½ÃÀ庸°í¼­
»óǰÄÚµå
1803073

¼¼°èÀÇ ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç° ½ÃÀå ¿¹Ãø(-2032³â) - ±¤¼® À¯Çüº°, È­ÇÐÁ¦Ç° À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Mining Flotation Chemicals Market Forecasts to 2032 - Global Analysis By Ore Type (Sulphide Ores and Non-Sulphide Ores), Chemical Type, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç° ½ÃÀåÀº 2025³â 128¾ï 5,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 7.1%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â±îÁö 207¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù. ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç°Àº ±¤¼®¿¡¼­ ±ÍÁßÇÑ ±¤¹°À» ºÐ¸®Çϱâ À§ÇÑ ºÎÀ¯ °øÁ¤¿¡ »ç¿ëµÇ´Â Ư¼ö ½Ã¾àÀÔ´Ï´Ù. ÀÌ·¯ÇÑ È­ÇÐÁ¦Ç°Àº ¹Ì³×¶öÀÇ Ç¥¸é Ư¼ºÀ» º¯È­½ÃÄÑ ¿øÇÏ´Â ÀÔÀÚ¸¦ ±âÆ÷¿¡ ºÎÂø½ÃÄÑ È¿°úÀûÀÎ ºÐ¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀϹÝÀûÀÎ À¯Çü¿¡´Â Æ÷ÁýÁ¦, ¹ßÆ÷Á¦, °¨¾ÐÁ¦, Ȱ¼ºÁ¦ µîÀÌ ÀÖ½À´Ï´Ù. ±¤¹°ÀÇ È¸¼ö È¿À²°ú ¼±ÅüºÀ» ³ôÀÓÀ¸·Î½á, ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç°Àº ±¤¾÷ÀÇ »ý»ê¼º°ú ¼öÀͼº¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

¼¼°èÀºÇà¿¡ µû¸£¸é ºñ¿¬·á ±¤¹° ¿ø·á¸¦ ÀÌ¿ëÇÏ´Â »ê¾÷Àº 2023³â¿¡ ÃßÁ¤ 3Á¶ 8,400¾ï ´Þ·¯ÀÇ ºÎ°¡°¡Ä¡ Á¦Ç°À» ¸¸µé¾î ³ÂÀ¸¸ç, ÀÌ´Â Àü³â ´ëºñ 6% Áõ°¡¿¡ ÇØ´çÇÕ´Ï´Ù.

±¤¼®ÀÇ Ç°Áú Çâ»ó¿¡ ´ëÇÑ °ü½É Áõ°¡

±¤¹° ȸ¼öÀ²ÀÌ ³ô°í ¿î¿µ È¿À²¼ºÀÌ ³ô°í ¼öÀͼºÀÌ ³ô¾ÆÁü¿¡ µû¶ó ±¤¼®ÀÇ Ç°Áú Çâ»óÀÌ Áß¿äÇØÁö°í ½ÃÀåÀÌ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. °Ç¼³, ÀÚµ¿Â÷, ÀüÀÚ±â±â µîÀÇ ºÐ¾ß¿¡¼­ °íǰÁú ±¤¼®¿¡ ´ëÇÑ ¼ö¿ä¿¡ ¹Ð·Á, ±¤»ê¾÷ÀÚ´Â ºÐ¸®¸¦ °­È­ÇÏ°í ºÒ¼ø¹°À» Àú°¨Çϴ ÷´Ü ºÎÀ¯ È­ÇÐÁ¦Ç°À» ¿ä±¸ÇÏ°Ô µÇ¾ú½À´Ï´Ù. °íǰÁúÀÇ ±¤»ó¿¡ ´ëÇÑ Á¢±ÙÀÌ ¾î·Á¿öÁü¿¡ µû¶ó, Àú±Þ ±¤¼®¿¡¼­ ÃÖ´ëÇÑÀÇ °¡Ä¡¸¦ ²ø¾î³»±â À§ÇØ Æ¯¼ö ½Ã¾àÀÌ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. º¸´Ù ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í Áö¼Ó°¡´É¼º ¸ñÇ¥´Â Æó±â¹° ¹ß»ý°ú ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̸鼭 ±¤¼®ÀÇ Ç°ÁúÀ» ³ôÀÌ´Â ¼Ö·ç¼ÇÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¾ö°ÝÇÑ È¯°æ ¹× ¾ÈÀü ±ÔÁ¤

