Forecasts to 2032 - Global Analysis By Offering (Materials, Hardware, Software and Services), Technology (Extrusion-Based Printing and Powder-Based Printing), Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ 3D ÇÁ¸°Æ® ÄÜÅ©¸®Æ® ½ÃÀåÀº 2025³â¿¡ 6¾ï 9,770¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ Áß CAGRÀº 44.8%·Î ¼ºÀåÇϸç, 2032³â±îÁö´Â 93¾ï 1,330¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
3D ÇÁ¸°ÆÃ ÄÜÅ©¸®Æ®´Â µðÁöÅÐ ¼³°è¿¡¼ Á÷Á¢ ¼¼ºÎÀûÀÎ ¸ÂÃãÇü ÄÜÅ©¸®Æ® ºÎǰÀ» ¸¸µé±â À§ÇØ ºÎ°¡Àû Á¦Á¶ ¹æ¹ýÀ» »ç¿ëÇÏ´Â Çö´ë °ÇÃà ±â¼úÀÔ´Ï´Ù. ±âÁ¸ ¹æ½ÄÀ¸·Î´Â ½ÇÇöÇÒ ¼ö ¾ø¾ú´ø Çõ½ÅÀûÀÎ ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â µ¿½Ã¿¡ ÀÚÀç ³¶ºñ, ÀΰǺñ, ÇÁ·ÎÁ§Æ® ŸÀÓ¶óÀÎÀ» ÁÙÀÔ´Ï´Ù. ÁÖÅÃ, ÀÎÇÁ¶ó, Áö¼Ó°¡´ÉÇÑ °ÇÃà¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ´Â 3D ÇÁ¸°ÆÃ ÄÜÅ©¸®Æ®´Â ÁøÈÇÏ´Â °Ç¼³ »ê¾÷ÀÇ ±â¼ú Àü¸Á¿¡¼ È¿À²¼º, °æÁ¦¼º, ȯ°æÀû ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
À¯·´À§¿øÈ¸ÀÇ ¿¬±¸ ÇÁ·Î±×·¥ 'Horizon 2020'ÀÇ µ¥ÀÌÅÍ¿¡ µû¸£¸é À¯·´À§¿øÈ¸´Â ¿ÏÀü ÀÚµ¿ ÇöÀå °Ç¼³ 3D ÇÁ¸°ÆÃ ½Ã½ºÅÛ °³¹ßÀ» ¸ñÇ¥·Î ÇÏ´Â 'C3PO' ÇÁ·ÎÁ§Æ®¿¡ ÀÚ±ÝÀ» Áö¿øÇß½À´Ï´Ù.
¾ÈÀü¼º Çâ»ó ¹× Æó±â¹° °¨¼Ò
3D ÇÁ¸°ÆÃ ÄÜÅ©¸®Æ® ½ÃÀåÀº °ÈµÈ ¾ÈÀü ÇÁ·ÎÅäÄݰú »ó´çÇÑ Æó±â¹° ÃÖ¼ÒÈ ´É·Â¿¡ ÀÇÇØ Å©°Ô °ßÀεǰí ÀÖ½À´Ï´Ù. ±âÁ¸ °ø¹ý¿¡¼´Â ¾à 30%-40%ÀÇ Àç·á Æó±â¹°ÀÌ ¹ß»ýÇÏÁö¸¸, ÀûÃþÁ¦Á¶ ±â¼ú¿¡¼´Â Æó±â¹°ÀÌ 5% ¹Ì¸¸À¸·Î °¨¼ÒÇÕ´Ï´Ù. ¶ÇÇÑ 3D ÇÁ¸°ÆÃÀº ÀÛ¾÷ÀÚ°¡ À§ÇèÇÑ È¯°æ¿¡¼ ÀÛ¾÷ÇÒ Çʿ䰡 ¾ø±â ¶§¹®¿¡ °Ç¼³ ÇöÀåÀÇ »ç°í¸¦ ÃÖ´ë 60%±îÁö ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿ÈµÈ °Ç¼³ °øÁ¤Àº ÄÜÅ©¸®Æ® ºÐÁø ¹× ÈÇР÷°¡Á¦¿¡ ´ëÇÑ ÀÎü ³ëÃâÀ» ÃÖ¼ÒÈÇÏ°í ³ëµ¿ À§»ý ±âÁØÀ» °³¼±ÇÕ´Ï´Ù. Á¤¹Ð ±â¹Ý ·¹À̾î ÁõÂøÀº ±¸Á¶Àû ¹«°á¼º ¿ä±¸ »çÇ×À» À¯ÁöÇÏ¸é¼ ÃÖÀûÀÇ Àç·á Ȱ¿ëÀ» º¸ÀåÇÕ´Ï´Ù.
