½ÃÀ庸°í¼­
»óǰÄÚµå
1802986

¼¼°èÀÇ °¨Á¤ ÀÎ½Ä AI ½ÃÀå ¿¹Ãø : ±¸¼º ¿ä¼Òº°, ¹èÆ÷ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)

Emotional Recognition AI Market Forecasts to 2032 - Global Analysis By Component (Software, Hardware and Services), Deployment Mode, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ °¨Á¤ ÀÎ½Ä AI ½ÃÀåÀº 2025³â 36¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 22.7%¸¦ ³ªÅ¸³»¸ç 2032³â¿¡´Â 149¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¨Á¤ ÀÎ½Ä AI´Â Ç¥Á¤, À½¼º Åæ, ¹Ùµð ¾ð¾î, »ý¸®Àû ½ÅÈ£ ºÐ¼®À» ÅëÇØ Àΰ£ÀÇ °¨Á¤À» °¨Áö, ÇØ¼® ¹× ´ëÀÀÇϵµ·Ï ¼³°èµÈ ÀΰøÁö´ÉÀÇ °í±Þ ºÐ¾ßÀÔ´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú ±íÀº ½Å°æ¸ÁÀ» Ȱ¿ëÇÏ¿© Çູ, ºÐ³ë, ½½ÇÄ, ½ºÆ®·¹½º µîÀÇ °¨Á¤ »óŸ¦ ½Ç½Ã°£À¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ÇコÄɾî, ±³À°, °í°´ ¼­ºñ½º, ¸¶ÄÉÆÃ µîÀÇ ºÐ¾ß¿¡¼­ Àΰ£°ú ÄÄÇ»ÅÍÀÇ »óÈ£ÀÛ¿ëÀ» °­È­Çϰí, »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ã۰í, °³ÀÎÈ­µÈ ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ À§ÇØ Á¡Á¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. °­·ÂÇÑ ¹Ý¸é, ÇÁ¶óÀ̹ö½Ã, µ¿ÀÇ, µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ À±¸®ÀûÀÎ °í·Á°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Ã¥ÀÓÀÖ´Â µµÀÔÀÌ ¿ä±¸µË´Ï´Ù.

°í°´ Âü¿© °­È­

°í°´ Âü¿© °­È­´Â ¼Ò¸Å, ÇコÄɾî, ¿£ÅÍÅ×ÀÎ¸ÕÆ® Àü¹Ý¿¡ °ÉÃÄ ½´ÆÛ °³ÀÎÈ­µÈ °æÇè ¼ö¿ä¸¦ ÃËÁøÇÔÀ¸·Î½á °¨Á¤ ÀÎ½Ä AI ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ºê·£µå°¡ ½Ç½Ã°£ °¨Á¤ ºÐ¼®°ú ÀûÀÀÇü ÀÎÅÍÆäÀ̽º¸¦ ÅëÇØ °¨Á¤ ÀÎÅÚ¸®Àü½º¸¦ ½ÉÈ­ÇÔ¿¡ µû¶ó AI ¼Ö·ç¼ÇÀº Àΰ£ÀÇ ´µ¾Ó½º Ç¥ÇöÀ» ´õ ³ôÀº Á¤È®µµ·Î ÇØµ¶Çϵµ·Ï ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ Çǵå¹é ·çÇÁ´Â Çõ½ÅÀ» °¡¼ÓÈ­ÇÏ°í ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ³ôÀÌ°í ¼½Å͸¦ ³Ñ¾î äÅÃÀ» È®´ëÇÕ´Ï´Ù. ±Ã±ØÀûÀ¸·Î, Âü¿©´Â µ¥ÀÌÅÍÀÇ Ç³ºÎÇÔÀ» ÃËÁøÇϰí Àΰ£°ú ±â°èÀÇ »óÈ£ÀÛ¿ëÀ» ÀçÁ¤ÀÇÇÏ´Â º¸´Ù °ø°¨ÀûÀÌ°í ¹®¸ÆÀ» ÀνÄÇÏ´Â AI ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ÇÁ¶óÀ̹ö½Ã¿Í À±¸®Àû ¿ì·Á

