½ÃÀ庸°í¼­
»óǰÄÚµå
1803051

¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå ¿¹Ãø(-2032³â) : µð¹ÙÀ̽º À¯Çü, ¼¾¼­ À¯Çü, ±â¼ú, À¯Åë ä³Î, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®

Wearable Injury Prediction Market Forecasts to 2032 - Global Analysis By Device Type, Sensor Type, Technology, Distribution Channel, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå ±Ô¸ð´Â 2025³â 18¾ï 3,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 16.8%¸¦ ³ªÅ¸³»¸ç 2032³â¿¡´Â 54¾ï 3,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø¿¡´Â ÇÇÆ®´Ï½º Æ®·¡Ä¿, ½º¸¶Æ® ¿öÄ¡, ¼¾¼­ ³»Àå ÀǺ¹ µîÀÇ ½º¸¶Æ® ÀåÄ¡¸¦ »ç¿ëÇÏ¿© ½Åü Ȱµ¿, »ýü ¡ÈÄ ¹× ȯ°æ ¿äÀÎÀ» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ¿þ¾î·¯ºíÀº ºÒ±ÔÄ¢ÇÑ ¿òÁ÷ÀÓ ¹× »ý¸®Àû ½ºÆ®·¹½º¿Í °°Àº µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀáÀçÀûÀÎ ºÎ»óÀÇ Á¶±â ÁöÇ¥¸¦ È®ÀÎÇÕ´Ï´Ù. »óÇØ°¡ ¹ß»ýÇϱâ Àü¿¡ À§ÇèÀ» °æ°íÇÔÀ¸·Î½á ½ºÆ÷Ã÷, °Ç°­ °ü¸® ¹× Á÷Àå ȯ°æ¿¡¼­ÀÇ ¿¹¹æ ÀǷḦ Áö¿øÇϰí Àû½Ã °³ÀÔÀ» °¡´ÉÇϰÔÇÏ°íº¸´Ù ¾ÈÀüÇÑ ¼º´É°ú ȸº¹À» ÃËÁøÇÕ´Ï´Ù.

½ºÆ÷Ã÷ ¹× ÇÇÆ®´Ï½º Ȱµ¿ Âü¿© Áõ°¡

´õ ¸¹Àº »ç¶÷µéÀÌ °Ç°­°ú À£ºùÀ» ¼±È£ÇÏ´Â µ¿¾È ½Åü Ȱµ¿¿¡ Âü¿©ÇÏ´Â °ÍÀº ¼¼°èÀûÀ¸·Î Áõ°¡ÇÏ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¼º´É ¸ð´ÏÅ͸µ ¹× ºÎ»ó ¿¹¹æ¿¡ µµ¿òÀÌ µÇ´Â ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀÔ´Ï´Ù. ºÎ»ó ¿¹ÃøÀ» À§ÇØ ¼³°èµÈ ¿þ¾î·¯ºí µð¹ÙÀ̽º´Â ¿òÁ÷ÀÓ, ÇÇ·Î, ½ºÆ®·¹½º ¼öÁØ¿¡ ´ëÇÑ ±ÍÁßÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. ÇÇÆ®´Ï½º ¾ÖÈ£°¡¿Í ¼±¼öµéÀº Àϰú¸¦ ¹Ì¼¼ Á¶Á¤Çϰí ÁÂÀýÀ» ÇÇÇϱâ À§ÇØ ÀÌ·¯ÇÑ µµ±¸¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ½ºÆ÷Ã÷ ÆÀ°ú ÀçȰ Àü¹®°¡µéµµ ȸº¹À» Áö¿øÇϰí ÈÆ·Ã °á°ú¸¦ ³ôÀ̱â À§ÇØ ¿þ¾î·¯ºíÀ» äÅÃÇÕ´Ï´Ù. ÀÌ¿Í °°ÀÌ ÇÇÆ®´Ï½º ¹®È­¿Í »óÇØ ¿¹¹æÀÌ ±³Â÷Çϰí ÀÖ´Â °ÍÀÌ ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

