½ÃÀ庸°í¼­
»óǰÄÚµå
1803082

¼¼°èÀÇ ³»¸¶¸ð¼º Àç·á ½ÃÀå ¿¹Ãø : Á¦Ç° À¯Çü, Àç·á À¯Çü, À¯Åë ä³Î, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®(-2032³â)

Wear-Resistant Materials Market Forecasts to 2032 - Global Analysis By Product Type (Wear Plates, Coatings, Liners, and Other Product Types), Material Type, Distribution Channel, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³»¸¶¸ð¼º Àç·á ½ÃÀåÀº 2025³â¿¡ 112¾ï 4,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 7.1%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 181¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

³»¸¶¸ð¼º Àç·á´Â ¸¶¸ð, ¸¶Âû, ħ½Ä ¹× ±âŸ ±â°èÀû ¸¶¸ð¸¦ °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î ºÎǰ ¹× ±â°èÀÇ ±ä ¼ö¸íÀ» º¸ÀåÇÕ´Ï´Ù. ±Ý¼Ó, ¼¼¶ó¹Í, Æú¸®¸Ó, º¹ÇÕÀç·á·Î ±¸¼ºµÇ¾î °¡È¤ÇÑ »ç¿ë Á¶°Ç ÇÏ¿¡¼­µµ °­µµ¿Í ¾ÈÁ¤¼ºÀ» À¯ÁöÇÕ´Ï´Ù. ±¤¾÷, °Ç¼³, Á¦Á¶, ¿¡³ÊÁö µîÀÇ ºÐ¾ß¿¡¼­ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ÀÌ·¯ÇÑ Àç·á´Â À¯Áö º¸¼ö ºñ¿ëÀ» ÁÙÀ̰í ÀÛ¾÷ È¿À²À» ³ôÀ̰í Ź¿ùÇÑ ³»±¸¼ºÀÌ ÇÊ¿äÇÑ È¯°æ¿¡¼­ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» ¹ßÈÖÇÕ´Ï´Ù.

³»±¸¼ºÀÖ´Â ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

³ôÀº ½ºÆ®·¹½º ȯ°æ¿¡¼­ Ȱµ¿ÇÏ´Â »ê¾÷¿¡¼­´Â Àå±â°£ÀÇ ¸¶¸ð¿Í ¼Õ»ó¿¡ °ßµð´Â ¼ÒÀç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±¤¾÷, ¿î¼Û, ÁßÀåºñ µîÀÇ ºÐ¾ß¿¡¼­´Â °¡µ¿ ÁßÁö ½Ã°£°ú À¯Áö º¸¼ö¸¦ ÃÖ¼ÒÈ­ÇÏ´Â ºÎǰÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼¼°è ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®°¡ ´ë±Ô¸ðÈ­µÊ¿¡ µû¶ó ½Å·Ú¼ºÀÌ ³ô°í ¿À·¡ Áö¼ÓµÇ´Â Àç·áÀÇ Çʿ伺Àº ´õ¿í ±ä±ÞÇØÁö°í ÀÖ½À´Ï´Ù. °í±Þ º¹ÇÕÀç·á¿Í Ç¥¸é Ä¡·á´Â ¼º´ÉÀ» Èñ»ýÇÏÁö ¾Ê°í ³»±¸¼ºÀ» Çâ»ó½ÃŰ´Â ´É·ÂÀ¸·Î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ Á¦Á¶¾÷ü´Â ¶ÇÇÑ ÁøÈ­ÇÏ´Â ¾ÈÀü ¹× È¿À² ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ °æ·®À̸鼭µµ °­ÀÎÇÑ Àç·á¸¦ ã°í ÀÖ½À´Ï´Ù. ÀÌ¿Í °°ÀÌ, ¿îÀü ¼ö¸í°ú ºñ¿ë È¿À²ÀÌ Áß½ÃµÇ°Ô µÇ¾î ÀÖ´Â °ÍÀÌ, ½ÃÀå ¼ºÀåÀÇ Áß¿äÇÑ ±âÆøÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ Á¦Á¶ °øÁ¤

