![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1802964
¼¼°èÀÇ Åº¼Ò Æ÷Áý Æú¸®¸Ó ½ÃÀå ¿¹Ãø(-2032³â) : Æú¸®¸Ó À¯Çüº°, Æ÷Áý ¹æ¹ýº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Carbon Capture Polymers Market Forecasts to 2032 - Global Analysis By Polymer Type, Capture Method, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Åº¼Ò Æ÷Áý Æú¸®¸Ó ½ÃÀåÀº 2025³â¿¡ 33¾ï ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ Áß CAGRÀº 10.7%·Î ¼ºÀåÇϸç, 2032³â±îÁö´Â 68¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
ź¼Ò Æ÷Áý Æú¸®¸Ó´Â »ê¾÷ ¹èÃâ¹°, ´ë±â, ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ ÀÌ»êÈź¼Ò¸¦ ¼±ÅÃÀûÀ¸·Î Èí¼ö, ÀúÀå, ¶§·Î´Â ¹æÃâÇϵµ·Ï ¼³°èµÈ ÷´Ü ¼ÒÀçÀÔ´Ï´Ù. Á¶Á¤µÈ °ü´É±â¿Í ´Ù°ø¼º ±¸Á¶·Î ¼³°èµÈ ÀÌ Æú¸®¸Ó´Â ¾Æ¹ÎÀ̳ª À¯±â ±Ý¼Ó °ñ°Ý°ú °°Àº ÀüÅëÀûÀÎ ÈíÂøÁ¦¿¡ ´ëÇÑ È®Àå °¡´ÉÇÏ°í °¡º±°í ºñ¿ë È¿À²ÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ¹è±â°¡½º 󸮿¡¼ °ø±âÀÇ Á÷Á¢ Æ÷Áý±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡ Àû¿ëÇÒ ¼ö ÀÖÀ¸¹Ç·Î ³ÝÁ¦·Î ¹× Żź¼ÒÈ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é ³ÝÁ¦·Î ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§Çؼ´Â 2030³â±îÁö ¿¬°£ CO2 Æ÷Áý ¿ë·®À» 1.2±â°¡Åæ ÀÌ»óÀ¸·Î È®´ëÇØ¾ß ÇÕ´Ï´Ù.
Á¤ºÎÀÇ ¾ö°ÝÇÑ ±âÈÄÁ¤Ã¥°ú ź¼Ò °¡°Ý Ã¥Á¤
ź¼Ò¼¼, ¹èÃâ±Ç°Å·¡Á¦ µî Á¤ºÎÀÇ ¾ö°ÝÇÑ ±âÈÄÁ¤Ã¥ÀÌ ½ÃÀå Ȱ¼ºÈÀÇ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ÀÌ Á¦µµ´Â »ê¾÷°è ¹èÃâÀÚ¿¡°Ô ź¼Ò Æ÷Áý ±â¼ú µµÀÔ¿¡ ´ëÇÑ ±ÝÀüÀû Àμ¾Æ¼ºê¸¦ Á¦°øÇϰí, ±ÔÁ¦ Áؼö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÆÄ¸®ÇùÁ¤°ú °°Àº ±¸¼Ó·Â ÀÖ´Â ±¹Á¦Çù¾àÀº °¢±¹ÀÌ ¾ö°ÝÇÑ Å»Åº¼Ò ¸ñÇ¥¸¦ ¼ö¸³Çϵµ·Ï Àǹ«ÈÇϰí ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ºÐ¸® °øÁ¤¿¡ ÇʼöÀûÀΠź¼Ò Æ÷Áý Æú¸®¸Ó¿¡ ´ëÇÑ ¾ÈÁ¤ÀûÀÎ ¼ö¿ä¸¦ Á¤Ã¥ÀûÀ¸·Î âÃâÇϰí, ±â¼ú °³¹ßÀÚ¿Í ¼ÒÀç °ø±Þ¾÷ü¿¡ À¯¸®ÇÑ ÅõÀÚ È¯°æÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.