¸¹Àº ºÎÀ¯ ½Ã¾à¿¡´Â À¯ÇØ ¹°ÁúÀÌ Æ÷ÇԵǾî ÀÖÀ¸¸ç ½ÅÁßÇÑ Ãë±Þ, Æó±â ¹× ¸ð´ÏÅ͸µÀÌ ÇÊ¿äÇÕ´Ï´Ù. °¢ Áö¿ªÀÇ ±ÔÁ¦±â°üÀº È­ÇÐÁ¦Ç°ÀÇ »ç¿ë, ¹èÃâ, ¼öÁú¿À¿°¿¡ °üÇÑ ±ÔÁ¦¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ Á¦Á¶¾÷ü ¹× ä±¼ »ç¾÷ÀÚÀÇ ÄÄÇöóÀ̾𽺠ºñ¿ëÀÌ »ó½ÂÇÏ¿© ¼öÀͼº°ú ¿î¿µ À¯¿¬¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. °æ¿ì¿¡ µû¶ó ÇÁ·ÎÁ§Æ® ½ÂÀÎ Áö¿¬ ¹× È­ÇÐÁ¦Ç° ¼öÀÔ ±ÔÁ¦°¡ ½ÃÀå È®´ë¸¦ ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼¼°èÀûÀ¸·Î ÅëÀÏµÈ ±âÁØÀ̳ª Áö¼Ó°¡´ÉÇÑ Á¦Çü¿¡ ´ëÇÑ Àμ¾Æ¼ºê°¡ ¾øÀ¸¸é »õ·Î¿î ºÎÀ¯ È­ÇÐÁ¦Ç°ÀÇ Çõ½Å°ú ä¿ëÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù.

±¤¾÷ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ È®´ë

±¤¹° ä±¼ ´É·ÂÀÇ Çâ»ó°ú ½Ã¼³ÀÇ Çö´ëÈ­·Î È¿À²ÀûÀÌ°í ¼±ÅüºÀÌ ³ôÀº ½Ã¾à¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ ±â¾÷Àº ƯÈ÷ ºñ±Ý¼Ó ¹× ¹èÅ͸® ±Ý¼ÓÀÌ Ç³ºÎÇÑ Áö¿ª¿¡¼­ ´ë±Ô¸ð 䱤 ÇÁ·ÎÁ§Æ®¿¡ ÀÚ±ÝÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ¶§¹®¿¡ º¹ÀâÇÑ ±¤¼® ÇÁ·ÎÆÄÀÏ¿¡ ¸Â´Â °í±Þ Æ÷ÁýÁ¦, ±³¹ÝÁ¦, °³ÁúÁ¦ÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÎÇÁ¶ó ¾÷±×·¹À̵å´Â ÀÚµ¿È­ ¹× µðÁöÅÐ ±¤¹° 󸮸¦ Áö¿øÇÏ¿© ½Ã¾àÀÇ ¼º´É°ú ȸ¼öÀ²À» ³ôÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº È­ÇÐ ¹°ÁúÀÇ ¼Òºñ¸¦ °¡¼ÓÈ­Çϰí Çõ½ÅÀÇ »õ·Î¿î ±æÀ» ¿­ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