ÇÁ¶óÀ̹ö½Ã¿Í À±¸®Àû ¿ì·Á´Â °¨Á¤ ÀÎ½Ä AI ½ÃÀå ¼ºÀå¿¡ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¼öÁý, µ¿ÀÇ, ¹Î°¨ÇÑ °¨Á¤ Á¤º¸ÀÇ ¿À¿ëÀ» µÑ·¯½Ñ °¨½Ã Áõ°¡´Â ±ÔÁ¦ ´ç±¹°ú ÀÏ¹Ý ½Ã¹ÎÀÇ ºÒ¾ÈÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ±â¾÷Àº »ç¿ëÀÚÀÇ ½Å·Ú¸¦ ¾ò°í, ¾ö°ÝÇÑ °³ÀÎÁ¤º¸ º¸È£¹ýÀ» ÁؼöÇϸç, À±¸®Àû ¹èÆ÷¸¦ º¸ÀåÇÏ´Â °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ä¿ëÀ» ´ÊÃß°í ¿î¿µ ºñ¿ëÀ» ´Ã¸®°í ¼¼°è ½ÃÀå ÀüüÀÇ È®´ë¸¦ ¹æÇØÇÕ´Ï´Ù.

±â¼ú Áøº¸

µö·¯´×, ¿§Áö ÄÄÇ»ÆÃ, ¸ÖƼ¸ð´Þ ¼¾½ÌÀÇ Áøº¸°¡ ½ÃÀåÀ» Å©°Ô °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¾ó±¼ÀÇ ¹ÌÇ¥Á¤ ºÐ¼®, À½¼º Åæ °ËÃâ, ¹®¸Æ¿¡ ±Ù°ÅÇÑ °¨Á¤ ¸ÅÇÎÀÇ Á¤¹Ðµµ°¡ Çâ»óµÊÀ¸·Î½á, Çコ Äɾî, ÀÚµ¿Â÷, ¼ÒºñÀÚ¿ë ÇÏÀÌÅ×Å© ºÐ¾ß¿¡¼­ÀÇ Ã¤¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ °¨Á¤ ÃßÀûÀº °³ÀÎÈ­µÈ »ç¿ëÀÚ °æÇè, Á¤½Å °Ç°­ Áø´Ü ¹× ÀûÀÀ ÇнÀ Ç÷§ÆûÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀΰøÁö´ÉÀÌ º¸´Ù Àΰ£ Áß½ÉÀÌ µÊ¿¡ µû¶ó ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ±â°è¿¡¼­ °¨Á¤ Áö´ÉÀ» ÀçÇü¼ºÇϰí ÃøÁ¤ °¡´ÉÇÑ ¿µÇâÀ» °¡Áø »õ·Î¿î »ó¾÷Àû ¹× Ä¡·áÀû ±¹°æÀ» Ç®¾î ³õ°í ÀÖ½À´Ï´Ù.

