![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1803058
¼¼°èÀÇ ¹«¼± ÃæÀü µµ·Î ½ÃÀå ¿¹Ãø : ±¸¼º ¿ä¼Òº°, Â÷·® À¯Çüº°, Àü·Â °ø±Þ ¹üÀ§º°, ±â¼úº°, ¹èÆ÷ À¯Çüº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)Wireless Charging Roads Market Forecasts to 2032 - Global Analysis By Component (Ground Assembly (GA), Vehicle Assembly (VA), and Infrastructure), Vehicle Type, Power Supply Range, Technology, Deployment Type, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¹«¼± ÃæÀü µµ·Î ½ÃÀåÀº 2025³â¿¡ 5,390¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 54.0%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 11¾ï 721¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¹«¼± ÃæÀü µµ·Î´Â µµ·Î ¾Æ·¡¿¡ ³»ÀåµÈ À¯µµ ÃæÀü ±â¼úÀ» »ç¿ëÇÏ¿© Àü±âÀÚµ¿Â÷(EV)¸¦ ÁÖÇà Áß ¶Ç´Â ÁÖÂ÷ Áß¿¡ ÃæÀüÇÒ ¼ö ÀÖ´Â Çõ½ÅÀûÀÎ ÀÎÇÁ¶óÀÔ´Ï´Ù. ¿¡³ÊÁö´Â ÀüÀÚ±âÀåÀ» ÅëÇØ ¹«¼±À¸·Î Àü¼ÛµÇ¾î ºó¹øÇÑ ÃæÀü Á¤ÁöÀÇ Çʿ伺À» ÃÖ¼ÒÈÇϰí ÁÖÇà °Å¸®¸¦ ´Ã¸± ¼ö ÀÖ½À´Ï´Ù. ½ÅÀç»ý¿¡³ÊÁö¿øÀ» µµÀÔÇÔÀ¸·Î½á, ÀÌ·¯ÇÑ µµ·Î´Â EVÀÇ º¸±ÞÀ» Áö¿øÇϰí, Á¾·¡ÀÇ ÃæÀü¼Ò¿¡ÀÇ ÀÇÁ¸À» ÁÙÀ̰í, Áö¼Ó °¡´ÉÇϰí È¿À²ÀûÀÎ ½º¸¶Æ® µµ½Ã ±³Åë ½Ã½ºÅÛÀ» ÃËÁøÇÕ´Ï´Ù.
IEA º¸°í¼¿¡ µû¸£¸é 2023³â Àü±âÂ÷ ÆÇ¸Å·®Àº 1,400¸¸ ´ë·Î 95%´Â Áß±¹, À¯·´, ¹Ì±¹À̾ú½À´Ï´Ù.
Áõ°¡ÇÏ´Â EV ¼ö¿ä¿Í ÆíÀǼº
Àü±âÀÚµ¿Â÷°¡ º¸±ÞµÊ¿¡ µû¶ó ½±°Ô ÃæÀü ÇÒ ¼ö Àִ ȯ°æÀ» ¿ä±¸ÇÏ´Â ¸ñ¼Ò¸®°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¹«¼± ÃæÀü µµ·Î´Â ÁÖÇà Áß ÃæÀüÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Ç×¼Ó °Å¸®¿¡ ´ëÇÑ ºÒ¾ÈÀ» ÇØ¼ÒÇϰí EV ÀÌ¿ëÀ» º¸´Ù ½Ç¿ëÀûÀÎ °ÍÀ¸·Î ÇÕ´Ï´Ù. ½º¸¶Æ® ½ÃƼ ±¸»ó°ú µµ½Ã ¸ðºô¸®Æ¼ Çâ»óµµ ÀÓº£µðµå ÃæÀü ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Àå·ÁÃ¥°ú ÀÏ¹Ý¿ë ±³À° Ä·ÆäÀÎÀÌ ¼ÒºñÀÚÀÇ µµÀÔÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. À̵¿ Áß¿¡ ÃæÀüÇÒ ¼ö ÀÖ´Â °ÍÀº ±âÁ¸ ÃæÀü¼Ò¿¡ ¾ø´Â ÆíÀǼºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÇÏ¸é ¹«¼± ÃæÀü ÀÎÇÁ¶óÀÇ °³¹ß°ú ¹èÆ÷°¡ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.