³ôÀº ÀÚº» ºñ¿ë°ú ¿î¿µ ºñ¿ë
ź¼ÒÆ÷ÁýÀåÄ¡ÀÇ ¼³Ä¡¿¡´Â ¸¹Àº ÀÚº» ÅõÀÚ°¡ ÇÊ¿äÇϰí, Áö¼ÓÀûÀÎ ¿î¿µ ºñ¿ëµµ Å« ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ºÐ¸® °øÁ¤, ƯÈ÷ ¾Æ¹Î ±â¹Ý ÈíÂøÀº ¿¡³ÊÁö Áý¾àÀûÀΠƯ¼ºÀ¸·Î ÀÎÇØ ¿î¿µ ºñ¿ëÀÌ ³ô½À´Ï´Ù. ¶ÇÇÑ °í±Þ Æú¸®¸Ó¿Í ¸âºê·¹ÀÎÀº Ư¼öÇÑ ¼ºÁúÀ» °¡Áö°í ÀÖÀ¸¹Ç·Î Àç·áºñ°¡ ºñ½Ô´Ï´Ù. ÀÌ·¯ÇÑ Å« °æÁ¦Àû À庮Àº ƯÈ÷ ºñ¿ë¿¡ ¹Î°¨ÇÑ »ê¾÷À̳ª °·ÂÇÑ Åº¼Ò °¡°Ý °áÁ¤ ¸ÞÄ¿´ÏÁòÀÌ ¾ø´Â Áö¿ª¿¡¼ÀÇ º¸±ÞÀ» ¹æÇØÇÏ°í ½ÃÀå ħÅõ¿Í È®À强À» µÐȽÃų ¼ö ÀÖ½À´Ï´Ù.
Æ÷ÁýµÈ ź¼Ò Ȱ¿ë
Æ÷ÁýµÈ ź¼Ò¸¦ Ȱ¿ëÇÑ »õ·Î¿î ¹ë·ùüÀÎÀº Å« ¼ºÀå ±âȸ¸¦ °¡Á®´Ù ÁÙ °ÍÀÔ´Ï´Ù. Æ÷ÁýµÈ CO2´Â °íºÐÀÚ ÀÚü, Áö¼Ó°¡´ÉÇÑ ¿¬·á, ÈÇй°Áú µî °¡Ä¡ ÀÖ´Â Á¦Ç°À¸·Î ÀüȯµÇ¾î ¼øÈ¯Çü °æÁ¦ ¸ðµ¨À» âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼®À¯Æ÷ÁýÁõÁø¹ý(EOR)Àº ¿©ÀüÈ÷ ź¼Ò Ȱ¿ëÀÇ Áß¿äÇÑ »ó¾÷Àû ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¼ø¼ö ºÐ¸®¿¡¼ ¼öÀÍÈ·ÎÀÇ ÀüȯÀº Æ÷Áý ÇÁ·ÎÁ§Æ®ÀÇ °æÁ¦¼ºÀ» Çâ»ó½Ã۰í Á¤Á¦ ¹× ó¸® ´Ü°è¿¡¼ »ç¿ëµÇ´Â °í¼º´É Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÀÚ±ØÇÕ´Ï´Ù.