³ôÀº µµÀÔ ºñ¿ë

³ôÀº µµÀÔ ºñ¿ëÀÌ °¨Á¤ ÀÎ½Ä AIÀÇ Ã¤¿ë¿¡ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß¼Ò±â¾÷Àº °í°¡ÀÇ Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ÅëÇÕ ¿ä°ÇÀ» °í¹ÎÇϰí ÀÖÀ¸¸ç, º¸±ÞÀÌ Á¦ÇѵǾî ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû ºÎ´ãÀº ½ÃÀå ħÅõ¸¦ ´ÊÃß°í Çõ½Å ÅõÀÚ¸¦ ÁÙÀ̰í ÀáÀçÀûÀÎ »ç¿ëÀÚ°¡ °í±Þ °¨Á¤ °¨Áö ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» ¸Á¼³ÀÌ°Ô ÇÏ°í °á±¹ ¼ºÀåÀ» ¾ïÁ¦ÇÏ¸ç °¨Á¤ ÀÎ½Ä AI ½ÃÀå ÀüüÀÇ È®´ë¸¦ ¹æÇØÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº ¿ø°Ý ±Ù¹«, °¡»ó Ä¿¹Â´ÏÄÉÀ̼Ç, ¿ø°Ý ÀÇ·á°¡ ¼¼°èÀûÀ¸·Î ±ÞÁõÇ߱⠶§¹®¿¡ °¨Á¤ ÀÎ½Ä AIÀÇ Ã¤¿ëÀ» Å©°Ô °¡¼ÓÈ­Çß½À´Ï´Ù. Á¶Á÷Àº °¨Á¤À» ÃøÁ¤Çϰí, °í°´ Âü¿©¸¦ °­È­Çϰí, »çȸÀûÀ¸·Î °Å¸®°¡ ¸Õ ȯ°æ¿¡¼­ Á¤½Å °Ç°­À» ¸ð´ÏÅ͸µÇÏ´Â AI ÁÖµµ µµ±¸¸¦ ¿ä±¸Çß½À´Ï´Ù. ±×·¯³ª ¿¬±¸ Áß´Ü, ÀÚ±Ý Á¶´Þ Áö¿¬, °ø±Þ¸Á Á¦¾àÀÌ ÀϽÃÀûÀ¸·Î Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î °³¹ßÀ» ´ÊÃß°í ½ÃÀå °³Ã´¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆÁö¸¸ ÀüüÀûÀ¸·Î ½ÃÀå ¼ºÀåÀ» À̲ø¾ú½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È À½¼º Àνĺо߰¡ ÃÖ´ëÈ­µÉ Àü¸Á