Ç¥ÁØÈ­µÈ ÇÁ·ÎÅäÄÝ ºÎÁ·

¿þ¾î·¯ºí ±â¼úÀÇ ¹ßÀü¿¡µµ ºÒ±¸Çϰí, ½ÃÀåÀº Àϰü¼º ¾ø´Â ÇÁ·ÎÅäÄݰú Ç¥ÁØÀ» À§ÇØ Àå¾Ö¹°¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ¼¾¼­ÀÇ Á¤È®µµ, µ¥ÀÌÅÍ Ã³¸® ¹× ¿¹Ãø ¸ðµ¨ÀÇ Â÷ÀÌ·Î ÀÎÇØ ½Å·ÚÇÒ ¼ö ¾ø´Â °á°ú¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Àϰü¼ºÀÌ ¾ø´Â °ÍÀº ½Ã½ºÅÛÀ» ¿øÈ°ÇÏ°Ô ¿¬µ¿½ÃŰ´Â °ÍÀ» ¾î·Æ°Ô Çϰí, º¸´Ù ±¤¹üÀ§ÇÑ º¸±ÞÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á ¹× ½ºÆ÷Ã÷ Àü¹®°¡µéÀº Á¾Á¾ ¼­·Î ´Ù¸¥ ÀåÄ¡ °£ÀÇ Ãâ·ÂÀ» ºñ±³ÇÏ´Â °ÍÀÌ ¾î·Æ´Ù°í ´À³§´Ï´Ù. µ¥ÀÌÅÍÀÇ Á¤È®¼º°ú ÀåºñÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©Àº ¾ÆÁ÷ Á¤ºñµÇ¾î ÀÖÁö ¾Ê½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ½Å·ÚÀÇ À庮ÀÌ µÇ¾î ½ÃÀåÀÌ È¿°úÀûÀ¸·Î È®´ëµÇ´Â ¹æÇذ¡ µË´Ï´Ù.

Áõ°­Çö½Ç(AR)°ú °¡»óÇö½Ç(VR)ÀÇ À¶ÇÕ

Áõ°­Çö½Ç(AR)°ú °¡»óÇö½Ç(VR)°ú ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø µµ±¸ÀÇ À¶ÇÕÀº Èï¹Ì·Î¿î ÀáÀç·ÂÀ» ¿­¾îÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¸ôÀÔÇü ±³À° ȯ°æÀ» ¸¸µé°í ½Ç½Ã°£ »ýü¿ªÇÐÀû Çǵå¹éÀ» Ç¥½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼±¼ö´Â ARÀ» »ç¿ëÇÏ¿© ÈÆ·Ã Áß ÀÚ¼¼ ±³Á¤°ú ½ºÆ®·¹½º Æ÷ÀÎÆ®¸¦ ½Ã°¢È­ÇÏ°í »óÇØ ¿¹¹æÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. VR ±â¹ÝÀÇ ÀçȰ ÇÁ·Î±×·¥Àº ¿þ¾î·¯ºí µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© »ç¿ëÀÚ Á¤ÀÇÇÒ ¼ö ÀÖÀ¸¸ç, º¹±¸¸¦ °¡¼ÓÈ­ÇÏ°í ¾÷ÀûÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¹Ãø ºÐ¼®°ú ¸ôÀÔÇü ±â¼úÀÇ À¶ÇÕÀº ½ºÆ÷Ã÷¿Í ÇコÄɾîÀÇ Çõ½Å°¡·ÎºÎÅÍ ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ½ÃÀåÀº º¸´Ù ÀÎÅÍ·¢Æ¼ºêÇÏ°í °³ÀÎÈ­µÈ ¿ëµµÀ¸·Î È®´ëµÇ´Â ż¼¸¦ °®Ãß¾ú½À´Ï´Ù.