³»¸¶¸ð¼º Àç·áÀÇ Á¦Á¶¿¡´Â Á¤È®¼º°ú Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÑ °í±Þ ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. ½ºÇÁ·¹ÀÌ, ÇÕ±Ý Á¦Çü, ¼¼¶ó¹Í ÅëÇÕ°ú °°Àº °øÁ¤¿¡´Â ºñ½Ñ Àåºñ¿Í ¾ö°ÝÇÑ Ç°Áú º¸ÁõÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±âŸ À¯ÇüÀÇ Àç·á¸¦ °áÇÕÇÏ´Â º¹À⼺Àº Á¾Á¾ È®À强°ú Àϰü¼º¿¡ ¾î·Á¿òÀ» ³º½À´Ï´Ù. ¼Ò±Ô¸ð ±â¾÷¿¡¼­´Â ¼±Çà ÅõÀÚ°¡ ºÎÇǰ¡ Å©°í ±â¼úÀû ´É·Âµµ Á¦ÇѵǾî Àֱ⠶§¹®¿¡ °æÀïÀ» À̱â±â°¡ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ȯ°æ ±ÔÁ¦ ¹× ¾ÈÀü ÇÁ·ÎÅäÄÝÀº ÄÄÇöóÀ̾𽺠¹× ¸ð´ÏÅ͸µ °èÃþÀ» ´Ã¸®°í »ý»êÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼ÒÀç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ôÀ½¿¡µµ ºÒ±¸Çϰí ÀÌ·¯ÇÑ ¿äÀÎÀÌ ÇÔ²² ½ÃÀå È®´ë°¡ µÐÈ­Çϰí ÀÖ½À´Ï´Ù.

³ª³ë±â¼ú ÅëÇÕÀ¸·Î ³»¸¶¸ð¼º Çâ»ó

³ª³ë±â¼úÀº ³»¸¶¸ð¼º Àç·áÀÇ ¼º´ÉÀ» Çâ»ó½Ãų »õ·Î¿î °¡´É¼ºÀ» ¿­°í ÀÖ½À´Ï´Ù. ³ª³ë½ºÄÉÀÏ·Î ±¸Á¶¸¦ Á¶ÀÛÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â ¸¶Âû, ºÎ½Ä, ¿­¿¡ ÀÇÇØ È¿°úÀûÀ¸·Î ÀúÇ×Çϴ ǥ¸éÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº Ç×°ø¿ìÁÖ ¹× ¿¡³ÊÁö¿Í °°Àº Á¤È®¼º°ú ¼ö¸íÀÌ Áß¿äÇÑ ºÐ¾ß¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ºÐÀÚ ¼öÁØÀÇ »ç¿ëÀÚ Á¤ÀǴ ƯÁ¤ ÀÛ¾÷ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â Àç´Ü»çÀÇ ¼Ö·ç¼ÇÀ» °¡´ÉÇϰÔÇÕ´Ï´Ù. ³ª³ëÀç·á´Â ¶ÇÇÑ ¶Ù¾î³­ °­µµ¸¦ °¡Áö¸é¼­ °æ·®À̶ó´Â ÀåÁ¡µµ ÀÖ¾î Áö¼Ó°¡´É¼ºÀÇ ¸ñÇ¥¿¡ ºÎÇÕÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸°¡ ÁøÇàµÊ¿¡ µû¶ó ³ª³ëÅ×Å©¸¦ ÀÌ¿ëÇÑ ¼Ö·ç¼ÇÀº Ãæ°ÝÀÌ Å« ¼½ÅÍÀÇ ¸¶¸ð º¸È£¿¡ Çõ¸íÀ» °¡Á®¿Ã °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