À½¼º¡¤À½¼º ÀÎ½Ä ºÐ¾ß´Â À½¼ºÀÇ Åæ°ú Àýȸ¸¦ ´Ù·ç´Â ½Ç½Ã°£ °¨Á¤ ºÐ¼®À» °¡´ÉÇÏ°Ô Çϱâ À§ÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú´Â Àΰ£°ú ÄÄÇ»ÅÍ °£ÀÇ »óÈ£ÀÛ¿ëÀ» °­È­ÇÏ°í °Ç°­ °ü¸®, °í°´ ¼­ºñ½º, ¸¶ÄÉÆÃ µîÀÇ ºÐ¾ß¿¡¼­ °¨Á¤ ÀÎ½Ä ½Ã½ºÅÛÀ» °­È­ÇÕ´Ï´Ù. À½¼º¿¡¼­ ¹Ì¹¦ÇÑ °¨Á¤ÀÇ »óŸ¦ ÇØµ¶ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ AI ¸ðµ¨Àº °³ÀÎÈ­µÈ ÀÀ´äÀ» Á¦°øÇÏ°í »ç¿ëÀÚÀÇ Âü¿©¿Í ¸¸Á·µµ¸¦ ³ôÀÔ´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ÁøÈ­´Â È®Àå °¡´ÉÇÏ°í ¹®È­¿¡ ÀûÀÀÇÏ´Â °¨Á¤ °¨Áö ¼Ö·ç¼ÇÀ» ÃËÁøÇÏ¿© »ó¾÷Àû °¡´É¼ºÀ» Å©°Ô ¹Ù²ß´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡ ºÐ¾ß´Â °í°´ Âü¿©¿Í °³ÀÎÈ­¸¦ °­È­Çϱâ À§ÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾ó±¼ Ç¥Á¤°ú °¨Á¤ ´Ü¼­¸¦ ºÐ¼®ÇÔÀ¸·Î½á ºê·£µå´Â Á¦Ç° ÃßõÀ» Á¶Á¤Çϰí UX µðÀÚÀÎÀ» ÃÖÀûÈ­ÇÏ¸ç ±¤°í Ÿ°ÙÆÃÀ» ½Ç½Ã°£À¸·Î °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ °¨Á¤ ÀÎÅÚ¸®Àü½º´Â ¼ÒºñÀÚÀÇ ±íÀº ½Å·Ú¿Í Ãæ¼º½ÉÀ» Ű¿ì°í ÀüȯÀ²À» ³ôÀ̰í ÇØÁö¸¦ ÁÙÀÔ´Ï´Ù. µðÁöÅÐ ¼îÇÎÀÌ ÁøÈ­ÇÔ¿¡ µû¶ó °¨Á¤ ÀÎ½Ä AI´Â ¼¼°è ½ÃÀå¿¡¼­ °æÀï·ÂÀÇ Â÷º°È­¿Í ½´ÆÛ °³ÀÎÈ­µÈ °æÇèÀ» ¿ä±¸ÇÏ´Â ¼Ò¸Å ±â¾÷¿¡°Ô Àü·«Àû ÀÚ»êÀ̵˴ϴÙ.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÇ·á ¹× ¼Ò¸Å ºÎ¹®ÀÇ Çõ½ÅÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ç¥Á¤°ú ¸ñ¼Ò¸® ½ÅÈ£¸¦ ÇØµ¶Çϸé Á¤½Å °Ç°­ Áø´Ü, ¿îÀüÀÚ ¾ÈÀü ¹× °³ÀÎÈ­µÈ ¼ÒºñÀÚ Âü¿©µµ°¡ Çâ»óµË´Ï´Ù. ½º¸¶Æ®ÆùÀÇ ³ôÀº º¸±Þ·üÀÌ °¨Á¤ ÀÎ½Ä ¾ÛÀ» µÞ¹ÞħÇϰí, Áß±¹°ú ½Ì°¡Æ÷¸£ÀÇ ½º¸¶Æ® ½ÃƼ ±¸»óÀÌ Ã¤¿ëÀ» °¡¼Ó½Ã۰í ÀÖ½À´Ï´Ù. ¸¶ÄÉÆÃ ±â¾÷Àº ½Ç½Ã°£ °¨Á¤ ºÐ¼®À» Ȱ¿ëÇÏ¿© Ä·ÆäÀÎÀ» ÃÖÀûÈ­Çϰí ROI¿Í ºê·£µåÀÇ °ø¸íÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ ±ÞÁõÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¨Á¤ Áß½ÉÀÇ Àΰ£ Á᫐ AI Çõ½ÅÀ» ¿ªµ¿ÀûÀ¸·Î ¹Þ¾ÆµéÀ̰í ÀÖÀ½À» ¹Ý¿µÇÕ´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â °í±Þ °¨Á¤ ÀÎ½Ä ½Ã½ºÅÛÀ» ÅëÇØ Á¤½Å °Ç°­ Áø´ÜÀ» °­È­ÇÏ°í ¿ø°Ý ÀǷḦ °³ÀÎÈ­Çϰí ÇÇ·Î °¨Áö·Î ¿îÀüÀÚÀÇ ¾ÈÀüÀ» Çâ»ó½Ã۱⠶§¹®ÀÔ´Ï´Ù. ±â¼ú ´ë±â¾÷°ú ½ÅÈï ±â¾÷ ¸ðµÎ AI¿Í IoTÀÇ ÅëÇÕÀ» Ȱ¿ëÇÏ¿© ÀûÀÀ¼º ÀÖ´Â °¨Á¤ °¨Áö ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ½Ç¸®ÄÜ ¹ë¸®ÀÇ Çõ½Å »ýŰè¿Í °ø°¨ ÀÎÅÍÆäÀ̽º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ Áö¿ªÀº À±¸®ÀûÀÌ°í ¿µÇâ·Â ÀÖ´Â Àü°³·Î ¼¼°è¸¦ ¼±µµÇϰí ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ °¨Á¤ ÀÎ½Ä AI ½ÃÀå : ±¸¼º ¿ä¼Òº°

