½ÃÀ庸°í¼­
»óǰÄÚµå
1802968

¼¼°èÀÇ AI Á¦·ÎÇÁ·ÎÅØÅÍ Ã¢Á¦ ½ÃÀå ¿¹Ãø(-2032³â) : Ä¡·á ¿µ¿ªº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

AI Geroprotector Discovery Market Forecasts to 2032 - Global Analysis By Therapeutic Area, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ AI Á¦·ÎÇÁ·ÎÅØÅÍ Ã¢Á¦ ½ÃÀåÀº 2025³â¿¡ 3¾ï 1,600¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ Áß CAGR 26.4%·Î ¼ºÀåÇϸç, 2032³â±îÁö´Â 16¾ï 2,800¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

AI ³ëÈ­¹æÁöÁ¦ °³¹ßÀº ³ëÈ­¿Í °ü·ÃµÈ °úÁ¤À» Áö¿¬, ¿¹¹æ, ¿ªÇà½Ãų ¼ö ÀÖ´Â È­ÇÕ¹°À̳ª °³ÀÔÀ» ½Äº°, ¼±º°, ÃÖÀûÈ­Çϱâ À§ÇØ ÀΰøÁö´É°ú ¸Ó½Å·¯´×À» Àû¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. AI´Â ¹æ´ëÇÑ »ý¹°ÇÐÀû µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© ³ëÈ­ ¿¹¹æ °¡´É¼ºÀ» ºü¸£°Ô ¿¹ÃøÇϰí, ÀǾàǰ °³¹ßÀÇ ½ÃÇàÂø¿À¸¦ ÁÙÀ̰í, ³ëÈ­ ¸ÞÄ¿´ÏÁòÀÇ Á¤¹ÐÇÑ Ç¥ÀûÈ­¸¦ °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼¼°è °í·ÉÈ­ Àα¸ Áõ°¡

¼¼°è ³ëÀÎ Àα¸ Áõ°¡´Â AI ³ëÈ­¹æÁöÁ¦ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ÀÌ Àα¸ Áý´ÜÀº ³ëÈ­ °ü·Ã ÁúȯÀÇ À¯º´·üÀÌ Áõ°¡Çϸ鼭 ³ëÈ­ÀÇ »ý¹°ÇÐÀû ¸ÞÄ¿´ÏÁòÀ» Ç¥ÀûÀ¸·Î ÇÏ´Â Çõ½ÅÀûÀÎ Ä¡·á¹ý¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ Àα¸ Åë°èÇÐÀû º¯È­´Â ÀÇ·á ½Ã½ºÅÛ¿¡ Å« ºÎ´ãÀ» ÁÖ¸ç, È¿°úÀûÀÌ°í ¿¹¹æÀûÀÎ ³ëÈ­ ¹æÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ±ä±ÞÇÑ ¿ä±¸°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î, °í·ÉÈ­ Àα¸ Áõ°¡´Â °Ç°­ ¼ö¸íÀ» ¿¬ÀåÇÏ°í ³ëÈ­¿Í °ü·ÃµÈ Áúº´¿¡ µû¸¥ °æÁ¦Àû ºÎ´ãÀ» ÁÙÀÏ ¼ö ÀÖ´Â AI ±â¹Ý Á¦·ÎÇÁ·ÎÅØÅÍÀÇ ¹ß°ß¿¡ ´ëÇÑ ÅõÀÚ¿Í ¿¬±¸¸¦ Á÷Á¢ÀûÀ¸·Î ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