Àç·áÀÇ ÇѰè¿Í Àϰü¼º
ÇöÀçÀÇ ÄÜÅ©¸®Æ® ¹èÇÕÀº ¸Å²ô·¯¿î ¾ÐÃâ°ú ÀûÀýÇÑ Ãþ ºÎÂø¿¡ ÇÊ¿äÇÑ À¯º¯ÇÐÀû Ư¼ºÀÌ ºÎÁ·ÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ´Ù¾çÇÑ È¯°æ Á¶°Ç¿¡¼ ÀϰüµÈ Àç·á È帧°ú °æÈ ½Ã°£À» À¯ÁöÇÏ´Â °ÍÀº ¿©ÀüÈ÷ ¹®Á¦°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ 3D ÇÁ¸°ÆÃ ½Ã½ºÅÛ¿¡ ÀûÇÕÇÑ Æ¯¼ö ÄÜÅ©¸®Æ® ¹èÇÕÀÇ °¡¿ë¼ºÀÌ Á¦ÇÑÀûÀ̱⠶§¹®¿¡ ÇÁ·ÎÁ§Æ®ÀÇ È®À强ÀÌ Á¦Çѵ˴ϴÙ. Ç¥ÁØÈµÈ Àç·á »ç¾ç°ú ǰÁú°ü¸® ÇÁ·ÎÅäÄÝÀÌ ¾ø±â ¶§¹®¿¡ °Ç¼³ ÇÁ·ÎÁ§Æ®°¡ ´õ¿í º¹ÀâÇØÁ® ±¸Á¶Àû ¹«°á¼º ¹®Á¦¿Í »ó¾÷Àû ¿ëµµ¿¡¼ ºÒÇÕ°Ý·üÀÌ ³ô¾ÆÁú ¼ö ÀÖ½À´Ï´Ù.
½Å¼ÒÀç ¹èÇÕ °³¹ß
¿¬±¸±â°ü°ú °Ç¼³»çµéÀº ³ª³ë¼ÒÀç, ¼¶À¯°ÈÀç, Àç»ý°ñÀ縦 Æ÷ÇÔÇÑ °í¼º´É ÄÜÅ©¸®Æ® ¹Í½º °³¹ß¿¡ Àû±Ø ³ª¼°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ÷°¡Á¦ ¹× Àڱ⺹¿ø¼º ÄÜÅ©¸®Æ® ¹èÇÕÀº °ÔÀÓ Ã¼ÀÎÀú·Î ºÎ»óÇϰí ÀÖ´Â Çõ½ÅÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç·á °ø±Þ¾÷ü¿Í 3D ÇÁ¸°ÆÃ Àåºñ Á¦Á¶¾÷ü¿ÍÀÇ Á¦ÈÞ¸¦ ÅëÇØ Ư¼ö ÄÜÅ©¸®Æ® ¹èÇÕÀÇ »ó¿ëȰ¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Àμ⼺ Çâ»ó, ³»±¸¼º °È, ȯ°æ ºÎÇÏ °¨¼Ò¸¦ ¾à¼ÓÇϸç, ÁÖ°Å, »ó¾÷, ÀÎÇÁ¶ó ºÐ¾ß¿¡¼ÀÇ Àû¿ëÀ» È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
±âÁ¸ °Ç¼³ ¾÷°èÀÇ ÀúÇ×
ÀüÅëÀûÀÎ °Ç¼³¾÷ü¿Í ³ëµ¿Á¶ÇÕÀº ÀÚµ¿È·Î ÀÎÇÑ °í¿ë ¼Õ½Ç°ú ±â¼ú ³ëÈÄÈ¿¡ ´ëÇÑ ¿ì·Á¸¦ Ç¥¸íÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦±â°üÀº 3D ÇÁ¸°ÆÃ ±¸Á¶¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ±âÁØÀÌ ¾ø´Â °æ¿ì°¡ ¸¹À¸¸ç, ÀÌ·Î ÀÎÇØ ÀÎÇã°¡ Áö¿¬°ú ¹ýÀû Ã¥ÀÓ¿¡ ´ëÇÑ ¿ì·Á¸¦ ³º°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °ø°ø ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡¼ º¸¼öÀûÀÎ Á¶´Þ °üÇàÀº Çõ½ÅÀûÀÎ ±â¼úº¸´Ù °ËÁõµÈ ÀüÅëÀû ¹æ½ÄÀ» ¼±È£ÇÕ´Ï´Ù. 3D ÇÁ¸°ÆÃ Àåºñ¿Í ±³À°¿¡ ¸¹Àº ÀÚº» ÅõÀÚ°¡ ÇÊ¿äÇϹǷΠ¼Ò±Ô¸ð °Ç¼³»ç¿¡¼´Â äÅÃÀÌ ½±Áö ¾Ê¾Æ ½ÃÀå È®´ë °¡´É¼ºÀÌ Á¦ÇÑÀûÀÔ´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº Ãʱ⿡´Â °Ç¼³ ÇÁ·ÎÁ§Æ® Áö¿¬°ú °ø±Þ¸Á Áß´ÜÀ» ÅëÇØ 3D ÇÁ¸°ÆÃ ÄÜÅ©¸®Æ® ½ÃÀåÀ» È¥¶õ¿¡ ºü¶ß·È½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â »çȸÀû °Å¸®µÎ±â ÇÁ·ÎÅäÄÝÀ» À¯ÁöÇϱâ À§ÇÑ ÀÚµ¿È °Ç¼³ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» °¡¼ÓÈÇß½À´Ï´Ù. ¶ÇÇÑ ³ëµ¿·Â °¨¼Ò·Î ÀÎÇØ ¹«ÀÎÈµÈ °Ç¼³ ÇÁ·Î¼¼½ºÀÇ ÀÌÁ¡ÀÌ ´õ¿í ºÎ°¢µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎÀÇ ÀÎÇÁ¶ó ºÎ¾çÃ¥Àº Çõ½ÅÀûÀÎ °Ç¼³ ¹æ½Ä¿¡ ´ëÇÑ ±âȸ¸¦ âÃâÇß½À´Ï´Ù. À̹ø ÆÒµ¥¹ÍÀº À糿¡ °ÇÑ °Ç¼³ ±â¼úÀÇ Çʿ伺À» °Á¶Çϰí, °Ç¼³ ºÐ¾ß¿¡¼ 3D ÇÁ¸°ÆÃ ±â¼úÀÇ Àå±âÀûÀΠäÅÃÀ» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Àç·á ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â Àç·á ºÎ¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â 3D ÇÁ¸°ÆÃ ¿ëµµ¿¡ ÇÊ¿äÇÑ Æ¯¼ö ÄÜÅ©¸®Æ® ¹èÇÕ, ÷°¡Á¦, º¸°Àç¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÏȸ¼º Àåºñ ±¸¸Å¿¡ ºñÇØ Àç·á ¼Òºñ°¡ Á¤±âÀûÀ̱⠶§¹®¿¡ Áö¼ÓÀûÀÎ ¸ÅÃâÀÌ º¸ÀåµË´Ï´Ù. ¶ÇÇÑ Ã·´Ü ¼ÒÀç ¹èÇÕ¿¡ ´ëÇÑ ¿¬±¸°³¹ß¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ°¡ ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. Àç·á ºÎ¹®Àº Àåºñ Á¦Á¶¿¡ ºñÇØ Àß ±¸ÃàµÈ °ø±Þ¸Á°ú ³·Àº ÁøÀÔÀ庮À¸·Î ÀÎÇØ ´Ù¾çÇÑ °ø±Þ¾÷ü¸¦ À¯Ä¡ÇÏ°í °æÀï·Â ÀÖ´Â °¡°Ý Àü·«À» ±¸»çÇÒ ¼ö ÀÖ´Â ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ¾ÐÃâ ±â¹Ý Àμ⠺оßÀÔ´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾ÐÃâ ±â¹Ý Àμ⠺о߰¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ±â¼úÀº ´ë±Ô¸ð °Ç¼³ ÇÁ·ÎÁ§Æ®¸¦ À§ÇÑ ¶Ù¾î³ È®À强°ú ´Ù¾çÇÑ ÄÜÅ©¸®Æ® ¹èÇÕ°úÀÇ È£È¯¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ¾ÐÃâ ±â¹Ý ½Ã½ºÅÛÀº º¹ÀâÇÑ °ÇÃà Çü»ó°ú ±¸Á¶Àû ¿ä¼Ò¸¦ ¸¸µå´Â µ¥ ÀÖÀ¸¸ç, ÀÔÁõµÈ ½Å·Ú¼ºÀ» º¸¿©ÁÝ´Ï´Ù. ¶ÇÇÑ Àåºñ ºñ¿ë Àý°¨°ú Àμ⠼ӵµ Çâ»óÀ¸·Î »ó¾÷Àû ½ÇÇà °¡´É¼ºµµ ³ô¾ÆÁ³½À´Ï´Ù. ÀÌ ºÎ¹®Àº ³ëÁñ ¼³°è, Àç·á È帧 Á¦¾î, ÀÚµ¿ ·¹À̾ ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀüÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÀ¸¸ç, ÀÎÇÁ¶ó ¹× ÁÖÅà °Ç¼³ ¿ëµµ¿¡¼ ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â °Ç¼³ ÀÚµ¿È ±â¼ú¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¿Í Çõ½ÅÀûÀÎ °ÇÃà °ø¹ýÀ» Àå·ÁÇÏ´Â Á¤ºÎÀÇ Àû±ØÀûÀÎ ³ë·Â¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ ´ëÇü 3D ÇÁ¸°ÆÃ Àåºñ Á¦Á¶¾÷ü ¹× ¿¬±¸±â°üÀÌ Á¸ÀçÇϹǷΠ±â¼ú °³¹ß ¹× »ó¿ëȰ¡ °¡¼Ó鵃 °ÍÀÔ´Ï´Ù. ¶ÇÇÑ ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦¿Í ÀΰǺñ¿¡ ´ëÇÑ °í·Á°¡ ÀÚµ¿È °Ç¼³ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ÷´ÜÀÎ ÀÎÇÁ¶ó °³¹ß ÇÁ·ÎÁ§Æ®¿Í °Ç¼³»çÀÇ Á¶±â µµÀÔ Á¤½ÅÀÇ ÇýÅÃÀ» ¹Þ¾Æ ½ÃÀåÀ» ¼±µµÇÏ´Â °·ÂÇÑ ±â¹ÝÀ» ±¸ÃàÇß½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ¿Í