´ëü ¹æ¹ý°úÀÇ °æÀï Áõ°¡

½À½Ä ¾ß±Ý, ¹ÙÀÌ¿À¸®Äª, Á߷ºи® µîÀÇ ±â¼ú Çõ½ÅÀº º¸´Ù Áö¼Ó°¡´ÉÇÏ°í ºñ¿ëÈ¿À²ÀÌ ¶Ù¾î³ª°í ȯ°æÄ£È­ÀûÀÎ ÇØ°áÃ¥À» Á¦°øÇϱâ À§ÇØ ±¤»êȸ»ç´Â È­ÇоàǰÀ» ´Ù¿ëÇÏ´Â ºÎÀ¯¹ý¿¡¼­ ´Ù¾çÈ­ÇÏ·Á°í Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ë¾ÈÀº ½Ã¾à¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ¿î¿µ ºñ¿ëÀ» ³·Ã߸ç ȯ°æ ±ÔÁ¦ °­È­¿¡ Àß ¸Â´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ±× °á°ú, ÀüÅëÀûÀÎ ºÎÀ¯ È­ÇÐÁ¦Ç° ¼ö¿ä´Â Á¤Ã¼µÇ°Å³ª °¨¼ÒµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¤¼® ºÐ·ù ¹× ¼¾¼­ ºÐ¸®ÀÇ ±â¼úÀû Áøº¸´Â ºÎÀ¯ È­ÇÐÁ¦Ç° ½ÃÀå Á¡À¯À²À» ´õ¿í ħ½ÄÇÏ°í °æÀïÀ» °ÝÈ­½Ã۰í È­ÇÐÁ¦Ç° °ø±Þ¾÷ü´Â °ü·Ã¼ºÀ» À¯ÁöÇϱâ À§ÇØ Á¦Ç°À» Çõ½ÅÇϰí Àç¹èÄ¡ÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ ´ëÀ¯ÇàÀº ¼¼°èÀûÀÎ ±¤»ê Á¶¾÷À» Áß´ÜÇÏ¿© ºÎÀ¯ È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÀϽÃÀûÀ¸·Î °¨¼Ò½ÃÄ×½À´Ï´Ù. ¿î¿µ Áß´Ü, ³ëµ¿ ºÎÁ·, °ø±Þ¸Á Áß´ÜÀº È­ÇÐÁ¦Ç°ÀÇ »ý»ê°ú ¹è´Þ¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ Åº·ÂÀûÀ̰í ÀÚµ¿È­µÈ ¹Ì³×¶ö ó¸® ½Ã½ºÅÛÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ±¤»ê ȸ»ç°¡ ¿ø°Ý ¸ð´ÏÅ͸µ ¹× µðÁöÅÐ ¿öÅ©Ç÷ο쿡 ÀûÀÀÇÔ¿¡ µû¶ó ¾ÈÁ¤ÀûÀÎ °á°ú¸¦ Á¦°øÇÏ´Â °í¼º´É ½Ã¾à¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ÆÒ´ë¹Í ÀÌÈÄÀÇ È¸º¹ ³ë·ÂÀº ±¤¾÷ ÀÎÇÁ¶ó¿Í ޱ¤¿¡ ÀçÅõÀÚ·Î À̾îÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ȳȭ±¤ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