±â¼ú ÀÎÇÁ¶ó¸¦ À§ÇÑ ³ôÀº Ãʱâ ÀÚº» ÅõÀÚ ºñ¿ë

½Å¾à°³¹ßÀ» À§ÇÑ AI ¾Ë°í¸®Áò °³¹ß ¹× Àû¿ëÀ» À§Çؼ­´Â °í¼º´É ÄÄÇ»ÆÃ(HPC) ½Ã½ºÅÛ, ¹æ´ëÇÑ µ¥ÀÌÅÍ ½ºÅ丮Áö ¼Ö·ç¼Ç, Àü¿ë ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ Á¢±ÙÀÌ ÇÊ¿äÇϸç, ÀÌ ¸ðµç °ÍÀº ¾öû³­ ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. µ¥ÀÌÅÍ »çÀ̾ð½ºÀÚ, °è»ê »ý¹°ÇÐÀÚ, AI Àü¹®°¡·Î ±¸¼ºµÈ °íµµ·Î ¼÷·ÃµÈ ÀηÂÀÇ Ã¤ÅÃÀº ¿î¿µ ºñ¿ëÀ» ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº °æÁ¦Àû À庮Àº ÀڱݷÂÀÌ ÀÖ´Â ±âÁ¸ ±â¾÷ ½ÃÀå ÁøÀÔÀ» È¿°úÀûÀ¸·Î °­È­Çϰí Áß¼Ò±â¾÷ÀÇ ÁøÀÔÀ» Á¦ÇÑÇÏ¿© Çõ½ÅÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

°³ÀÎ ¸ÂÃãÇü ³ëÈ­ ¿¹¹æ ¿ä¹ý °³¹ß

AI ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© ¸ÖƼ¿À¹Í½º µ¥ÀÌÅÍ, »ýȰ½À°ü ¿äÀÎ, ÀÓ»ó ±â·ÏÀ» ºÐ¼®ÇÏ¿© ȯÀÚº° ³ëÈ­ ¹ÙÀÌ¿À¸¶Ä¿¸¦ ½Äº°Çϰí, ÀáÀçÀûÀÎ ³ëÈ­ ¹æÁöÁ¦¿¡ ´ëÇÑ °³ÀÎÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀ» ÅëÇØ È¿´ÉÀ» ±Ø´ëÈ­ÇÏ°í ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈ­ÇÏ´Â °íµµ·Î ¸ÂÃãÈ­µÈ Ä¡·á ¿ä¹ýÀ» ½±°Ô °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ °³º°È­ Á¢±Ù¹ýÀº ÀÓ»ó½ÃÇè¿¡¼­ ȯÀÚ Áý´ÜÀ» ¼¼ºÐÈ­ÇÏ¿© ½ÃÇè ¼³°è¸¦ °­È­Çϰí, »õ·Î¿î Ç¥Àû ³ëÈ­ ¹æÁö È­ÇÕ¹°ÀÇ ½ÂÀÎÀ¸·Î °¡´Â ±æÀ» ¾Õ´ç±æ ¼ö ÀÖ½À´Ï´Ù.