ºÎÁ¤È®ÇÑ ¿¹Ãø À§Çè

¿¹Ãø ¸ðµ¨Àº µ¥ÀÌÅÍ Ç°Áú, ¼¾¼­ ¹èÄ¡ ¹× ¾Ë°í¸®Áò Á¤È®µµ¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ÆíÂ÷³ª ¿ÀÂ÷°¡ ÀÖÀ¸¸é À§¾ç¼ºÀ̳ª ºÎ»óÀÇ À§ÇèÀ» ³õÄ¡°Ô µÇ¾î »ç¿ëÀÚÀÇ ½Å·Ú¸¦ ÇØÄ¡°Ô µË´Ï´Ù. ÇÁ·Î½ºÆ÷Ã÷¿¡¼­´Â ÀÌ·¯ÇÑ ºÎÁ¤È®¼ºÀÌ ÈÆ·ÃÀÇ ºÎÀûÀýÇÑ °áÁ¤°ú ÀÇ·á °³ÀÔ Áö¿¬À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡, À߸øµÈ ¿¹ÃøÀÌ ½ÇÁ¦ À§ÇèÀ¸·Î À̾îÁú °æ¿ì ¹ýÀû ¹× À±¸®Àû ¿ì·Á°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§ÇèÀº ½Å·Ú¼ºÀ» À¯ÁöÇϱâ À§ÇØ ¿¹Ãø ÇÁ·¹ÀÓ¿öÅ©ÀÇ ¾ö°ÝÇÑ °ËÁõ°ú Áö¼ÓÀûÀÎ °³¼±ÀÌ ÇÊ¿äÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

À¯ÇàÀº ÀüÅëÀûÀÎ ÈÆ·Ã°ú ÀçȰ ¹æ¹ýÀ» ÆÄ±«ÇÏ°í ¿ø°Ý ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀ¸·ÎÀÇ À̵¿À» °¡¼ÓÈ­Çß½À´Ï´Ù. ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ÀåÄ¡´Â »ç¿ëÀÚ°¡ ¼º´É°ú º¹±¸¸¦ ÃßÀûÇϱâ À§ÇØ Á¢ÃË ºÒÇÊ¿äÇÑ ¹æ¹ýÀ» ¿ä±¸ÇÔ¿¡ µû¶ó ³Î¸® º¸±ÞµÇ¾ú½À´Ï´Ù. ¼Ò¼È µð½ºÅϽº¿Í ¶ô´Ù¿îÀº °³ÀÎÈ­µÈ °¡Á¤¿¡¼­ »óÇØ ¿¹¹æ µµ±¸ÀÇ Çʿ伺À» °­Á¶Çß½À´Ï´Ù. ±×·¯³ª °ø±Þ¸ÁÀÇ ¹®Á¦·Î ÀÎÇØ »õ·Î¿î ÀåºñÀÇ »ý»ê°ú º¸±ÞÀÌ ´Ê¾îÁ³½À´Ï´Ù. ÀÌ À§±â´Â ¶ÇÇÑ ¿þ¾î·¯ºíÀ» °¡»ó Áø´Ü°ú ÅëÇÕÇÒ ¼ö ÀÖ°Ô ÇÏ°í ¿ø°Ý ÀÇ·á¿¡¼­ÀÇ Çõ½ÅÀ» Ã˱¸Çß½À´Ï´Ù.