¹«¿ª Á¦ÇѰú °ø±Þ¸ÁÀÇ È¥¶õ

³»¸¶¸ð¼º Àç·á´Â ¿øÀç·áÀÇ ÀÔ¼ö¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁöÁ¤ÇÐÀû º¯µ¿À̳ª ±¹Á¦ ¹«¿ª À庮ÀÇ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù. ¹«¿ªÁ¦ÇÑ, °ü¼¼, ¼öÃâ±ÝÁö´Â Àç·á ºÎÁ·°ú °¡°Ý º¯µ¿À¸·Î À̾îÁ® »ý»ê ÀÏÁ¤°ú ¼öÀͼº¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. °ü¼¼, ¼öÃâ ±ÔÁ¦, Á¤Á¤ ºÒ¾ÈÀº ¿¹Ãø ºÒ°¡´ÉÇÑ °¡°Ý ¼³Á¤°ú ¹è´Þ Áö¿¬À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÆÒµ¥¹ÍÀº ÀÌ·¯ÇÑ Ãë¾à¼ºÀ» ´õ¿í µå·¯³» ¹°·ù¿Í Á¦Á¶¿¡ ±¤¹üÀ§ÇÑ È¥¶õÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ±â¾÷Àº ÇöÀç ´ëü Á¶´Þ Àü·«À» ¸ð»öÇϰí ÀÖÁö¸¸, »õ·Î¿î °ø±Þ¾÷ü·ÎÀÇ Àüȯ¿¡´Â À§Çè°ú Ãß°¡ ºñ¿ëÀÌ ¼ö¹ÝµË´Ï´Ù. ÀÌ·¯ÇÑ Áö¼ÓÀûÀÎ ºÒÈ®½Ç¼ºÀº ½ÃÀåÀÇ ¾ÈÁ¤ÀûÀÎ ¼ºÀå¿¡ Å« µµÀüÀÌ µÇ¾ú½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19´Â ³»¸¶¸ð¼º Àç·á¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â »ê¾÷¿¡¼­ ±¤¹üÀ§ÇÑ °¨¼ÓÀ» °¡Á®¿Ô½À´Ï´Ù. °Ç¼³, ä±¼, Á¦Á¶ Ȱµ¿ÀÌ ÀϽà ÁßÁöµÇ°Å³ª Ãà¼ÒµÇ¾î ´Ü±â ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ¿©Çà Á¦ÇÑ ¹× ³ëµ¿·Â Á¦ÇÑÀ¸·Î ÀÎÇØ °ø±Þ¸ÁÀÌ ±äÀåµÇ¾î »ý»ê ¹× ¹è¼ÛÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª À¯ÇàÀº ¶ÇÇÑ ³»±¸¼º ÀÖ´Â ÀÎÇÁ¶ó¿Í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀåºñÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ºÎÈï¿¡ ´ëÇÑ ³ë·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó »ê¾÷°è´Â ÀÚµ¿È­¸¦ Áö¿øÇϰí À¯Áö º¸¼öÀÇ Çʿ伺À» ÁÙÀÌ´Â ¼ÒÀç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Åº·Â¼º°ú È¿À²¼º¿¡ ´ëÇÑ ÀçÁÖ¸ñÀº ³»¸¶¸ð¼º Àç·á ºÐ¾ßÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸¶¸ðÆÇ ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á