µµ·Î º¸¼ö ¹× ¼ÛÀü¸Á ¾÷±×·¹À̵带 À§ÇÑ °í¾×ÀÇ Ãʱâ ÅõÀÚ
µµ·Î¸¦ ÃæÀü ÄÚÀÏ·Î º¸¼öÇÏ·Á¸é º¹ÀâÇÑ ¿£Áö´Ï¾î¸µ°ú ±ä °ø»ç°¡ ÇÊ¿äÇÕ´Ï´Ù. ¼ÛÀü¸Áµµ Áö¼ÓÀûÀÎ ¿¡³ÊÁö Àü¼Û¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ¾÷±×·¹À̵åÇØ¾ß ÇÏ¸ç ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÁöÀÚü´Â ƯÈ÷ ´Ù¸¥ ¿ì¼±¼øÀ§°¡ °æÀïÇÏ´Â °æ¿ì ÀÌ·¯ÇÑ ³ôÀº ºñ¿ë ÇÁ·ÎÁ§Æ®¿¡ ÀÚ±ÝÀ» ÇÒ´çÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ½À´Ï´Ù. ÅõÀÚ ´ë È¿°ú°¡ ¸íÈ®ÇÏÁö ¾ÊÀ¸¸ç Å×½ºÆ® µ¥ÀÌÅ͵µ Á¦ÇѵǾî Àֱ⠶§¹®¿¡ µµÀÔÀÌ ´õ¿í Áö¿¬µË´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤Àû °úÁ¦´Â ƯÈ÷ ½ÅÈï±¹¿¡¼ÀÇ º¸±ÞÀ» °è¼Ó Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
Â÷·® ±â¹Ý ´ëÁß±³ÅëÀ¸·Î È®´ë
¹«¼± ÃæÀü µµ·Î´Â ÇÔ´ë¿Í ´ëÁß ±³Åë¸Á¿¡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. ¹ö½º¿Í ÅÃ¹è ¹ê°ú °°Àº Â÷·®Àº Á¤ÇØÁø °æ·Î¸¦ ´Þ¸®±â ¶§¹®¿¡ µ¿Àû ÃæÀü ¼³Á¤¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. µû¶ó¼, °øÈ¸Àü ½Ã°£ÀÌ ´ÜÃàµÇ°í, °íÁ¤Çü ÃæÀü±â¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ °¨¼ÒÇϰí, ¿îÇà È¿À²ÀÌ Çâ»óµË´Ï´Ù. ±³Åë ½Ã½ºÅÛÀÇ Àü±â¸¦ ¸ñÇ¥·Î ÇÏ´Â °¢±¹ Á¤ºÎ´Â È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î¼ ÀÓº£µðµå ÃæÀüÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¸ðºô¸®Æ¼ Ç÷§Æû°ú ÅëÇÕÇÏ¸é ¿¡³ÊÁö »ç¿ë ¹× °æ·Î °èȹÀ» ´õ¿í ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. Â÷·®ÀÇ Àü±â°¡ ±â¼¼¸¦ ´Ã¸®´Â µ¿¾È ¹«¼± ÃæÀü µµ·Î´Â Áö¼Ó °¡´ÉÇÑ ¿î¼ÛÀ» À§ÇÑ ¼³µæ·Â ÀÖ´Â ±æÀ» Á¦°øÇÕ´Ï´Ù.