½ºÆ÷Ã÷ ¹× ÇÇÆ®´Ï½º ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á

½ºÆ÷Ã÷ ¹× ÇÇÆ®´Ï½º ºÎ¹®Àº ¼±¼öµé »çÀÌÀÇ ÀÇ½Ä Áõ°¡¿Í ¼º´É Çâ»ó ¹× »óÇØ ¿¹¹æ ÃßÁøÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸Ó½Å·¯´×, ÀΰøÁö´É, »ýü¿ªÇÐÀû ÃßÀû°ú °°Àº ÷´Ü ±â¼úÀº ÀÌ ½ÃÇÁÆ®ÀÇ Áß½ÉÀÌ¸ç ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ÅëÇÑ ¿¹Ãø ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ½º¸¶Æ® ÀÇ·ù, EMG ±â¹Ý ¿þ¾î·¯ºí, Ŭ¶ó¿ìµå¿¡ ¿¬°áµÈ ÀåÄ¡ µîÀÇ Çõ½ÅÀº ±³À°°ú ȸº¹À» À籸¼ºÇϰí ÄÚÄ¡¿Í ÀÇ·á Àü¹®°¡°¡ Á¶±â¿¡ ÇൿÇÏ°í ºÎ»ó À§ÇèÀ» È¿°úÀûÀ¸·Î ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È EMG ¼¾¼­ ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È ±ÙÀ° ÇÇ·Î, ÀçȰ ÁøÇà »óȲ, ¿îµ¿ ´É·Â ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ EMG ¼¾¼­ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ½ÅÈ£ ºÐ¼®, ÄÄÆÑÆ® ¼³°è, ¹«¼± ±â¼ú µîÀÇ Çõ½ÅÀ» ÅëÇØ ±ÙÀ° Ȱµ¿ÀÇ ¿øÈ°ÇÑ ½Ç½Ã°£ ÃßÀûÀÌ °¡´ÉÇÕ´Ï´Ù. ÁÖ¸ñÇÒ¸¸ÇÑ µ¿ÇâÀº ¼¶À¯ ±â¹ÝÀÇ EMG ¿þ¾î·¯ºí, ½º¸¶Æ® ÆÐÄ¡ ¹× ¼Õ¸ñ½Ã°è¿ÍÀÇ ÅëÇÕ µîÀÌ ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ ¹ßÀüÀº ½ºÆ÷Ã÷, °Ç°­ °ü¸®, »ê¾÷ ¾ÈÀü ȯ°æ¿¡¼­ÀÇ ¿ø°Ý Áø´Ü, Ŭ¶ó¿ìµå ±â¹Ý ¸ð´ÏÅ͸µ, ¿¹Ãø ±â´É °­È­¿¡ ÁßÁ¡À» µÓ´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °Ç°­ ÀÇ½Ä Áõ°¡, ÇÇÆ®´Ï½º Ȱµ¿ ±ÞÁõ, ½º¸¶Æ® ±â¼ú ÀÌ¿ë Áõ°¡·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ±â¹Ý ºÐ¼®, Ŭ¶ó¿ìµå ¿¬°á ¹× °í±Þ ¼¾¼­ ÅëÇÕÀº ½Ç½Ã°£ ºÎ»ó ¿¹ÃøÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀÔ´Ï´Ù. µ¿Çâ¿¡´Â ½º¸¶Æ® ¾ç¸», Á÷¹° ³»ÀåÇü EMG ¼¾¼­, Áö¿ªº° ¼Ö·ç¼Ç µîÀÌ ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ ÁøÀüÀ¸·Î´Â ±¹Á¦ ºê·£µå¿Í ÇöÁö ±â¾÷°úÀÇ Çù¾÷°ú ´Ù¾çÇÑ »ç¶÷µéÀÇ ÀÓ»ó ÄÉ¾î ¹× Á÷Àå ¾ÈÀü¿¡ ¿þ¾î·¯ºí ä¿ëÀ» Àå·ÁÇÏ´Â Á¤ºÎ Áö¿øÀÇ µðÁöÅÐ Çコ ÇÁ·Î±×·¥À» µé ¼ö ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¼±¼ö °Ç°­¿¡ ´ëÇÑ ¸¹Àº ÅõÀÚ, °ß°íÇÑ ÀÇ·á ÀÎÇÁ¶ó ¹× ½º¸¶Æ® ¿þ¾î·¯ºíÀÇ º¸±ÞÀ¸·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ÁÖµµ ¿¹Ãø µµ±¸, »ýü Á¤º¸ ÃßÀû, ¼¾¼­ ÅëÇÕ µîÀÇ ÇÙ½É ±â¼úÀÌ Ã¤¿ëÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä µ¿ÇâÀ¸·Î´Â µ¿ÀÛ ºÐ¼® Ç÷§Æû, ½º¸¶Æ® ±òâ, ¸Ó½Å·¯´× °­È­ ±³À° ½Ã½ºÅÛ µîÀÌ ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ ÁøÀüÀ¸·Î´Â ÇÏÀÌÅ×Å© ±â¾÷°ú ½ºÆ÷Ã÷ ´Üü¿ÍÀÇ Á¦ÈÞ, Á¤ºÎ ÁÖµµÀÇ ¾ÈÀü ÇÁ·Î±×·¥, ÀçȰÀ̳ª Á÷Àå¿¡¼­ÀÇ ºÎ»ó ¿¹¹æ¿¡ À־ÀÇ ¿þ¾î·¯ºí ÀÌ¿ëÀÇ È®´ë µîÀ» µé ¼ö ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå : µð¹ÙÀ̽º À¯Çüº°