±¤¾÷, Áß±â°è, °Ç¼³ µîÀÇ ºÐ¾ß¿¡¼­ »ê¾÷ Ȱµ¿ÀÌ È°¹ßÇØÁö°í ÀÖ´Â °ÍÀº °¡È¤ÇÑ »ç¿ë Á¶°Ç ÇÏ¿¡¼­ ¼ö¸í ¿¬ÀåÀ» Á¦°øÇÏ´Â ¸¶¸ð Ç÷¹ÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼¼¶ó¹Í °­È­ÇÕ±Ý ¹× ÷´Ü Ä«¹ÙÀ̵å È¥ÇÕ¹°°ú °°Àº Àç·áÀÇ Çõ½ÅÀ¸·Î ³»¸¶¸ð¼º°ú ³»¿­¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. Àåºñ ÀÚµ¿È­, ȯ°æ È¿À², À¯Áö º¸¼ö ºñ¿ë Àý°¨ µîÀÇ µ¿ÇâÀÌ Á¦Ç° °³¹ßÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ³ª³ëÄÚÆÃ, °­È­°­ÀÇ °æÈ­±â¼ú, ¿ëÁ¢ÀûÇÕ¼º Çâ»ó µî Ãֱ٠ȹ±âÀûÀÎ Áøº¸°¡ ÀÖ½À´Ï´Ù. ½ÅÈï Áö¿ªÀÇ ±Þ¼ÓÇÑ ÀÎÇÁ¶ó È®ÀåÀº Áß¿äÇÑ °íºÎÇÏ È¯°æ¿¡¼­ ¸¶¸ð Ç÷¹ÀÌÆ®ÀÇ »ç¿ëÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

±¤¾÷¡¤Ã¤¼® ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµÈ´Ù.

¿¹Ãø±â°£ µ¿¾È ±¤¾÷¡¤Ã¤¼®ºÐ¾ß´Â °Ý·ÄÇÑ ¸¶¸ð¸¦ °ßµð°í ±â°èÀÇ ¼ö¸íÀ» ¿¬ÀåÇÔÀ¸·Î½á °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¼¶ó¹Í ÀÎÇ»Áîµå ¸ÞÅ»À̳ª Ä«¹ÙÀÌµå °­È­ÇÕ±ÝÀÇ ±â¼ú Áøº¸°¡ Ãæ°Ý°ú ȯ°æ ¿­È­¿¡ ´ëÇÑ ³»¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÁÖ¿ä µ¿ÇâÀ¸·Î´Â µðÁöÅÐÈ­, ȯ°æ ģȭÀûÀÎ Àç·á »ç¿ë, ½º¸¶Æ® À¯Áö º¸¼ö Àü·« µîÀÌ ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ ±â¼ú Çõ½Å¿¡´Â ³ª³ë °¡°ø Ç¥¸é, °­È­ ¶óÀÌ³Ê ¹× ¿­ÀûÀ¸·Î ÃÖÀûÈ­µÈ ¸¶¸ð ºÎǰÀÌ Æ÷ÇԵ˴ϴÙ. ½ÅÈï±¹ ½ÃÀå¿¡¼­ ±¤¹° ä±¼ ¿ä±¸ Áõ°¡¿Í ÀÎÇÁ¶ó Á¤ºñ°¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª :

¿¹Ãø±â°£ µ¿¾È ±¤¾÷, ÀÎÇÁ¶ó, Áß±â°è µîÀÇ ºÐ¾ß¿¡¼­ÀÇ »ê¾÷Ȱµ¿ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³»¸¶¸ð¼º ÄÚÆÃ, ¼¼¶ó¹Í °­È­ÇÕ±Ý, °í°­µµ º¹ÇÕÀç·á µîÀÇ Ã·´Ü±â¼úÀÌ ³»±¸¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ¸¸ÇÑ ±â¼ú Çõ½Å¿¡´Â ³ª³ë °¡°ø Ç¥¸é°ú °¡È¤ÇÑ È¯°æÀ»À§ÇÑ ¿­°æÈ­ °­Ã¶ÀÌ ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¸Å´ºÆÑó¸µ, ȯ°æ È¿À²¼º, ÄÁµð¼Ç ±â¹Ý À¯Áöº¸¼ö¿Í °°Àº »õ·Î¿î Ãß¼¼´Â Àç·á ¼±Åÿ¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Àεµ, Áß±¹, ASEAN ±¹°¡ÀÇ ±Þ¼ÓÇÑ °³¹ßÀº ä¿ëÀ» µÞ¹ÞħÇÏ°í ¿îÀüÀÇ ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ°í ¼ö¸íÁֱ⠺ñ¿ëÀ» ÁÙÀÔ´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ±¤¾÷, °Ç¼³, Áß°ø¾÷ µîÀÇ ºÐ¾ß¿¡¼­ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¼¶ó¹Í-±Ý¼Ó º¹ÇÕÀç, ¿­°æÈ­ ÇÕ±Ý, ³»¸¶¸ð¼º ÄÚÆÃ µîÀÇ °í±Þ ¼Ö·ç¼ÇÀÌ ³»±¸¼º°ú ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ÃÖ±ÙÀÇ µ¹ÆÄ±¸¿¡´Â ÀÚµ¿È­ ½Ã½ºÅÛ°ú °íºÎÇÏ ½Ã½ºÅÛÀ» À§ÇØ ¼³°èµÈ ³ª³ëÃþ Ç¥¸é°ú ³»Ãæ°Ý¼º Àç·á µîÀÌ ÀÖ½À´Ï´Ù. ½º¸¶Æ® À¯Áö º¸¼ö, ³ì»ö ¿£Áö´Ï¾î¸µ ¹× µðÁöÅÐ ÇÁ·Î¼¼½º ÃÖÀûÈ­¿Í °°Àº »õ·Î¿î µ¿ÇâÀÌ Ã¤Åÿ¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¿¡¼­´Â ÀÎÇÁ¶ó ¾÷±×·¹À̵å¿Í ¿¡³ÊÁö ÅõÀÚ°¡ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ¾î ½Å·Ú¼º Çâ»ó°ú ¿î¿µ ºñ¿ë Àý°¨ÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ Á¤ÀÇ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç°ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³»¸¶¸ð¼º Àç·á ½ÃÀå : Á¦Ç° À¯Çüº°

  • ¸¶¸ð ¹æÁö Ç÷¹ÀÌÆ®
  • ÄÚÆÃ
  • ¶óÀ̳Ê
  • ±âŸ Á¦Ç° À¯Çü

Á¦6Àå ¼¼°èÀÇ ³»¸¶¸ð¼º Àç·á ½ÃÀå : Àç·á À¯Çüº°

  • ±Ý¼Ó ¹× ÇÕ±Ý
    • °­Ã¶
    • ÅÖ½ºÅÙ Ä«¹ÙÀ̵å
    • Å©·Ò ÇÕ±Ý
  • ¼¼¶ó¹Í
    • ¾Ë·ç¹Ì³ª
    • Áö¸£ÄڴϾÆ
    • ÁúÈ­±Ô¼Ò
    • źȭ±Ô¼Ò
  • Æú¸®¸Ó ¹× º¹ÇÕÀç
    • ÃʰíºÐÀÚ·® Æú¸®¿¡Æ¿·»
    • Æú¸®¿ì·¹Åº
    • ¼¶À¯ °­È­ º¹ÇÕÀç·á
  • ±âŸ Àç·á À¯Çü