Àú·ÅÇÑ °¡°ÝÀÇ È¿À²ÀûÀÎ ÁÖÅÿ¡ ´ëÇÑ ¼ö¿ä°¡ ÁÖ¿ä Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ¿Í °°Àº ±¹°¡µéÀÌ ¼±µÎ¿¡ ÀÖÀ¸¸ç, Á¤ºÎÀÇ °·ÂÇÑ Áö¿ø°ú ´ë±Ô¸ð ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®°¡ äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °Ç¼³ ½Ã°£°ú ³¶ºñ¸¦ ÁÙÀÌ´Â ÀÌ ±â¼úÀº ·Îº¿ ÀÚµ¿ÈÀÇ ¹ßÀü°ú ÇÔ²² ÀÌ Áö¿ªÀÇ ¹æ´ëÇÑ °Ç¼³ ¼ö¿ä¸¦ ÃæÁ·½Ãų ¼ö ÀÖ´Â ÀÌ»óÀûÀÎ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´ÉÇÑ "½º¸¶Æ® ½ÃƼ" °³³ä¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ 3D ÇÁ¸°ÆÃÀÇ Ä£È¯°æÀûÀ̰í Çõ½ÅÀûÀΠƯ¼º°ú Àß ¸Â¾Æ¶³¾îÁ® ÀÌ ºÐ¾ßÀÇ È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global 3D-Printed Concrete Market is accounted for $697.7 million in 2025 and is expected to reach $9313.3 million by 2032 growing at a CAGR of 44.8% during the forecast period. 3D-printed concrete is a modern building technique that uses additive manufacturing to make detailed and custom concrete parts straight from digital designs. It reduces material waste, labor costs, and project timelines while enabling innovative designs not achievable through traditional methods. Widely applied in housing, infrastructure, and sustainable building, 3D-printed concrete plays a pivotal role in enhancing efficiency, affordability, and environmental performance within the construction industry's evolving technological landscape.
According to data from the European Commission's Horizon 2020 research program, it funded the "C3PO" project, which aimed to develop a fully automated on-site construction 3D printing system.
Improved safety and waste reduction
The 3D-printed concrete market is significantly driven by enhanced safety protocols and substantial waste minimization capabilities. Traditional construction methods generate approximately 30-40% material waste, whereas additive manufacturing techniques reduce waste to less than 5%. Additionally, 3D printing eliminates the need for workers to operate in hazardous environments, reducing construction site accidents by up to 60%. Automated construction processes minimize human exposure to concrete dust and chemical additives, improving occupational health standards. The precision-based layer deposition ensures optimal material utilization while maintaining structural integrity requirements.