  • ½º¸¶Æ® ¿öÄ¡ ¹× ÇÇÆ®´Ï½º ¹êµå
  • ½º¸¶Æ®ÀÇ·ù ¹× ¼¶À¯
  • ¿þ¾î·¯ºí ÆÐÄ¡ ¹× ¼¾¼­
  • Çìµå ¸¶¿îÆ®Çü ¿þ¾î·¯ºí

Á¦6Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå : ¼¾¼­ À¯Çüº°

  • °¡¼Óµµ°è
  • ÀÚÀ̷νºÄÚÇÁ
  • ½É¹Ú¼ö ¼¾¼­
  • EMG ¼¾¼­
  • ¾Ð·Â ¼¾¼­
  • ±âŸ ¼¾¼­ À¯Çü

Á¦7Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå : ±â¼úº°

  • AI ¹× ¸Ó½Å·¯´×
  • IoT ¹× Ŭ¶ó¿ìµå ÅëÇÕ
  • »ýü¿ªÇÐ ¹× µ¿ÀÛ ÃßÀû
  • »ýü ÀÎ½Ä ¸ð´ÏÅ͸µ

Á¦8Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå : À¯Åë ä³Îº°

  • ¿Â¶óÀÎ Ç÷§Æû
  • ¼Ò¸ÅÁ¡
  • ¿þ¾î·¯ºí µð¹ÙÀ̽º Á¦Á¶¾÷ü
  • Àü¹®Á¡

Á¦9Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå : ¿ëµµº°

  • ½ºÆ÷Ã÷ ¹× ÇÇÆ®´Ï½º
  • ÀÇ·á ¹× ÀçȰ
  • ±º»ç ¹× ¹æÀ§
  • ÀÛ¾÷Àå ¾ÈÀü
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÇÁ·Î ¼±¼ö ¹× ÆÀ
  • ȯÀÚ
  • »ê¾÷ ±Ù·ÎÀÚ
  • ±ºÀÎ
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ºÎ»ó ¿¹Ãø ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Catapult Sports
  • Athos
  • Fitbit
  • Nadi X
  • Garmin
  • dorsaVi
  • WHOOP
  • Kinexon
  • Polar Electro
  • Vicon Motion Systems
  • STATSports
  • Xsens
  • Zephyr Technology
  • BioSensics
  • Hexoskin
KTH 25.09.17

According to Stratistics MRC, the Global Wearable Injury Prediction Market is accounted for $1.83 billion in 2025 and is expected to reach $5.43 billion by 2032 growing at a CAGR of 16.8% during the forecast period. Wearable Injury Prediction involves using smart devices like fitness trackers, smartwatches, or sensor-embedded clothing to continuously monitor physical activity, vital signs, and environmental factors. These wearables analyze data such as movement irregularities or physiological stress to identify early indicators of potential injuries. By flagging risks before harm occurs, they support preventive care in sports, healthcare, and workplace settings, enabling timely interventions and promoting safer performance and recovery.

Market Dynamics:

Driver:

Increased participation in sports and fitness activities

With more people prioritizing health and wellness, participation in physical activities is on the rise globally. This trend is fuelling interest in technologies that help monitor performance and prevent injuries. Wearable devices designed for injury prediction provide valuable, real-time data on movement, fatigue, and stress levels. Fitness enthusiasts and athletes are increasingly relying on these tools to fine-tune their routines and avoid setbacks. Sports teams and rehabilitation professionals are also adopting wearables to support recovery and enhance training outcomes. This growing intersection of fitness culture and injury prevention is propelling market expansion.