  • ¼ÒÇÁÆ®¿þ¾î
  • Çϵå¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ °¨Á¤ ÀÎ½Ä AI ½ÃÀå : ¹èÆ÷ ¸ðµåº°

  • Ŭ¶ó¿ìµå ±â¹Ý
  • On-Premise

Á¦7Àå ¼¼°èÀÇ °¨Á¤ ÀÎ½Ä AI ½ÃÀå : ±â¼úº°

  • Ç¥Á¤ ÀνÄ
  • À½¼º ¹× ¸ñ¼Ò¸® ÀνÄ
  • »ýü °¨Áö(EEG, ECG, fNIRS, GSR µî)
  • ÀÚ¿¬¾ð¾îó¸®(NLP)

Á¦8Àå ¼¼°èÀÇ °¨Á¤ ÀÎ½Ä AI ½ÃÀå : ¿ëµµº°

  • ¸¶ÄÉÆÃ ¹× ±¤°í
  • º¸¾È ¹× °¨½Ã
  • Àΰ£-ÄÄÇ»ÅÍ »óÈ£ÀÛ¿ë
  • ÇコÄÉ¾î ¹× Áø´Ü
  • ¿£ÅÍÅ×ÀÎ¸ÕÆ® ¹× °ÔÀÓ
  • °í°´ ¼­ºñ½º

Á¦9Àå ¼¼°èÀÇ °¨Á¤ ÀÎ½Ä AI ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÀºÇà, ±ÝÀ¶¼­ºñ½º ¹× º¸Çè(BFSI)
  • ¼Ò¸Å ¹× E-Commerce
  • IT ¹× Åë½Å
  • ÀÚµ¿Â÷
  • Á¤ºÎ ¹× ¹æÀ§
  • ±³À° ¹× ÇнÀ
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ °¨Á¤ ÀÎ½Ä AI ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Affectiva
  • Realeyes
  • Beyond Verbal
  • nViso
  • Kairos
  • Tobii AB
  • NEC Corporation
  • Microsoft Corporation
  • Apple Inc.
  • Amazon Web Services(AWS)
  • IBM Corporation
  • Google LLC
  • Cognitec Systems GmbH
  • Sentiance
  • Emotibot Technologies
  • Eyeris Technologies Inc.
  • Noldus Information Technology
  • Sightcorp
  • Elliptic Labs
  • Aural Analytics
KTH 25.09.10

According to Stratistics MRC, the Global Emotional Recognition AI Market is accounted for $3.6 billion in 2025 and is expected to reach $14.9 billion by 2032 growing at a CAGR of 22.7% during the forecast period. Emotional Recognition AI is an advanced branch of artificial intelligence designed to detect, interpret, and respond to human emotions through analysis of facial expressions, vocal tones, body language, and physiological signals. By leveraging machine learning algorithms and deep neural networks, it can assess emotional states such as happiness, anger, sadness, or stress in real time. This technology is increasingly applied in sectors like healthcare, education, customer service, and marketing to enhance human-computer interaction, improve user experience, and provide personalized solutions. While powerful, it raises ethical considerations around privacy, consent, and data security, requiring responsible implementation.

Market Dynamics:

Driver:

Enhanced Customer Engagement

Enhanced customer engagement is catalyzing growth in the Emotional Recognition AI market by driving demand for hyper-personalized experiences across retail, healthcare, and entertainment. As brands deepen emotional intelligence through real-time sentiment analysis and adaptive interfaces, AI solutions are evolving to decode nuanced human expressions with greater accuracy. This feedback loop accelerates innovation, boosts consumer trust, and expands adoption across sectors. Ultimately, engagement fuels data richness, enabling more empathetic, context-aware AI systems that redefine human-machine interaction.