±¸¸®, ±Ý ¹× Áß¿ä ±¤¹°ÀÇ È¸¼ö¿¡¼­ °í¼±Åüº ½Ã¾à¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Ȳȭ±¤ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ÁÖµµ ½Ã¾à Á¦¾î, ½Ç½Ã°£ °Åǰ À̹Ì¡, ÀζóÀÎ ½ºÆåÆ®·³ ºÐ¼® µîÀÇ Çõ½ÅÀ¸·Î ºÎÀ¯ Á¤¹Ðµµ°¡ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ ºÐ¾ß´Â ȯ°æ ±âÁØÀÇ °­È­¿¡ ´ëÀÀÇϱâ À§ÇØ È¯°æ ģȭÀûÀ̰í À§Ç輺ÀÌ ³·Àº È­ÇÐ Á¦Á¦¿Í ÅëÇÕ ¼ö ÀçȰ¿ë ½Ã½ºÅÛ¿¡ ÀÇÇØ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °øµ¿ ¿¬±¸ °³¹ß°ú °í±Þ Ç¥¸é È­ÇÐÀÌ º¹ÀâÇÑ È²È­±¤ ó¸®ÀÇ °ßÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¼öó¸® ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ȯ°æ±âÁØ Áõ°¡ ¹× Áö¼Ó°¡´É¼º ¸ñÇ¥´Â ¼öó¸® ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â¼ú¿¡´Â ½º¸¶Æ® ¹° ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, AI ÃÖÀûÈ­ ½Ã¾à Åõ¿©, Æó¼â ·çÇÁ ÀçȰ¿ë ¼³Á¤ µîÀÌ Æ÷ÇԵ˴ϴÙ. µ¿ÇâÀº ESG ÄÄÇöóÀ̾𽺸¦ Áö¿øÇϱâ À§ÇØ ¼ö»ý¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÏ°í ¼ö¸í Áֱ⠵¥ÀÌÅ͸¦ Åõ¸íÈ­ÇÑ È¯°æ¿¡¼­ ¾ÈÀüÇÑ »ýºÐÇØ¼º È­ÇÐÁ¦Ç°·Î À̵¿ÇÕ´Ï´Ù. Ưº°ÇÑ °³¹ßÀº ƯÈ÷ REACH ÇÁ·ÎÅäÄݰú ±×¸° ¸¶ÀÌ´× ÇÁ·¹ÀÓ ¿öÅ©¸¦ äÅÃÇÏ´Â °üÇÒ ±¸¿ª¿¡¼­ È­ÇÐ Çõ½ÅÀÚ ¹× ±â¼ú °ø±ÞÀÚ°¡ Çù·ÂÇÏ¿© ¹°À» Àý¾àÇÏ´Â Á¦Á¦¸¦ °³¹ßÇÏ´Â °ÍÀÔ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº »ê¾÷ ¼ºÀå °¡¼ÓÈ­, ÀÎÇÁ¶ó È®´ë, ¸®Æ¬ ¹× ±¸¸®¿Í °°Àº ±Ý¼Ó ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ±â¹Ý ½Ã¾à Á¦¾î, ½Ç½Ã°£ °Åǰ À̹Ì¡, ÀζóÀÎ ½ºÆåÆ®·³ ºÐ¼®°ú °°Àº ÷´Ü ±â¼úÀº ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ã۰í È­ÇÐ ¹°Áú ¼Òºñ¸¦ ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. Áö¼Ó°¡´É¼º¿¡ ÃÊÁ¡À» ¸ÂÃá µ¿Çâ¿¡´Â ģȯ°æ ½Ã¾à ¹× ¹° ÀçȰ¿ë ½Ã½ºÅÛ µîÀÌ ÀÖ½À´Ï´Ù. °³¹ßÀº ¿¡³ÊÁö ÀüÀÌ ±¤¹°¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ¿Í ¾î·Á¿î ±¤¼® Á¶¼º¿¡ ´ëÀÀÇÏ´Â ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» âÃâÇϱâ À§ÇÑ È­ÇÐ °ø±ÞÀÚ¿Í ±¤»ê¾÷ÀÚ °£ Á¦ÈÞ¸¦ °­Á¶Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ÀÌ´Â ¸®Æ¬, ±¸¸®, ±Ý µîÀÇ ±Ý¼Ó ¼ö¿ä Áõ°¡¿¡ °ßÀεǾî Àü±â¿Í ÀÎÇÁ¶ó ±¸»ó¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ½Ã¾à ÁÖÀÔ ½Ã½ºÅÛ, Ä¡½Ç À̹Ì¡ ±â¼ú, ±¤¼® Àü¿ë Ä÷ºÅÍ µîÀÇ ±â¼ú Çõ½ÅÀÌ ÃßÃâ È¿À²À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ½ÃÀåÀº ¶ÇÇÑ È¯°æ ±âÁØÀÇ ¾ö°ÝÈ­¿¡ ´ëÀÀÇÏ¿© Áö¼Ó°¡´ÉÇϰí ÀúºÎÇÏÀÇ È­ÇÐÁ¦Á¦·ÎÀÇ ÀüȯÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ µ¿ÇâÀ¸·Î´Â ´Ù¾çÇÏ°í º¹ÀâÇÑ ±¤»ó¿¡ ´ëÀÀÇÏ´Â ºÎÀ¯ ÇÁ·Î¼¼½ºÀÇ °³·®À» ¸ñÀûÀ¸·Î ÇÑ °øµ¿ ¿¬±¸ °³¹ßÀ̳ª Àü·«Àû Á¦ÈÞ¸¦ µé ¼ö ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ Á¤ÀÇ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç° ½ÃÀå : ±¤¼® À¯Çüº°