Material limitations and consistency
Current concrete formulations often lack the required rheological properties for smooth extrusion and proper layer adhesion. Maintaining consistent material flow rates and curing times across different environmental conditions remains problematic. Moreover, limited availability of specialized concrete mixes compatible with various 3D printing systems restricts project scalability. The lack of standardized material specifications and quality control protocols further complicates construction projects, leading to structural integrity concerns and increased rejection rates in commercial applications.
Development of new material formulations
Research institutions and construction companies are actively developing high-performance concrete mixes incorporating nanomaterials, fiber reinforcements, and recycled aggregates. Bio-based additives and self-healing concrete formulations are emerging as game-changing innovations. Moreover, partnerships between material suppliers and 3D printing equipment manufacturers are accelerating the commercialization of specialized concrete blends. These innovations promise improved printability, enhanced durability, and reduced environmental impact, potentially expanding applications across residential, commercial, and infrastructure sectors.
Resistance from traditional construction industry
Traditional contractors and labor unions express concerns about job displacement and skill obsolescence due to automation. Regulatory bodies often lack comprehensive standards for 3D-printed structures, creating approval delays and liability concerns. Moreover, conservative procurement practices in public infrastructure projects favor proven conventional methods over innovative technologies. The substantial capital investment required for 3D printing equipment and training further discourages adoption among smaller construction firms, limiting market expansion potential.