±Þ¼Ó ÃæÀü¼Ò ¹× ¹èÅ͸® ±³Ã¼¿ÍÀÇ °æÀï
¹«¼± ÃæÀü µµ·Î´Â ±Þ¼Ó ÃæÀü¼Ò ¹× ¹èÅ͸® ±³Ã¼ ³×Æ®¿öÅ©¿Í °°Àº È®¸³µÈ ´ëü ¼ö´Ü°úÀÇ ¾ö°ÝÇÑ °æÀï¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÀÌ¹Ì ´ë±Ô¸ð·Î ¹èÆ÷µÇ¾úÀ¸¸ç ÀÎÇÁ¶óÀÇ º¹À⼺À» ÁÙÀÌ¸é¼ º¸´Ù ½Å¼ÓÇÏ°Ô ¹èÆ÷ÇÒ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ¹èÅ͸® ½º¿ÒÀº ±× ¼Óµµ¿Í ¸ðµâ¼º ¶§¹®¿¡ »ó¿ë Çø´¿¡ ¸Å·ÂÀûÀÔ´Ï´Ù. Ç÷¯±×ÀÎ ÃæÀü »ýŰ迡 ´ëÇÑ ¼ÒºñÀÚÀÇ Àͼ÷¼º°ú ±âÁ¸ ÅõÀÚµµ µµÀÔÀÇ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ãʰí¼Ó ÃæÀüÀÇ ±â¼úÀû Áøº¸·Î ¿ªµ¿ÀûÀÎ µµ·Î ±â¹Ý ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ÀúÇ쵃 ¼ö ÀÖ½À´Ï´Ù.
ÆÒµ¥¹ÍÀº ºÀ¼â ¹× ÀÚ¿ø Á¦¾àÀ¸·Î ÀÎÇØ ¹«¼± ÃæÀü µµ·Î ±¸»ó°ú °°Àº ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ Áö¿¬À» °¡Á®¿Ô½À´Ï´Ù. °ø±Þ¸ÁÀÌ Áß´ÜµÇ°í ³ëµ¿·Â ºÎÁ·ÀÌ °Ç¼³ ÀÏÁ¤¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ °ø°ø °ø°£¿¡¼ ºñÁ¢ÃË ±â¼úÀÇ °¡Ä¡¸¦ ºÎ°¢½ÃÄ×½À´Ï´Ù. Æ÷½ºÆ® COVIDÀÇ ¼¼°è¿¡¼ µµ½Ã°¡ À̵¿¼ºÀ» Àç°ËÅäÇÔ¿¡ µû¶ó ³»ÀåÇü ÅÍÄ¡ ÇÁ¸® ÃæÀü ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±×¸° ºÎÈï ÇÁ·Î±×·¥°ú °æ±â ÀÚ±ØÃ¥ÀÌ Áö¼Ó °¡´ÉÇÑ ±³Åë Çõ½ÅÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÆÒµ¥¹Í(¼¼°èÀû ´ëÀ¯Çà)Àº óÀ½¿¡´Â ÁøÀüÀ» ´ÊÃß¾úÁö¸¸, °á±¹ ź·Â¼ºÀÌ ÀÖ¾î Àå·¡¿¡ ´ëºñÇÑ ÀÎÇÁ¶óÀÇ Á߿伺À» °ÈÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀδöƼºê ÃæÀü ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
Â÷·®ÀÌ ¹°¸®ÀûÀ¸·Î Á¢ÃËÇÏÁö ¾Ê°í ÃæÀüÇÒ ¼ö ÀÖ´Â Á¤Àû¡¤µ¿Àû ½Ã½ºÅÛÀÇ Çõ½ÅÀ¸·Î À¯µµ ÃæÀü ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½º¸¶Æ® ½ÃƼÀÇ »ó½Â, À̵¿ Â÷·®ÀÇ ½Ç½Ã°£ ÃæÀü, ¿¡³ÊÁö Àü´Þ È¿À²ÀÇ Çâ»óÀÌ ÀÌ ±â¼úÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷¿Í ÇÏÀÌÅ×Å© ±â¾÷ÀÇ Á¦ÈÞ, °í¼Óµµ·ÎÀÇ ÆÄÀÏ·µ ÇÁ·Î±×·¥, Á¤ºÎ ÁÖµµÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ´ëó µî ÁÖ¸ñÇÒ ¸¸ÇÑ ÁøÀüÀÌ ÀÖÀ¸¸ç, À̵éÀº ¸ðµÎ Ç׼ӰŸ®¿¡ ´ëÇÑ ºÒ¾ÈÀ» °æ°¨ÇÏ°í ´Ù¾çÇÑ ¼ö¼Û ºÐ¾ß¿¡¼ Àü±âÂ÷ÀÇ º¸±ÞÀ» ÃËÁøÇϱâ À§ÇØ Çù·ÂÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó °³¹ßÀÚ ºÎ¹®ÀÇ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Áö¼Ó °¡´ÉÇÑ µµ½Ã À̵¿¼º°ú ¿øÈ°ÇÑ ¿¡³ÊÁö ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó °³¹ßÀÚ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯µµ ÃæÀü ¹× °ø¸í ÃæÀü°ú °°Àº ±â¼úÀº ½º¸¶Æ® ±×¸®µå ¹× IoT ±â¹Ý ±³Åë ½Ã½ºÅÛ°ú ÅëÇյǰí ÀÖ½À´Ï´Ù. Àθð¼Ç ÃæÀü, ¼Ö¶ó ´ëÀÀ µµ·Î, Å©·Î½º Ç÷§Æû ȣȯ¼º µîÀÇ µ¿ÇâÀÌ ±â¼¼¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ÁÖ¿ä µ¿Çâ¿¡´Â µµ½Ã Áö¿ªÀÇ Á¶Á¾»ç ÇÁ·Î±×·¥, EV Á¦Á¶¾÷ü¿ÍÀÇ Àü·«Àû Á¦ÈÞ, Áö¼Ó°¡´É¼º¿¡ ÁßÁ¡À» µÐ °ø°ø ºÎ¹®ÀÇ ³ë·Â µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº ¹èÃâ·® °¨¼Ò, ¿¡³ÊÁö Ȱ¿ë °³¼±, ¹Ì·¡ÀÇ µµ½Ã À̵¿¼ºÀ» À§ÇÑ È®Àå °¡´ÉÇÑ ÀÎÇÁ¶ó ±¸ÃàÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Àü±âÂ÷ µµÀÔ Áõ°¡, Á¤ºÎ Áö¿ø Á¤Ã¥, Áö¼Ó°¡´ÉÇÑ µµ½Ã °³Ã´ÀÇ °·ÂÇÑ ÃßÁø ¶§¹®ÀÔ´Ï´Ù. À¯µµ ÃæÀü ¹× °øÁø ÃæÀü µîÀÇ ±â¼úÀÌ ½º¸¶Æ® ÀÎÇÁ¶ó¿¡ ÅëÇյǾî Â÷·®ÀÌ ÁÖÇà Áß¿¡ ÃæÀüÇÒ ¼ö ÀÖµµ·Ï µÇ¾î ÀÖ½À´Ï´Ù. ÁÖ¿ä µ¿ÇâÀ¸·Î´Â µ¿Àû ÃæÀü ·¹ÀÎ, ž籤 ÅëÇÕ µµ·Î, IoT ÁÖµµÇü ±³Åë ½Ã½ºÅÛ µîÀÌ ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ¸¸ÇÑ ÁøÀüÀ¸·Î´Â Áß±¹, ÀϺ», Àεµ µî ±¹°¡¿¡¼ÀÇ ½ÃÇèÀûÀÎ ´ëó¿Í Áß±¹ ±â¾÷ÀÌ ÁÖµµÇÏ´Â ±â¼ú Çõ½Å°ú ƯÇãȰµ¿ÀÇ È°¼ºÈ¸¦ µé ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Àü±âÂ÷ ÀÌ¿ë È®´ë, Á¤ºÎ Áö¿ø Á¤Ã¥, ¿øÈ°ÇÑ ÃæÀü ÀÎÇÁ¶óÀÇ Çʿ伺 ¶§¹®ÀÔ´Ï´Ù. À¯µµ ½Ã½ºÅÛÀ̳ª °øÁø ½Ã½ºÅÛ°ú °°Àº ÷´Ü ±â¼úÀÌ ÁøÈÇÏ¿© µ¿Àû ÃæÀüÀÌ ±â¼¼¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. µ¿Çâ¿¡´Â ½º¸¶Æ® ½ÃƼ ÇÁ·¹ÀÓ¿öÅ©¿ÍÀÇ ÅëÇÕ°ú º¸ÆíÀûÀΠǥÁØ ÃßÁøÀÌ Æ÷ÇԵ˴ϴÙ. ÁÖ¿ä ÀÌÁ¤Ç¥´Â µðÆ®·ÎÀÌÆ®¿¡¼ ElectronÀÇ Á¶Á¾»ç¿Í WiTricityÀÇ Halo Ç÷§ÆûÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü, Çõ½Å ±â¾÷, ÀÎÇÁ¶ó ±â¾÷ °£ÀÇ Àü·«Àû Á¦ÈÞ·Î µµ½Ã ±³Åë »ýŰè Àü¹Ý¿¡ °ÉÃÄ µµÀÔÀÌ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Wireless Charging Roads Market is accounted for $53.90 million in 2025 and is expected to reach $1107.21 million by 2032 growing at a CAGR of 54.0% during the forecast period. Wireless charging roads are innovative infrastructures that enable electric vehicles (EVs) to recharge while driving or parked, using inductive charging technology embedded under the road surface. Energy is transmitted wirelessly through electromagnetic fields, minimizing the need for frequent charging stops and extending driving range. By incorporating renewable energy sources, these roads support wider EV adoption, lessen reliance on conventional charging stations, and foster sustainable, efficient, and smart urban transportation systems.
According to a report by the IEA organization, electric car sales valued for 14 million in 2023, 95% of which were in China, Europe, and the U.S.
Growing demand for EVs and convenience