Á¤Ã¥ ¹× ±ÔÁ¦ ºÒÈ®½Ç¼º
ź¼Ò Æ÷Áý »ê¾÷Àº Á¤ºÎÀÇ Àμ¾Æ¼ºê, ¼¼±Ý °øÁ¦, ¾ÈÁ¤ÀûÀÎ ±âÈÄ Á¤Ã¥¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. Á¤Ä¡Àû »óȲÀÇ ±Þ°ÝÇÑ º¯È³ª Áö¿ø ÇÁ·¹ÀÓ¿öÅ© µµÀÔÀÇ Áö¿¬Àº ÇÁ·ÎÁ§Æ® ÀÚ±Ý Á¶´Þ°ú ÅõÀÚÀÚÀÇ ½Å·Ú¸¦ ºÒ¾ÈÁ¤ÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è¿¡¼ ÅëÀÏµÈ Åº¼Ò °¡°Ý Àü·«ÀÌ ¾ø±â ¶§¹®¿¡ °æÀï Á¶°ÇÀÌ ºÒ±ÕµîÇÏ¿© ½Å±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÀúÇØÇϰí ź¼Ò Æ÷Áý Æú¸®¸ÓÀÇ º¸±ÞÀÌ ´Ê¾îÁú ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº Ãʱâ ź¼Ò Æ÷Áý Æú¸®¸Ó ½ÃÀåÀ» È¥¶õ¿¡ ºü¶ß·È°í, °ø±Þ¸Á Áß´ÜÀ» ÃÊ·¡ÇßÀ¸¸ç, °æÁ¦ ºÒ¾È°ú °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇØ ´ë±Ô¸ð ÇÁ·ÎÁ§Æ®ÀÇ ÃÖÁ¾ ÅõÀÚ °áÁ¤ÀÌ ´Ê¾îÁ³½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ ¸¹Àº Á¤ºÎ°¡ °æ±â ºÎ¾çÃ¥¿¡ ź¼Ò Æ÷Áý¸¦ Æ÷ÇÔ½ÃŰ´Â µî ³ì»ö ºÎÈï¿¡ ´ëÇÑ °ü½ÉÀ» °¡¼ÓÈÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´ÉÇÑ È¸º¹¿¡ ´ëÇÑ ÀçÁ¶¸íÀº °á±¹ ÆÒµ¥¹Í ÀÌÈÄ Àå±âÀûÀÎ ½ÃÀå Àü¸Á°ú Á¤Ã¥Àû Áö¿øÀ» °ÈÇÏ´Â °á°ú¸¦ °¡Á®¿Ô½À´Ï´Ù.
¿¹Ãø ±â°£ Áß °íºÐÀÚ Çʸ§ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
°íºÐÀÚ¸· ºÎ¹®Àº °¡½º ºÐ¸® °øÁ¤, ƯÈ÷ ¿¬¼Ò Àü Æ÷Áý ¹× õ¿¬°¡½º 󸮿¡ ´ëÇÑ ÀÀ¿ëÀÌ È®¸³µÇ¾î ÀÖÀ¸¹Ç·Î ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿î¿µ È¿À²¼º, È®À强, ¾×ü ¾Æ¹Î ½Ã½ºÅÛ¿¡ ºñÇØ »ó´ëÀûÀ¸·Î ³·Àº ¿¡³ÊÁö ¼Òºñ°¡ äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ È¥ÇÕ ¸ÅÆ®¸¯½º ¸âºê·¹Àΰú °°Àº ¸âºê·¹ÀÎ Àç·áÀÇ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀº ºÐ¸® ¼º´É°ú ³»ÈÇмºÀ» Çâ»ó½ÃÄÑ ÀÌ ºÐ¾ßÀÇ ¿ìÀ§¸¦ È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Á÷Á¢ °ø±â Æ÷Áý(DAC) ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß Á÷Á¢ °ø±â Æ÷Áý(DAC) ºÐ¾ß´Â ºÐ»êÇü ¹èÃâ¿øÀ¸·ÎºÎÅÍÀÇ ¹èÃâÀ» ÇØ°áÇÏ°í ¸¶À̳ʽº ¹èÃâÀ» ´Þ¼ºÇÒ ¼ö ÀÖ´Â °¡´É¼º¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â¼úÀÇ ¹ßÀü°ú ź¼Ò Á¦°Å Å©·¹µ÷¿¡ ´ëÇÑ ±â¾÷ÀÇ ÅõÀÚ Áõ°¡´Â ÁÖ¿ä ¼ºÀå Ã˸ÅÁ¦ÀÔ´Ï´Ù. ¶ÇÇÑ ÀÌ»êÈź¼Ò Á¦°Å(CDR)¸¦ Ưº°È÷ °Ü³ÉÇÑ Á¤ºÎÀÇ Áö¿ø Á¤Ã¥Àº DAC ±â¼ú¿¡ ÇʼöÀûÀΠƯ¼ö ÈíÂøÁ¦ ¹× Æú¸®¸ÓÀÇ ½ÅÈï ½ÃÀåÀ» Çü¼ºÇϰí ÀÖÀ¸¸ç, ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ¹Ì±¹ÀÇ 45Q ¼¼¾×°øÁ¦ µî ¿¬¹æÁ¤ºÎÀÇ Áö¿øÁ¤Ã¥ÀÌ Åº¼Ò Æ÷Áý ¹× ÀúÀå(CCS) ÇÁ·ÎÁ§Æ®¿¡ °·ÂÇÑ ÀçÁ¤Àû Àμ¾Æ¼ºê¸¦ Á¦°øÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ »ê¾÷ ¹èÃâÀÚ°¡ ÁýÁߵǾî ÀÖ°í, ¼®À¯ÁõÁøÆ÷Áý(EOR) »ç¾÷¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, Æ÷Áý±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú ÇÁ·Î¹ÙÀÌ´õ¿Í ±¤¹üÀ§ÇÑ CO2 ÆÄÀÌÇÁ¶óÀÎ ÀÎÇÁ¶óÀÇ Á¸Àç´Â ±× Áö¹èÀû ÁöÀ§¸¦ ´õ¿í °ø°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, À̴ ƯÈ÷ Áß±¹°ú Àεµ¿¡¼ »ê¾÷ Á¦Á¶ ¹× ¹ßÀü ºÎ¹®ÀÌ ºü¸£°Ô ¼ºÀåÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ³ÝÁ¦·Î °ø¾àÀ» ´Þ¼ºÇϱâ À§ÇÑ Á¤ºÎÀÇ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ûÁ¤±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ CCS ½ÇÁõ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ±¹Á¦ÀûÀÎ Çù·Â°ú ÀÚ±Ý Áö¿øÀº ±â¼ú äÅÃÀ» °¡¼ÓÈÇÏ¿© ź¼Ò Æ÷Áý Æú¸®¸Ó ½ÃÀåÀÇ °í¼ºÀå ȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Carbon Capture Polymers Market is accounted for $3.3 billion in 2025 and is expected to reach $6.8 billion by 2032 growing at a CAGR of 10.7% during the forecast period. Carbon capture polymers are advanced materials engineered to selectively absorb, store, and sometimes release carbon dioxide from industrial emissions, ambient air, or energy systems. Designed with tailored functional groups and porous architectures, these polymers provide scalable, lightweight, and cost-efficient alternatives to traditional sorbents like amines or metal-organic frameworks. Their adaptability across applications ranging from flue gas treatment to direct air capture positions them as a crucial enabler in achieving net-zero and decarbonization goals.
According to the International Energy Agency (IEA), to meet net-zero goals, the annual capacity of CO2 capture must scale up to over 1.2 gigatonnes by 2030.
Stringent government climate policies and carbon pricing
Stringent government climate policies, including carbon taxes and emissions trading schemes, are primary market drivers. These mechanisms financially incentivize industrial emitters to adopt carbon capture technologies to mitigate regulatory compliance costs. Additionally, binding international agreements like the Paris Accord compel nations to enact rigorous decarbonization targets. This creates a stable, policy-driven demand for carbon capture polymers, which are essential in separation processes, ensuring a favorable investment landscape for technology developers and materials suppliers.
High capital and operational costs
The significant capital expenditure required for installing carbon capture units and the ongoing operational expenses present a major market restraint. The energy-intensive nature of separation processes, particularly amine-based absorption, elevates operational costs. Moreover, the specialized nature of advanced polymers and membranes contributes to high material costs. These substantial financial barriers can deter widespread adoption, especially among cost-sensitive industries and in regions without strong carbon pricing mechanisms, potentially slowing market penetration and scalability.