Restraint:

Privacy and Ethical Concerns

Privacy and ethical concerns pose a significant barrier to the growth of the Emotional Recognition AI market. Increasing scrutiny over data collection, consent, and misuse of sensitive emotional information raises regulatory and public apprehension. Companies face challenges in gaining user trust, complying with strict privacy laws, and ensuring ethical deployment. These issues slow adoption, increase operational costs, and hinder overall market expansion globally.

Opportunity:

Advancements in Technology

Advancements in deep learning, edge computing, and multimodal sensing have significantly accelerated the market. Enhanced accuracy in facial micro-expression analysis, voice tonality detection, and contextual sentiment mapping is driving adoption across healthcare, automotive, and consumer tech. Real-time emotion tracking is enabling personalized user experiences, mental health diagnostics, and adaptive learning platforms. As AI becomes more human-centric, these innovations are reshaping emotional intelligence in machines, unlocking new commercial and therapeutic frontiers with measurable impact.

Threat:

High Implementation Costs

High implementation costs pose a significant barrier to the adoption of Emotional Recognition AI. Small and medium enterprises, in particular, struggle with the expensive hardware, software, and integration requirements, limiting widespread deployment. These financial burdens slow market penetration, reduce investment in innovation, and deter potential users from adopting advanced emotion-sensing technologies, ultimately restraining growth and hindering the overall expansion of the Emotional Recognition AI market.

Covid-19 Impact

The Covid-19 pandemic significantly accelerated the adoption of Emotional Recognition AI, as remote work, virtual communication, and telehealth surged globally. Organizations sought AI-driven tools to gauge emotions, enhance customer engagement, and monitor mental health in socially distanced environments. However, disruptions in research, funding delays, and supply chain constraints temporarily slowed hardware and software development, creating a mixed but overall driving impact on market growth.

The speech & voice recognition segment is expected to be the largest during the forecast period

The speech & voice recognition segment is expected to account for the largest market share during the forecast period as it enables real-time sentiment analysis through vocal cues like tone and cadence. This synergy enhances human-computer interaction, empowering emotionally aware systems across healthcare, customer service, and marketing. By decoding nuanced emotional states from speech, these AI models deliver personalized responses, boosting user engagement and satisfaction. The segment's evolution is driving scalable, culturally adaptive emotion detection solutions with transformative commercial potential.

The retail & e-commerce segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the retail & e-commerce segment is predicted to witness the highest growth rate as it enhances customer engagement and personalization. By analyzing facial expressions and sentiment cues, brands can tailor product recommendations, optimize UX design, and refine ad targeting in real time. This emotional intelligence fosters deeper consumer trust and loyalty, driving conversion rates and reducing churn. As digital shopping evolves, emotional AI becomes a strategic asset for retailers seeking competitive differentiation and hyper-personalized experiences across global markets.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to transformative change across healthcare and retail sectors. By decoding facial expressions and vocal cues, it enhances mental health diagnostics, driver safety, and personalized consumer engagement. High smartphone penetration fuels emotion-aware apps, while smart city initiatives in China and Singapore accelerate adoption. Marketing firms leverage real-time emotional analytics to optimize campaigns, boosting ROI and brand resonance. This surge reflects Asia Pacific's dynamic embrace of emotion-driven, human-centric AI innovation.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to advanced emotion-aware systems enhance mental health diagnostics, personalize telemedicine, and improve driver safety through fatigue detection. Tech giants and startups alike leverage AI and IoT integration to deliver adaptive, emotion-sensitive solutions. With Silicon Valley's innovation ecosystem and rising demand for empathetic interfaces, the region leads globally in ethical, impactful deployment-reshaping human-machine interaction with precision and emotional intelligence.

Key players in the market

Some of the key players profiled in the Emotional Recognition AI Market include Affectiva, Realeyes, Beyond Verbal, nViso, Kairos, Tobii AB, NEC Corporation, Microsoft Corporation, Apple Inc., Amazon Web Services (AWS), IBM Corporation, Google LLC, Cognitec Systems GmbH, Sentiance, Emotibot Technologies, Eyeris Technologies Inc., Noldus Information Technology, Sightcorp, Elliptic Labs and Aural Analytics.