As electric vehicles become more popular, there's a growing push for effortless charging experiences. Wireless charging roads help eliminate range anxiety by allowing vehicles to recharge while driving, making EV use more practical. Smart city initiatives and urban mobility upgrades are also boosting interest in embedded charging systems. Government incentives and public education campaigns are accelerating consumer adoption. The ability to charge on the move adds a layer of convenience that traditional charging stations can't match. Altogether, these trends are propelling the development and deployment of wireless charging infrastructure.
High upfront CAPEX for road retrofitting and grid upgrades
Retrofitting roads with charging coils involves complex engineering and long construction periods. Power grids also need to be upgraded to handle continuous energy transfer, which adds to the expense. Municipalities often struggle to allocate funds for such high-cost projects, especially when other priorities compete for attention. The lack of clear return on investment and limited pilot data further slow adoption. These financial challenges continue to restrict widespread rollout, particularly in emerging economies.
Expansion into fleet-based and public transport
Wireless charging roads are especially well-suited for fleets and public transportation networks. Vehicles like buses and delivery vans follow fixed routes, making them ideal for dynamic charging setups. This reduces idle time and dependence on stationary chargers, improving operational efficiency. Governments aiming to electrify transit systems are exploring embedded charging as a scalable solution. Integration with smart mobility platforms can further optimize energy use and route planning. As fleet electrification gains momentum, wireless charging roads offer a compelling path forward for sustainable transport.
Competition from fast-charging stations and battery swapping
The wireless charging roads faces stiff competition from established alternatives like fast-charging stations and battery swapping networks. These solutions are already deployed at scale and offer quicker implementation with lower infrastructure complexity. Battery swapping, in particular, appeals to commercial fleets due to its speed and modularity. Consumer familiarity and existing investment in plug-in charging ecosystems also pose adoption challenges. Moreover, technological advancements in ultra-fast charging may reduce the perceived need for dynamic road-based solutions.