  • Ȳȭ±¤¼®
  • ºñȲȭ¹°±¤¼®

Á¦6Àå ¼¼°èÀÇ ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç° ½ÃÀå : È­ÇÐÁ¦Ç° À¯Çüº°

  • Æ÷ÁýÁ¦
  • ±âÆ÷Á¦
  • ÁøÁ¤Á¦
  • ÀÀÁýÁ¦
  • °³ÁúÁ¦
    • ºÐ»êÁ¦
    • pHÁ¶Á¤Á¦
    • Ȱ¼ºÁ¦
  • ±âŸ È­ÇÐÁ¦Ç° À¯Çü

Á¦7Àå ¼¼°èÀÇ ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç° ½ÃÀå : ¿ëµµº°

  • º£À̽º¸ÞÅ» ±¤¾÷
  • ¹èÅ͸® ±Ý¼Ó ä±¼
  • ±Í±Ý¼Ó ä±¼
  • °ø¾÷ ±¤¹° ä±¼
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç° ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ±¤¾÷
  • È­ÇÐó¸®
  • ¼öó¸®
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ ±¤¾÷¿ë ºÎÀ¯ È­ÇÐÁ¦Ç° ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • BASF SE
  • Solenis LLC
  • Clariant AG
  • AkzoNobel NV
  • Solvay SA
  • Ecolab Inc.
  • Arkema Group
  • Ashland Global Holdings Inc.
  • Evonik Industries AG
  • Dow Chemical Company
  • Huntsman Corporation
  • Air Products and Chemicals, Inc.
  • Kemira Oyj
  • Chevron Phillips Chemical Company LLC
  • Orica Limited
  • SNF Floerger
AJY

According to Stratistics MRC, the Global Mining Flotation Chemicals Market is accounted for $12.85 billion in 2025 and is expected to reach $20.77 billion by 2032 growing at a CAGR of 7.1% during the forecast period. Mining flotation chemicals are specialized reagents used in the flotation process to separate valuable minerals from ores. These chemicals modify the surface properties of minerals, enabling the attachment of desired particles to air bubbles for effective separation. Common types include collectors, frothers, depressants, and activators. By enhancing the efficiency and selectivity of mineral recovery, mining flotation chemicals play a crucial role in the productivity and profitability of the mining industry.

According to the World Bank, industries utilizing nonfuel mineral materials generated an estimated USD 3.84 trillion in value-added products in 2023, representing a 6% increase from the previous year.

Market Dynamics:

Driver:

Increased focus on improving ore quality

A growing emphasis on improving ore quality is shaping the market, driven by the need for higher mineral recovery rates, greater operational efficiency, and stronger profitability. Demand for high-grade ores in sectors such as construction, automotive, and electronics is pushing miners toward advanced flotation chemicals that enhance separation and reduce impurities. With high-quality ore deposits becoming harder to access, specialized reagents are increasingly used to extract maximum value from lower-grade sources. Stricter environmental regulations and sustainability objectives are also promoting the use of solutions that boost ore quality while cutting waste generation and energy consumption.