ºí·¢¹Ú½º ¹®Á¦¿Í AI ¿¹ÃøÀÇ ÇØ¼® °¡´É¼º

AI ½Ã½ºÅÛÀÌ ±Ùº»ÀûÀÎ »ý¹°ÇÐÀû ±Ù°Å¿¡ ´ëÇÑ ¸íÈ®Çϰí ÇØ¼® °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÏÁö ¾Ê°í ÀáÀçÀûÀÎ ³ëÈ­ ¹æÁöÁ¦ È常¦ »ý¼ºÇÏ´Â °æ¿ì, ÀÌ´Â ½É°¢ÇÑ Àå¾Ö¹°ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. FDA³ª EMA¿Í °°Àº ±ÔÁ¦±â°üÀº ÀǾàǰÀÇ ÀÛ¿ë ¸ÞÄ¿´ÏÁò¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀÌÇØ¸¦ ÅëÇØ Çã°¡¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÒÅõ¸í¼ºÀº ÀÓ»óÀÇ¿Í ¿¬±¸ÀÚµéÀÇ ½Å·Ú¸¦ ¶³¾î¶ß¸®°í, ÀÓ»ó Àû¿ëÀ» Áö¿¬½Ã۸ç, AI ±â¹Ý ¹ß°ßÀÌ ÁÖ·ù Ä¡·áÁ¦ °³¹ß ÆÄÀÌÇÁ¶óÀο¡ ±¤¹üÀ§ÇÏ°Ô ÅëÇյǴ °ÍÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 ÆÒµ¥¹ÍÀº AI Á©·ÎÇÁ·ÎÅØÅÍ Á¦ÀÛ ½ÃÀå¿¡ ÀÌÁßÀ¸·Î ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â ¿¬±¸ Ȱµ¿°ú °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ ºñ COVID °ü·Ã ÇÁ·ÎÁ§Æ®¿¡ ÀϽÃÀûÀÎ Áö¿¬À» ÃÊ·¡Çß½À´Ï´Ù. ±×·¯³ª ÀÌÈÄ ½Å¼ÓÇÑ ½Å¾à °³¹ß ¹× Àç»ç¿ë¿¡ ÀÖÀ¸¸ç, °í±Þ ÄÄÇ»ÆÃ Á¢±Ù¹ýÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °­Á¶ÇÔÀ¸·Î½á Áß¿äÇÑ ÃËÁøÁ¦ ¿ªÇÒÀ» Çß½À´Ï´Ù. À̹ø ÆÒµ¥¹ÍÀº ½ÅÁ¾ º´¿ø±Õ¿¡ ´ëÇÑ ³ëÀÎ Àα¸ÀÇ Ãë¾à¼ºÀ» ºÎ°¢½ÃÄ×°í, °Ç°­¼ö¸í ¿¬Àå¿¡ ´ëÇÑ ¿¬±¸ÀÇ Á߿伺À» °­È­Çß½À´Ï´Ù. ±× °á°ú, AI¸¦ Ȱ¿ëÇÑ ¹ÙÀÌ¿ÀÅ×Å© Ç÷§Æû¿¡ ´ëÇÑ ÅõÀÚÀÚµéÀÇ °ü½É°ú ÀÚ±ÝÀÌ Áõ°¡Çß°í, ±Ã±ØÀûÀ¸·Î ½ÃÀå ¼ºÀå¿¡ Àå±âÀûÀ¸·Î ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¸Ó½Å·¯´×(ML) ºÐ¾ß°¡ °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸Ó½Å·¯´×(ML) ºÎ¹®Àº ¹æ´ëÇÑ »ý¹°ÇÐÀû µ¥ÀÌÅͼ¼Æ®¿¡¼­ º¹ÀâÇÏ°í ºñ¼±ÇüÀûÀÎ ÆÐÅÏÀ» ½Äº°ÇÏ´Â µ¥ ÀÖÀ¸¸ç, ŸÀÇ ÃßÁ¾À» ºÒÇãÇÏ´Â ¼÷·Ãµµ¸¦ °¡Áö°í ÀÖÀ¸¹Ç·Î ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ML ¾Ë°í¸®Áò, ƯÈ÷ µö·¯´× ³×Æ®¿öÅ©´Â ÇÏÀ̽º·çDz ½ºÅ©¸®´× µ¥ÀÌÅÍ, À¯Àüü ½ÃÄö½Ì, ´Ü¹éÁúüÇÐ ÇÁ·ÎÆÄÀÏÀ» ó¸®Çϰí, ½Å±Ô ºÐÀÚÀÇ »ý½Ä º¸È£ È¿°ú¿Í µ¶¼ºÀ» ¿¹ÃøÇÏ´Â µ¥ ¸Å¿ì ´É¼÷ÇÕ´Ï´Ù. »õ·Î¿î µ¥ÀÌÅͷκÎÅÍ Áö¼ÓÀûÀ¸·Î ÇнÀÇÏ°í °³¼±ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº Ÿ°Ù ½Äº°, ¸®µå ÃÖÀûÈ­, ¹ÙÀÌ¿À¸¶Ä¿ Ž»ö¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹ü¿ë¼º°ú ´Ù¸¥ ½Å¾à°³¹ß ºÐ¾ß¿¡¼­ ÀÔÁõµÈ È¿°ú·Î ÀÎÇØ MLÀº °¡Àå Å« ºÎ¹®À¸·Î¼­ÀÇ ÀÔÁö¸¦ ±»°ÇÈ÷ Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¾Ï ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ³ëÈ­¿Í ¹ß¾ÏÀÌ ¹ÐÁ¢ÇÏ°Ô ¿¬°üµÇ¾î ÀÖÀ¸¹Ç·Î ¾Ï ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ëÈ­´Â ¾ÏÀÇ ÁÖ¿ä À§Çè ¿ä¼ÒÀ̸ç, ¼¼Æ÷ ¼Õ»ó°ú ³ëÈ­ÀÇ ÃàÀûÀº Á¾¾ç Çü¼ºÀ» À§ÇÑ °ü´ëÇÑ È¯°æÀ» Á¶¼ºÇϱ⠶§¹®ÀÔ´Ï´Ù. ´ëºÎºÐÀÇ ³ëÈ­¹æÁöÁ¦´Â Àü¾ÇÈ­µÈ ³ëÈ­¼¼Æ÷¸¦ ¼±ÅÃÀûÀ¸·Î Á¦°ÅÇÔÀ¸·Î½á °­·ÂÇÑ Ç×¾ÏÀÛ¿ëÀ» ³ªÅ¸³À´Ï´Ù. °í·ÉÈ­ »çȸÀÇ ³ôÀº ¾Ï ¹ßº´·üÀº ±âº»ÀûÀÎ ³ëÈ­ °úÁ¤°ú ¾Ï ¹ß»ýÀ» µ¿½Ã¿¡ Ç¥ÀûÀ¸·Î »ïÀ» ¼ö ÀÖ´Â AI°¡ ¹ß°ßÇÑ Ä¡·áÁ¦¿¡ ´ëÇØ ¸íÈ®ÇÑ ÀÓ»óÀû °æ·Î¿Í »ó´çÇÑ ´ëÀÀ °¡´ÉÇÑ ½ÃÀåÀ» Á¦½ÃÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â ÁÖ¿ä Á¦¾à»ç ¹× »ý¸í°øÇÐ ±â¾÷, ¼¼°è ÃÖ°í ¼öÁØÀÇ Çмú¿¬±¸ ±â°ü, źźÇÑ º¥Ã³ ijÇÇÅ» »ýŰ谡 ½Ã³ÊÁö È¿°ú¸¦ ¹ßÈÖÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ Æ¯È÷ AI ±â¹Ý ÀǾàǰ °³¹ß Åø¿¡ Á¡Á¡ ´õ °³¹æÀûÀÎ ¹Ì±¹ FDAÀÇ Áö¿øÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ ½ÃÀå °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ³ôÀº ÀÇ·á ÀÎÇÁ¶ó¿Í ³ôÀº ÀÇ·áºñ´Â ÃÖ÷´Ü AI ±â¼ú äÅÃÀ» ´õ¿í ¿ëÀÌÇÏ°Ô Çϰí, AI Á©·ÎÇÁ·ÎÅØÅÍ °³¹ßÀÇ ¼±µÎÁÖÀڷμ­ÀÇ ÀÔÁö¸¦ È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â »ý¸í°øÇÐ ¹× Á¦¾à ºÎ¹®ÀÇ ´ëÆøÀûÀÎ È®Àå, ÇコÄÉ¾î ºÐ¾ß¿¡¼­ AI Çõ½ÅÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎ ±¸»ó Áõ°¡, ÀϺ» ¹× Áß±¹°ú °°Àº ±¹°¡ÀÇ ±Þ¼ÓÇÑ °í·ÉÈ­ µî¿¡ ÀÇÇØ ÃËÁøµÉ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ ³ëÈ­ °ü·Ã ÁúȯÀÇ À¯º´·ü Áõ°¡·Î ÀÎÇØ È¿°úÀûÀÎ ³ëÀÎ Ä¡·á °³ÀÔÀÌ ½Ã±ÞÈ÷ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. AI ½ºÅ¸Æ®¾÷¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, Áö¿ª ¹× ¼¼°è ±â¾÷ °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½Ê ±¸ÃàÀº ÀÌ Áö¿ª ½ÃÀåÀÇ °¡¼ÓÀû È®ÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ AI Á¦·ÎÇÁ·ÎÅØÅÍ Ã¢Á¦ ½ÃÀå : Ä¡·á ¿µ¿ªº°