The pandemic caused delays in infrastructure projects, including wireless charging road initiatives, due to lockdowns and resource constraints. Supply chains were disrupted, and labor shortages affected construction timelines. However, the crisis also highlighted the value of contactless technologies in public spaces. As cities rethink mobility in a post-COVID world, interest in embedded, touch-free charging systems has grown. Green recovery programs and stimulus funding are now supporting sustainable transport innovations. While the pandemic slowed progress initially, it ultimately reinforced the importance of resilient and future-ready infrastructure.
The inductive charging segment is expected to be the largest during the forecast period
The inductive charging segment is expected to account for the largest market share during the forecast period, due to innovations in both static and dynamic systems that allow vehicles to charge without physical contact. The rise of smart cities, real-time charging for moving vehicles and improvements in energy transfer efficiency are shaping the future of this technology. Notable progress includes partnerships between automotive and tech companies, highway pilot programs, and government-led sustainability efforts-all working together to reduce range anxiety and boost electric vehicle adoption across various transport sectors.
The smart city infrastructure developers segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the smart city infrastructure developers segment is predicted to witness the highest growth rate, propelled by the growing demand for sustainable urban mobility and seamless energy integration. Technologies like inductive and resonant charging are being integrated with smart grids and IoT-based traffic systems. Trends such as in-motion charging, solar-enabled roadways, and cross-platform compatibility are gaining momentum. Major developments include urban pilot programs, strategic alliances with EV manufacturers, and public sector initiatives focused on sustainability. These efforts aim to cut emissions, improve energy use, and build scalable infrastructure for future urban mobility.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to increasing electric vehicle adoption, supportive government policies, and a strong push for sustainable urban development. Technologies such as inductive and resonant charging are being embedded into smart infrastructure, allowing vehicles to charge while in motion. Key trends include dynamic charging lanes, solar-integrated roads, and IoT-driven traffic systems. Noteworthy progress includes pilot initiatives in countries like China, Japan, and India, along with rising innovation and patent activity led by Chinese firms.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by growing electric vehicle usage, supportive government policies, and the need for seamless charging infrastructure. Advanced technologies like inductive and resonant systems are evolving, with dynamic charging gaining momentum. Trends include integration with smart city frameworks and push for universal standards. Key milestones feature Electreon's pilot in Detroit and WiTricity's Halo platform. Strategic alliances among automakers, tech innovators, and infrastructure firms are fast-tracking implementation across urban transportation ecosystems.
Key players in the market
Some of the key players in Wireless Charging Roads Market include WiTricity Corporation, Hyundai Motor Company, Electreon, Renault Group, InductEV Inc., BMW Group, Plugless Power Inc., Volvo Group, Wave Charging, Toyota Motor Corporation, ENRX, Robert Bosch GmbH, Qualcomm Technologies Inc., Continental AG, HEVO Inc., Bombardier Inc., Siemens AG, and Mojo Mobility Inc.
In July 2025, Renault India launched the New Renault Triber - India's most innovative 7-seater car. The new Triber comes with new and modern design language along with comfort enhancing features, while retaining its unique DNA of modularity, adopting to rethink space philosophy.
In November 2024, the State of Michigan announced a new partnership with Electreon Xos, Inc. to operate wireless charging solutions for electrified commercial delivery vehicles in Michigan. With this commercial partnership, Electreon is set to extend the company's wireless EV charging network and use cases in Michigan.
In July 2023, WiTricity announced the FastTrack Integration Program for automotive OEMs that allows for an initial vehicle integration in just three months, dramatically accelerating automaker testing of wireless charging on existing and future EV platforms. Wireless charging will be fully enabled and operational on the automaker's EV platform using the WiTricity Halo(TM) receiver and the WiTricity Halo(TM) 11kW charger.