Restraint:

Lack of standardized protocols

Despite progress in wearable tech, the market faces hurdles due to inconsistent protocols and standards. Differences in sensor precision, data processing, and predictive models can lead to unreliable results. This inconsistency makes it difficult for systems to work together seamlessly, limiting broader adoption. Medical and sports professionals often find it challenging to compare outputs across different devices. Regulatory frameworks for ensuring data accuracy and device reliability are still underdeveloped. These issues create barriers to trust and hinder the market's ability to scale effectively.

Opportunity:

Integration of augmented reality (AR) and virtual reality (VR)

The merging of augmented reality (AR) and virtual reality (VR) with wearable injury prediction tools opens up exciting possibilities. These technologies can create immersive training environments and display real-time biomechanical feedback. Athletes can use AR to visualize posture corrections and stress points during workouts, improving injury prevention. VR-based rehab programs can be customized using wearable data, speeding up recovery and enhancing outcomes. This blend of predictive analytics and immersive tech is drawing attention from innovators in sports and healthcare. As a result, the market is poised to expand into more interactive and personalized applications.

Threat:

Risk of inaccurate predictions

Predictive models rely heavily on data quality, sensor placement, and algorithmic precision. Any deviation or error can result in false positives or missed injury risks, undermining user confidence. In professional sports, such inaccuracies can lead to poor training decisions or delayed medical interventions. Moreover, legal and ethical concerns may arise if faulty predictions contribute to actual harm. These risks necessitate rigorous validation and continuous improvement of predictive frameworks to maintain credibility.

Covid-19 Impact

The pandemic disrupted conventional training and rehab methods, accelerating the shift toward remote monitoring solutions. Wearable injury prediction devices became more popular as users sought contact-free ways to track performance and recovery. Social distancing and lockdowns emphasized the need for personalized, at-home injury prevention tools. However, supply chain challenges delayed production and rollout of new devices. The crisis also encouraged innovation in telehealth, allowing wearables to integrate with virtual consultations.

The sports & fitnesssegment is expected to be the largest during the forecast period

The sports & fitnesssegment is expected to account for the largest market share during the forecast period, due to growing awareness among athletes and the push for enhanced performance and injury prevention. Advanced technologies like machine learning, AI, and biomechanical tracking are central to this shift, enabling predictive insights through real-time data. Innovations such as smart apparel, EMG-based wearables, and cloud-connected devices are reshaping training and recovery, allowing coaches and health professionals to act early and minimize injury risks effectively.

The EMG sensors segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the EMG sensors segment is predicted to witness the highest growth rate, propelled by growing interest in monitoring muscle fatigue, rehabilitation progress, and athletic performance. Innovations in AI-powered signal analysis, compact design, and wireless tech allow for seamless, real-time tracking of muscle activity. Notable trends include textile-based EMG wearables and integration with smart patches and watches. Recent advancements emphasize remote diagnostics, cloud-based monitoring, and enhanced predictive capabilities across sports, healthcare, and industrial safety environments.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market sharedue togrowing health consciousness, a surge in fitness activities, and increased use of smart technologies. AI-based analytics, cloud connectivity, and advanced sensor integration are key drivers enabling real-time injury forecasting. Trends include smart footwear, fabric-embedded EMG sensors, and region-specific solutions. Recent progress features collaborations between international brands and local firms, alongside government-supported digital health programs that encourage wearable adoption in clinical care and workplace safety across diverse populations.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by significant investments in athlete health, robust medical infrastructure, and widespread use of smart wearables. Core technologies such as AI-driven predictive tools, biometric tracking, and sensor integration are accelerating adoption. Key trends include motion analysis platforms, smart insoles, and machine learning-enhanced training systems. Recent progress includes partnerships between tech companies and sports bodies, government-led safety programs, and growing use of wearables in rehabilitation and workplace injury prevention.

Key players in the market

Some of the key players profiled in the Wearable Injury Prediction Market includeCatapult Sports, Athos, Fitbit, Nadi X, Garmin, dorsaVi, WHOOP, Kinexon, Polar Electro, Vicon Motion Systems, STATSports, Xsens, Zephyr Technology, BioSensics, and Hexoskin.

Key Developments:

In July 2025, Atos announced the launch of the Atos Polaris AI Platform, a comprehensive system of AI agents that works autonomously to orchestrate complex business workflows. The Atos Polaris AI Platform, created for development, testing and IT operations, supports engineers at all stages of the development process. Customers can also use the platform to accelerate digital transformation by driving universal automation of business processes.

In April2025, The National Rugby League (LNR) has renewed its long-standing partnership with Catapult, the global leader in sports performance technology, through the end of the 2028/29 season. Under the new agreement, Catapult will remain the official performance analysis provider for France's top professional rugby competitions, the TOP 14 and PRO D2.

Device Types Covered:

  • Smartwatches& Fitness Bands
  • Smart Clothing & Textiles
  • Wearable Patches & Sensors
  • Head-Mounted Wearables

SensorTypes Covered:

  • Accelerometers
  • Gyroscopes
  • Heart Rate Sensors
  • EMG Sensors
  • Pressure Sensors
  • Other Sensor Types

Technologies Covered:

  • AI & Machine Learning
  • IoT& Cloud Integration
  • Biomechanics & Motion Tracking
  • Biometric Monitoring

Distribution Channels Covered:

  • Online Platforms
  • Retail Stores
  • Wearable Device Manufacturers
  • Specialty Stores

Applications Covered:

  • Sports & Fitness
  • Healthcare & Rehabilitation
  • Military &Defense
  • Workplace Safety
  • Other Applications

End Users Covered:

  • Professional Athletes & Teams
  • Patients
  • Industrial Workers
  • Military Personnel
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Wearable Injury Prediction Market, By Device Type

  • 5.1 Introduction
  • 5.2 Smartwatches & Fitness Bands
  • 5.3 Smart Clothing & Textiles
  • 5.4 Wearable Patches & Sensors
  • 5.5 Head-Mounted Wearables

6 Global Wearable Injury Prediction Market, By Sensor Type

  • 6.1 Introduction
  • 6.2 Accelerometers
  • 6.3 Gyroscopes
  • 6.4 Heart Rate Sensors
  • 6.5 EMG Sensors
  • 6.6 Pressure Sensors
  • 6.7 Other Sensor Types

7 Global Wearable Injury Prediction Market, By Technology

  • 7.1 Introduction
  • 7.2 AI & Machine Learning
  • 7.3 IoT & Cloud Integration
  • 7.4 Biomechanics & Motion Tracking
  • 7.5 Biometric Monitoring

8 Global Wearable Injury Prediction Market, By Distribution Channel

  • 8.1 Introduction
  • 8.2 Online Platforms
  • 8.3 Retail Stores
  • 8.4 Wearable Device Manufacturers
  • 8.5 Specialty Stores

9 Global Wearable Injury Prediction Market, By Application

  • 9.1 Introduction
  • 9.2 Sports & Fitness
  • 9.3 Healthcare & Rehabilitation
  • 9.4 Military & Defense
  • 9.5 Workplace Safety
  • 9.6 Other Applications

10 Global Wearable Injury Prediction Market, By End User

  • 10.1 Introduction
  • 10.2 Professional Athletes & Teams
  • 10.3 Patients
  • 10.4 Industrial Workers
  • 10.5 Military Personnel
  • 10.6 Other End Users

11 Global Wearable Injury Prediction Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Catapult Sports
  • 13.2 Athos
  • 13.3 Fitbit
  • 13.4 Nadi X
  • 13.5 Garmin
  • 13.6 dorsaVi
  • 13.7 WHOOP
  • 13.8 Kinexon
  • 13.9 Polar Electro
  • 13.10 Vicon Motion Systems
  • 13.11 STATSports
  • 13.12 Xsens
  • 13.13 Zephyr Technology
  • 13.14 BioSensics
  • 13.15 Hexoskin
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