  • °í·ÉÀÚ¿Í ³ëÈ­¿¡ ¼ö¹ÝÇÏ´Â Çã¾à¼º
  • ½ÉÇ÷°üÁúȯ
  • ½Å°æº¯¼ºÁúȯ
  • ´ë»ç¼º Áúȯ
  • Á¾¾çÇÐ
  • ±âŸ ³ëÈ­ °ü·Ã Ä¡·á ¿µ¿ª

Á¦6Àå ¼¼°èÀÇ AI Á¦·ÎÇÁ·ÎÅØÅÍ Ã¢Á¦ ½ÃÀå : ±â¼úº°

  • ±â°èÇнÀ(ML)
    • Áöµµ ÇнÀ
    • ºñÁöµµ ÇнÀ
    • °­È­ ÇнÀ
    • µö·¯´×(DL)
  • »ý¼ºÇü AI
    • ÀÚ¿¬¾ð¾îó¸®(NLP)
    • ÄÄÇ»ÅÍ ºñÀü
    • ±âŸ »ý¼ºÇü AI
  • ±×·¡ÇÁ ±â¹Ý AI¿Í Áö½Ä ±×·¡ÇÁ

Á¦7Àå ¼¼°èÀÇ AI Á¦·ÎÇÁ·ÎÅØÅÍ Ã¢Á¦ ½ÃÀå : ¿ëµµº°

  • Ÿ°Ù ½Äº°°ú °ËÁõ
  • ¸®µå Á¦³Ê·¹À̼ǰú ÃÖÀûÈ­
  • ¾à¹° Àç»ç¿ë
  • ¹ÙÀÌ¿À¸¶Ä¿ ¹ß°ß°ú ³ëÈ­ ½Ã°è
  • µ¶¼º°ú ¾ÈÀü¼º ¿¹Ãø
  • ÀüÀÓ»ó ½ÃÇè

Á¦8Àå ¼¼°èÀÇ AI Á¦·ÎÇÁ·ÎÅØÅÍ Ã¢Á¦ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • °è¾à Á¶»ç±â°ü(CRO)
  • Çмú¡¤¿¬±¸±â°ü
  • Àå¼ö Á᫐ ½ºÅ¸Æ®¾÷°ú Ŭ¸®´Ð

Á¦9Àå ¼¼°èÀÇ AI Á¦·ÎÇÁ·ÎÅØÅÍ Ã¢Á¦ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, Á¶ÀÎÆ® º¥Ã³
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Insilico Medicine
  • Deep Longevity
  • Juvenescence
  • BioAge Labs
  • Calico
  • Recursion Pharmaceuticals
  • BenevolentAI
  • Xaira Therapeutics
  • Arda Therapeutics
  • InVivo Biosystems
  • Gero
  • Helix
  • Valo Health
  • Exscientia
  • Atomwise
  • BERG
KSA 25.09.10

According to Stratistics MRC, the Global AI Geroprotector Discovery Market is accounted for $316 million in 2025 and is expected to reach $1628 million by 2032 growing at a CAGR of 26.4% during the forecast period. AI Geroprotector Discovery refers to the application of artificial intelligence and machine learning to identify, screen, and optimize compounds or interventions that can slow, prevent, or reverse aging-related processes. By analyzing vast biological datasets, AI enables faster prediction of geroprotective potential, reduces trial-and-error in drug development, and accelerates precision targeting of aging mechanisms.

Market Dynamics:

Driver:

Rising global aging population

The escalating global geriatric demographic is a primary driver for the AI geroprotector discovery market. This population cohort exhibits a heightened prevalence of age-related disorders, thereby amplifying the demand for innovative therapeutic interventions that target the biological mechanisms of aging. Additionally, this demographic shift imposes a significant strain on healthcare systems, creating an urgent need for efficacious and preventative anti-aging solutions. Consequently, the rising aging population directly fuels investment and research into AI-driven discovery of geroprotectors, which promise to extend healthspan and mitigate the economic burden associated with age-related morbidity.