Restraint:

Stringent environmental and safety regulations

Many flotation reagents contain hazardous substances that require careful handling, disposal, and monitoring. Regulatory bodies across regions are tightening controls on chemical usage, emissions, and water contamination. This raises compliance costs for manufacturers and mining operators, impacting profitability and operational flexibility. In some cases, delays in project approvals or restrictions on chemical imports further hinder market expansion. Without harmonized global standards or incentives for sustainable formulations, innovation and adoption of new flotation chemicals may slow down.

Opportunity:

Growing investment in mining infrastructure

Enhanced mineral extraction capabilities and modernization of facilities are increasing demand for efficient and selective reagents. Governments and private players are funding large-scale mining projects, especially in regions rich in base and battery metals. This drives the need for advanced collectors, frothers, and modifiers tailored to complex ore profiles. Additionally, infrastructure upgrades support automation and digital mineral processing, boosting reagent performance and recovery rates. These developments are expected to accelerate chemical consumption and open new avenues for innovation.

Threat:

Increasing competition from alternative methods

Innovations such as hydrometallurgy, bioleaching, and gravity separation offer more sustainable, cost-effective, or environmentally friendly solutions, prompting mining companies to diversify beyond chemical-intensive flotation. These alternatives often reduce dependency on reagents, lower operational costs, and align better with tightening environmental regulations. As a result, demand for conventional flotation chemicals may stagnate or decline. Additionally, technological advancements in ore sorting and sensor-based separation further erode the market share of flotation chemicals, intensifying competition and compelling chemical suppliers to innovate or reposition their offerings to remain relevant.

Covid-19 Impact:

The COVID-19 pandemic disrupted global mining operations, temporarily reducing demand for flotation chemicals. Lockdowns, labor shortages, and supply chain interruptions affected chemical production and delivery timelines. However, the crisis also highlighted the importance of resilient and automated mineral processing systems. As mining companies adapted to remote monitoring and digital workflows, demand for high-performance reagents with consistent results increased. Post-pandemic recovery efforts have led to renewed investment in mining infrastructure and exploration.

The sulphide ores segment is expected to be the largest during the forecast period

The sulphide ores segment is expected to account for the largest market share during the forecast period, due to rising demand for highly selective reagents in copper, gold, and critical mineral recovery. Innovations such as AI-driven reagent control, real-time froth imaging, and inline spectral analysis are improving flotation precision. The sector is evolving with eco-friendly, low-hazard chemical formulations and integrated water recycling systems to meet tightening environmental norms. Additionally, collaborative R&D and advanced surface chemistry are gaining traction for complex sulphide ore processing.

The water treatment segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the water treatment segment is predicted to witness the highest growth rate, owing to rising environmental standards and sustainability goals. Technologies include smart water monitoring systems, AI-optimized reagent dosing, and closed-loop recycling setups. Trends are shifting toward eco-safe, biodegradable chemicals with minimal aquatic impact and transparent lifecycle data to support ESG compliance. Notable developments feature collaborations between chemical innovators and technology providers to engineer water-conserving formulations, particularly in jurisdictions adopting REACH protocols and green mining frameworks.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, propelled by accelerating industrial growth, infrastructure expansion, and increasing demand for metals like lithium and copper. Advanced technologies such as AI-based reagent control, real-time froth imaging, and inline spectral analysis are improving operational efficiency and minimizing chemical consumption. Sustainability-focused trends include eco-friendly reagents and water recycling systems. Developments highlight strategic investments in energy-transition minerals and partnerships between chemical providers and miners to create customized solutions for challenging ore compositions.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by increasing demand for metals like lithium, copper, and gold, spurred by electrification and infrastructure initiatives. Innovations such as smart reagent dosing systems, froth imaging technologies, and ore-specific collectors are boosting extraction efficiency. The market is also witnessing a shift toward sustainable, low-impact chemical formulations in response to stricter environmental standards. Recent developments include collaborative R&D and strategic alliances aimed at refining flotation processes for varied and complex mineral deposits.