The COVID-19 pandemic initially disrupted the 3D-printed concrete market through construction project delays and supply chain interruptions. However, the crisis accelerated interest in automated construction technologies to maintain social distancing protocols. Additionally, reduced labor availability highlighted the benefits of unmanned construction processes. Moreover, government infrastructure stimulus packages created opportunities for innovative construction methods. The pandemic emphasized the need for resilient construction techniques, potentially accelerating long-term adoption of 3D printing technologies in the construction sector.
The materials segment is expected to be the largest during the forecast period
The materials segment is expected to account for the largest market share during the forecast period. This dominance stems from the continuous demand for specialized concrete formulations, additives, and reinforcement materials required for 3D printing applications. The recurring nature of material consumption compared to one-time equipment purchases ensures sustained revenue generation. Moreover, ongoing research and development investments in advanced material formulations drive segment growth. The materials segment benefits from established supply chains and lower entry barriers compared to equipment manufacturing, attracting diverse suppliers and fostering competitive pricing strategies.
The extrusion-based printing segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the extrusion-based printing segment is predicted to witness the highest growth rate. This technology offers superior scalability for large-scale construction projects and compatibility with various concrete formulations. Additionally, extrusion-based systems demonstrate proven reliability in creating complex architectural geometries and structural elements. Moreover, decreasing equipment costs and improved printing speeds enhance commercial viability. The segment benefits from continuous technological advancements in nozzle design, material flow control, and automated layering systems, making it the preferred choice for infrastructure and residential construction applications.
During the forecast period, the North America region is expected to hold the largest market share, attributed to substantial investments in construction automation technologies and supportive government initiatives promoting innovative building methods. Additionally, the presence of leading 3D printing equipment manufacturers and research institutions accelerates technology development and commercialization. Moreover, stringent safety regulations and labor cost considerations drive adoption of automated construction solutions. The region benefits from advanced infrastructure development projects and an early adopter mentality among construction companies, establishing a strong foundation for market leadership.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid urbanization and a persistent demand for affordable, efficient housing are the primary catalysts. Countries like China and India are at the forefront, with robust government backing and large-scale infrastructure projects driving adoption. The technology's ability to reduce construction time and waste, combined with advancements in robotic automation, makes it an ideal solution for addressing the region's immense construction needs. Furthermore, a growing focus on sustainable and "smart city" initiatives aligns perfectly with the eco-friendly and innovative nature of 3D printing, which is fueling the region's expansion.
Key players in the market
Some of the key players in 3D-Printed Concrete Market include COBOD International, ICON Technology Inc., Apis Cor, CyBe Construction, XtreeE, Winsun, Contour Crafting Corporation, SQ4D Inc., PERI Group, Holcim Group, Heidelberg Materials, Sika AG, Lafarge, Vertico, WASP, Mighty Buildings, RIC Technology, BetAbram, and Constructions-3D.
In February 2025, Texas-based construction 3D printing company ICON has secured $56 million in Series C funding, following a layoff announcement last month. Co-led by Norwest Venture Partners and Tiger Global Management, this funding round marked the first close with an additional $75 million in funding expected. Existing investors, including CAZ Investments, LENX, Modern Ventures, Oakhouse Partners, and Overmatch Ventures, also participated.
In December 2024, Harcourt Technologies Ltd (HTL.tech) has constructed the Europe's and the world's first social housing project compliant with the ISO/ASTM 52939:2023 standard for additive manufacturing, which Ireland has adopted. Using COBOD's BOD2 3D Construction Printer, the project demonstrates how 3D construction printing is addressing housing needs efficiently while meeting codes and the ISO/ASTM standard.
In April 2023, XtreeE has announced the deployment of three new 3D printing units operated by partners in Switzerland, the United States and Japan. This brings XtreeE's AC sites to 12 across three continents, with the startup planning six more by the end of the year. Previously, XtreeE received funding of €1.1 million in 2017 and €1 million in 2018, with investments from Vinci Construction, Shibumi International (a fully-owned venture fund of Guulermak Heavy Industries and engineering firm Thornton Tomasetti) and Holcim France.