Utilization of captured carbon
The emerging value chain for utilizing captured carbon presents a substantial growth opportunity. Captured CO2 can be transformed into valuable products, including polymers themselves, sustainable fuels, and chemicals, creating circular economy models. Additionally, enhanced oil recovery (EOR) remains a significant commercial driver for carbon utilization. This transition from pure sequestration to monetization improves the economic viability of capture projects, thereby stimulating demand for high-performance polymers used in the purification and processing stages.
Policy and regulatory uncertainty
The carbon capture industry is heavily reliant on government incentives, tax credits, and stable climate policies. Sudden political shifts or delays in implementing supportive frameworks can destabilize project financing and investor confidence. Moreover, the lack of a globally unified carbon pricing strategy creates an uneven playing field, potentially stifling investment in new technologies and delaying the widespread deployment of carbon capture polymers.
The COVID-19 pandemic initially disrupted the carbon capture polymers market, causing supply chain interruptions and delays in final investment decisions for large-scale projects due to economic uncertainty and lockdowns. However, the crisis also accelerated the focus on a green recovery, with many governments integrating carbon capture into their economic stimulus packages. This renewed emphasis on building back sustainably has ultimately bolstered long-term market prospects and policy support post-pandemic.
The polymeric membranes segment is expected to be the largest during the forecast period
The polymeric membranes segment is expected to account for the largest market share during the forecast period due to its well-established application in gas separation processes, particularly in pre-combustion capture and natural gas processing. Their operational efficiency, scalability, and relatively lower energy consumption compared to liquid amine systems drive adoption. Additionally, continuous innovation in membrane materials, such as mixed matrix membranes, enhances separation performance and chemical resistance, cementing their dominance in this sector.
The direct air capture (DAC) segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the direct air capture (DAC) segment is predicted to witness the highest growth rate, fueled by its potential to address emissions from distributed sources and achieve negative emissions. Technological advancements and growing corporate investment in carbon removal credits are key growth catalysts. Moreover, supportive government policies specifically targeting carbon dioxide removal (CDR) are creating a nascent but rapidly expanding market for specialized sorbents and polymers essential for DAC technologies.
During the forecast period, the North America region is expected to hold the largest market share, driven by supportive federal policies such as the 45Q tax credit in the US, which provides a strong financial incentive for carbon capture and storage (CCS) projects. Furthermore, a high concentration of industrial emitters and significant investments in enhanced oil recovery (EOR) operations create a robust demand for capture technologies. The presence of leading technology providers and extensive CO2 pipeline infrastructure further solidifies its dominant position.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, owing to rapidly expanding industrial manufacturing and power generation sectors, particularly in China and India. Growing governmental focus on meeting net-zero commitments is prompting increased investment in clean technology. Additionally, international collaborations and funding for CCS demonstration projects in the region are accelerating technology adoption, creating a high-growth environment for the carbon capture polymers market.
Key players in the market
Some of the key players in Carbon Capture Polymers Market include Air Products and Chemicals, Inc., Air Liquide S.A., Honeywell International Inc., Evonik Industries AG, Fujifilm Corporation, Linde Engineering (Linde plc), UBE Corporation, Grasys JSC, Covestro AG, Novomer Inc., TotalEnergies SE, BASF SE, Shell plc, SK Innovation Co., Ltd., Carbon Clean Solutions Ltd. and Newlight Technologies, Inc.
In November 2024, UBE Corporation announced today that it has launched new composite products designed to help reduce greenhouse gas (GHG) emissions and environmental impact. These composite products employ recycled carbon fiber with traceability, leveraging the technologies behind UBE's long track-record in developing engineering plastics.
In July 2023, Vallourec and Evonik Industries AG have recently signed a Memorandum of Understanding (MoU) for the development of tubular solutions for Carbon Capture, Utilization and Storage (CCUS). As part of the collaboration, the companies will work to develop an innovative, corrosion-resistant CO2 transportation technology for the CCUS industry and thereby address one of the key challenges of CO2 transportation and storage.
In April 2023, Linde announced it has signed an agreement with Heidelberg Materials, one of the world's largest building materials companies, to jointly build, own and operate a large-scale carbon capture and liquefaction facility.