Key players in the market

Some of the key players in Mining Flotation Chemicals Market include BASF SE, Solenis LLC, Clariant AG, AkzoNobel N.V., Solvay S.A., Ecolab Inc., Arkema Group, Ashland Global Holdings Inc., Evonik Industries AG, Dow Chemical Company, Huntsman Corporation, Air Products and Chemicals, Inc., Kemira Oyj, Chevron Phillips Chemical Company LLC, Orica Limited, and SNF Floerger.

Key Developments:

In July 2025, BASF Coatings, in collaboration with Renault Group and Durr, had redefined the future of automotive manufacturing with the Overspray-Free Application (OFLA) process (also known as Jetprint at Renault). The trio was awarded the "Trophee de l'Industrie s'engage 2025" in the Innovative Process category at the "L'industrie s'engage par l'Usine Nouvelle" event.

In June 2025, Solenis announced the global launch of the LESSEAU(R) Manual dispenser and solid hand wash bars an innovation co-developed with Netherlands-based partner Slimstones. Designed to support more sustainable hand hygiene, the dispenser and the solid hand wash bars are being introduced globally across institutional settings including commercial washrooms, healthcare, education, hospitality, and other public environments.

In April 2025, Clariant announced that it has renewed its successful cooperation with Midrex and will intensify collaboration in direct reduced iron (DRI) technology for steel production. A low-carbon alternative to conventional coal-based ironmaking, natural gas-based DRI converts natural gas with recycled CO2 and H2O to generate reducing gas for the production process. The technology combines MIDREX(R) Reformers with Clariant-manufactured REFORMEX(R) Catalysts.

Ore Types Covered:

  • Sulphide Ores
  • Non-Sulphide Ores

Chemical Types Covered:

  • Collectors
  • Frothers
  • Depressants
  • Flocculants
  • Modifiers
  • Other Chemical Types

Applications Covered:

  • Base Metal Mining
  • Battery Metal Mining
  • Precious Metal Mining
  • Industrial Mineral Mining
  • Other Applications

End Users Covered:

  • Mining
  • Chemical Processing
  • Water Treatment
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Mining Flotation Chemicals Market, By Ore Type

  • 5.1 Introduction
  • 5.2 Sulphide Ores
  • 5.3 Non-Sulphide Ores

6 Global Mining Flotation Chemicals Market, By Chemical Type

  • 6.1 Introduction
  • 6.2 Collectors
  • 6.3 Frothers
  • 6.4 Depressants
  • 6.5 Flocculants
  • 6.6 Modifiers
    • 6.6.1 Dispersants
    • 6.6.2 pH Regulators
    • 6.6.3 Activators
  • 6.7 Other Chemical Types

7 Global Mining Flotation Chemicals Market, By Application

  • 7.1 Introduction
  • 7.2 Base Metal Mining
  • 7.3 Battery Metal Mining
  • 7.4 Precious Metal Mining
  • 7.5 Industrial Mineral Mining
  • 7.6 Other Applications

8 Global Mining Flotation Chemicals Market, By End User

  • 8.1 Introduction
  • 8.2 Mining
  • 8.3 Chemical Processing
  • 8.4 Water Treatment
  • 8.5 Other End Users

9 Global Mining Flotation Chemicals Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF SE
  • 12.2 Solenis LLC
  • 12.3 Clariant AG
  • 12.4 AkzoNobel N.V.
  • 12.5 Solvay S.A.
  • 12.6 Ecolab Inc.
  • 12.7 Arkema Group
  • 12.8 Ashland Global Holdings Inc.
  • 12.9 Evonik Industries AG
  • 12.10 Dow Chemical Company
  • 12.11 Huntsman Corporation
  • 12.12 Air Products and Chemicals, Inc.
  • 12.13 Kemira Oyj
  • 12.14 Chevron Phillips Chemical Company LLC
  • 12.15 Orica Limited
  • 12.16 SNF Floerger
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