Key Developments:

In August 2025, Coherent and Apple have deepened their alliance through a new multiyear agreement to manufacture vertical-cavity surface-emitting lasers (VCSELs) at Coherent's Sherman, Texas facility. The partnership not only strengthens Apple's domestic supply chain but also positions both companies at the forefront of cutting-edge semiconductor innovation.

In January 2025, Telefonica Tech and IBM have entered a strategic partnership to develop quantum-safe cybersecurity solutions, anticipating the risks posed by future quantum computers. The collaboration aims to safeguard critical data against potential decryption by quantum computers, aligning with NIST's post-quantum cryptography standards.

In January 2025, Microsoft and OpenAI announced an evolved partnership to advance AI innovation. Microsoft will support OpenAI's expansion with additional capacity for research and model training. The agreement grants Microsoft rights to OpenAI's intellectual property, including models and infrastructure, for integration into Microsoft's products like Copilot.

Components Covered:

  • Software
  • Hardware
  • Services

Deployment Modes Covered:

  • Cloud-Based
  • On-Premises

Technologies Covered:

  • Facial Expression Recognition
  • Speech & Voice Recognition
  • Bio-Sensing (EEG, ECG, fNIRS, GSR, etc.)
  • Natural Language Processing (NLP)

Applications Covered:

  • Marketing & Advertising
  • Security & Surveillance
  • Human-Computer Interaction
  • Healthcare & Medical Diagnosis
  • Entertainment & Gaming
  • Customer Service

End Users Covered:

  • Banking, Financial Services, and Insurance (BFSI)
  • Retail & E-commerce
  • IT & Telecommunication
  • Automotive
  • Government & Defense
  • Education & Learning
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Emotional Recognition AI Market, By Component

  • 5.1 Introduction
  • 5.2 Software
  • 5.3 Hardware
  • 5.4 Services

6 Global Emotional Recognition AI Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 Cloud-Based
  • 6.3 On-Premises

7 Global Emotional Recognition AI Market, By Technology

  • 7.1 Introduction
  • 7.2 Facial Expression Recognition
  • 7.3 Speech & Voice Recognition
  • 7.4 Bio-Sensing (EEG, ECG, fNIRS, GSR, etc.)
  • 7.5 Natural Language Processing (NLP)

8 Global Emotional Recognition AI Market, By Application

  • 8.1 Introduction
  • 8.2 Marketing & Advertising
  • 8.3 Security & Surveillance
  • 8.4 Human-Computer Interaction
  • 8.5 Healthcare & Medical Diagnosis
  • 8.6 Entertainment & Gaming
  • 8.7 Customer Service

9 Global Emotional Recognition AI Market, By End User

  • 9.1 Introduction
  • 9.2 Banking, Financial Services, and Insurance (BFSI)
  • 9.3 Retail & E-commerce
  • 9.4 IT & Telecommunication
  • 9.5 Automotive
  • 9.6 Government & Defense
  • 9.7 Education & Learning
  • 9.8 Other End Users

10 Global Emotional Recognition AI Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Affectiva
  • 12.2 Realeyes
  • 12.3 Beyond Verbal
  • 12.4 nViso
  • 12.5 Kairos
  • 12.6 Tobii AB
  • 12.7 NEC Corporation
  • 12.8 Microsoft Corporation
  • 12.9 Apple Inc.
  • 12.10 Amazon Web Services (AWS)
  • 12.11 IBM Corporation
  • 12.12 Google LLC
  • 12.13 Cognitec Systems GmbH
  • 12.14 Sentiance
  • 12.15 Emotibot Technologies
  • 12.16 Eyeris Technologies Inc.
  • 12.17 Noldus Information Technology
  • 12.18 Sightcorp
  • 12.19 Elliptic Labs
  • 12.20 Aural Analytics
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