Restraint:

High initial capital investment for technology infrastructure

The development and application of AI algorithms for drug discovery necessitate access to high-performance computing (HPC) systems, vast data storage solutions, and specialized software, all of which entail exorbitant costs. The recruitment of a highly skilled workforce comprising data scientists, computational biologists, and AI specialists further escalates operational expenditures. This high financial barrier effectively consolidates market presence among well-funded established players and constrains the participation of small and medium-sized enterprises (SMEs), potentially stifling innovation.

Opportunity:

Development of personalized geroprotective regimens

AI algorithms can be leveraged to analyze multi-omics data, lifestyle factors, and clinical histories to identify patient-specific aging biomarkers and predict individual responses to potential geroprotectors. This capability facilitates the development of highly tailored therapeutic regimens that maximize efficacy and minimize adverse effects. Furthermore, this personalized approach allows for the stratification of patient populations in clinical trials, enhancing trial design and accelerating the path to regulatory approval for novel, targeted anti-aging compounds.

Threat:

The "Black Box" problem and interpretability of AI predictions

When AI systems generate a potential geroprotector candidate without providing clear, interpretable insights into the underlying biological rationale, it creates significant hurdles. Regulatory bodies like the FDA and EMA require a comprehensive understanding of a drug's mechanism of action for approval. This opacity can erode trust among clinicians and researchers, potentially delaying clinical translation and limiting the widespread integration of AI-derived discoveries into mainstream therapeutic development pipelines.

Covid-19 Impact:

The COVID-19 pandemic had a dual impact on the AI geroprotector discovery market. Initially, it disrupted research activities and supply chains, causing temporary delays in non-COVID-related projects. However, it subsequently acted as a significant accelerator by underscoring the critical role of advanced computational approaches in rapid drug discovery and repurposing. The pandemic highlighted the vulnerabilities of the elderly population to novel pathogens, thereby reinforcing the importance of research into healthspan extension. This led to increased investor interest and funding directed towards AI-powered biotechnology platforms, ultimately netting a positive long-term effect on market growth.

The machine learning (ML) segment is expected to be the largest during the forecast period

The machine learning (ML) segment is expected to account for the largest market share during the forecast period due to its unparalleled proficiency in identifying complex, non-linear patterns within vast biological datasets. ML algorithms, particularly deep learning networks, are exceptionally adept at processing high-throughput screening data, genomic sequences, and proteomic profiles to predict the geroprotective efficacy and toxicity of novel molecules. Their ability to continuously learn and improve from new data makes them indispensable for target identification, lead optimization, and biomarker discovery. This versatility and proven effectiveness in other drug discovery domains solidify ML's position as the largest segment.

The oncology segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the oncology segment is predicted to witness the highest growth rate, driven by the profound intersection between aging and carcinogenesis. Aging is a primary risk factor for cancer, as the accumulation of cellular damage and senescence creates a permissive environment for tumorigenesis. Many geroprotectors, such as senolytics, exhibit strong anti-cancer potential by selectively eliminating premalignant senescent cells. The high incidence of cancer within the aging population presents a clear clinical pathway and a substantial addressable market for AI-discovered therapies that can simultaneously target fundamental aging processes and oncogenesis, which is fueling the segment growth.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, attributed to its synergistic confluence of leading pharmaceutical and biotechnology companies, world-class academic research institutions, and a robust venture capital ecosystem. Moreover, the presence of a supportive regulatory framework, particularly from the U.S. FDA, which is increasingly open to AI-derived drug development tools, facilitates market growth. The region's advanced healthcare infrastructure and high healthcare expenditure further enable the adoption of cutting-edge AI technologies, consolidating its position as the frontrunner in the AI geroprotector discovery landscape.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, fueled by a significant expansion in its biotechnology and pharmaceutical sectors, increasing government initiatives aimed at fostering AI innovation in healthcare, and a rapidly aging population in countries like Japan and China. Additionally, the rising prevalence of age-related diseases is creating an urgent need for effective gerotherapeutic interventions. The growing investment in AI startups and the establishment of strategic partnerships between regional and global players are key factors catalyzing the market's accelerated expansion in this region.

Key players in the market

Some of the key players in AI Geroprotector Discovery Market include Insilico Medicine, Deep Longevity, Juvenescence, BioAge Labs, Calico, Recursion Pharmaceuticals, BenevolentAI, Xaira Therapeutics, Arda Therapeutics, InVivo Biosystems, Gero, Helix, Valo Health, Exscientia, Atomwise and BERG.

Key Developments:

In June 2025, BioAge has launched an initiative to analyze over 17,000 samples from the HUNT Biobank in Norway to accelerate discovery of drug targets targeting the biology of aging. This molecular profiling is expected to expand insights and identify novel therapeutic targets for aging-related diseases.

In April 2024, AI-based drug developer Xaira Therapeutics has been launched with more than $1 billion in capital and a self-described ambitious commitment to transform drug discovery and development by creating new and more effective treatments faster.

Therapeutic Areas Covered:

  • Cardiovascular Diseases
  • Neurodegenerative Diseases
  • Metabolic Diseases
  • Oncology
  • Other Age-related Therapeutic Areas

Technologies Covered:

  • Machine Learning (ML)
  • Generative AI
  • Graph-Based AI & Knowledge Graphs

Applications Covered:

  • Target Identification & Validation
  • Lead Generation & Optimization
  • Drug Repurposing
  • Biomarker Discovery & Aging Clocks
  • Toxicity & Safety Prediction
  • Preclinical Testing

End Users Covered:

  • Pharmaceutical and Biotechnology Companies
  • Contract Research Organizations (CROs)
  • Academic and Research Institutions
  • Longevity-focused Startups & Clinics

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global AI Geroprotector Discovery Market, By Therapeutic Area

  • 5.1 Introduction
  • 5.2 Geriatric Diseases & Age-related Frailty
  • 5.3 Cardiovascular Diseases
  • 5.4 Neurodegenerative Diseases
  • 5.5 Metabolic Diseases
  • 5.6 Oncology
  • 5.7 Other Age-related Therapeutic Areas

6 Global AI Geroprotector Discovery Market, By Technology

  • 6.1 Introduction
  • 6.2 Machine Learning (ML)
    • 6.2.1 Supervised Learning
    • 6.2.2 Unsupervised Learning
    • 6.2.3 Reinforcement Learning
    • 6.2.4 Deep Learning (DL)
  • 6.3 Generative AI
    • 6.3.1 Natural Language Processing (NLP)
    • 6.3.2 Computer Vision
    • 6.3.3 Other Generative AI
  • 6.4 Graph-Based AI & Knowledge Graphs

7 Global AI Geroprotector Discovery Market, By Application

  • 7.1 Introduction
  • 7.2 Target Identification & Validation
  • 7.3 Lead Generation & Optimization
  • 7.4 Drug Repurposing
  • 7.5 Biomarker Discovery & Aging Clocks
  • 7.6 Toxicity & Safety Prediction
  • 7.7 Preclinical Testing

8 Global AI Geroprotector Discovery Market, By End User

  • 8.1 Introduction
  • 8.2 Pharmaceutical and Biotechnology Companies
  • 8.3 Contract Research Organizations (CROs)
  • 8.4 Academic and Research Institutions
  • 8.5 Longevity-focused Startups & Clinics

9 Global AI Geroprotector Discovery Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Insilico Medicine
  • 11.2 Deep Longevity
  • 11.3 Juvenescence
  • 11.4 BioAge Labs
  • 11.5 Calico
  • 11.6 Recursion Pharmaceuticals
  • 11.7 BenevolentAI
  • 11.8 Xaira Therapeutics
  • 11.9 Arda Therapeutics
  • 11.10 InVivo Biosystems
  • 11.11 Gero
  • 11.12 Helix
  • 11.13 Valo Health
  • 11.14 Exscientia
  • 11.15 Atomwise
  • 11.16 BERG
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