Á¦7Àå ¼¼°èÀÇ ³»¸¶¸ð¼º Àç·á ½ÃÀå : À¯Åë ä³Îº°

  • Á÷Á¢ ÆÇ¸Å
  • ¼Ò¸ÅÁ¡
  • À¯Åë¾÷ü
  • ¿Â¶óÀÎ Ç÷§Æû

Á¦8Àå ¼¼°èÀÇ ³»¸¶¸ð¼º Àç·á ½ÃÀå : ¿ëµµº°

  • Àý»è °ø±¸
  • ´ýÇÁ ¹Ùµð
  • ÆÄÀÌÇÁ ¹× ÇÇÆÃ
  • ÄÁº£ÀÌ¾î ½Ã½ºÅÛ
  • º¸È£ ÄÚÆÃ
  • ¿¬»è Àåºñ
  • ·Ñ·¯
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ³»¸¶¸ð¼º Àç·á ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ±¤¾÷ ¹× ä¼®¾÷
  • °Ç¼³
  • ¹ßÀü
  • ¼®À¯ ¹× °¡½º
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • ÇØ¾ç
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ³»¸¶¸ð¼º Àç·á ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • SSAB
  • Posco
  • JFE Steel Corporation
  • DuPont de Nemours, Inc.
  • ThyssenKrupp AG
  • Kyocera Corporation
  • ArcelorMittal
  • The Sherwin-Williams Company
  • Dillinger
  • AkzoNobel NV
  • Kennametal Inc.
  • Metso Outotec
  • Sandvik AB
  • Tega Industries Ltd.
  • Saint-Gobain SA
KTH

According to Stratistics MRC, the Global Wear-Resistant Materials Market is accounted for $11.24 billion in 2025 and is expected to reach $18.17 billion by 2032 growing at a CAGR of 7.1% during the forecast period. Wear-resistant materials are engineered to endure abrasion, friction, erosion, and other forms of mechanical wear, ensuring longer service life for components and machinery. Comprising metals, ceramics, polymers, and composites, they retain strength and stability under extreme operating conditions. Commonly applied in sectors like mining, construction, manufacturing, and energy, these materials help lower maintenance expenses, boost operational efficiency, and deliver reliable performance in environments requiring exceptional durability.

Market Dynamics:

Driver:

Rising demand for durable materials

Industries operating in high-stress environments are increasingly turning to materials that can withstand wear and tear over extended periods. Sectors like mining, transportation, and heavy machinery require components that minimize downtime and maintenance. As global infrastructure projects scale up, the need for reliable, long-lasting materials is becoming more urgent. Advanced composites and surface treatments are gaining traction for their ability to improve durability without sacrificing performance. Automotive and aerospace manufacturers are also seeking lightweight yet tough materials to meet evolving safety and efficiency standards. This growing emphasis on operational longevity and cost-effectiveness is a key catalyst for market growth.

Restraint:

Complex manufacturing processes

Producing wear-resistant materials involves sophisticated techniques that demand precision and specialized expertise. Processes such as thermal spraying, alloy formulation, and ceramic integration require costly equipment and rigorous quality assurance. The complexity of combining different material types often leads to challenges in scalability and consistency. Smaller firms may find it difficult to compete due to high upfront investment and limited technical capabilities. Environmental regulations and safety protocols further complicate production, adding layers of compliance and oversight. These factors collectively slow down market expansion despite strong interest in durable materials.

Opportunity:

Integration of nanotechnology to enhance wear resistance

Nanotechnology is opening new possibilities for improving the performance of wear-resistant materials. By manipulating structures at the nanoscale, manufacturers can create surfaces that resist friction, corrosion, and heat more effectively. These advancements are particularly useful in sectors where precision and longevity are critical, such as aerospace and energy. Customization at the molecular level allows for tailored solutions that meet specific operational demands. Nanomaterials also offer the advantage of being lightweight while delivering superior strength, aligning with sustainability goals. As research progresses, nanotech-enabled solutions are expected to revolutionize wear protection across high-impact sectors.

Threat:

Trade restrictions and supply chain disruptions

The wear-resistant materials are vulnerable to geopolitical shifts and international trade barriers that affect raw material availability. Trade restrictions, tariffs, and export bans can lead to material shortages and price volatility, affecting production timelines and profitability. Tariffs, export controls, and political instability can lead to unpredictable pricing and delivery delays. The pandemic further exposed these vulnerabilities, causing widespread disruptions in logistics and manufacturing. Companies are now exploring alternative sourcing strategies, but transitioning to new suppliers involves risk and added costs. These ongoing uncertainties pose a significant challenge to consistent market growth.

Covid-19 Impact:

The COVID-19 led to widespread slowdowns in industries that rely heavily on wear-resistant materials. Construction, mining, and manufacturing activities were paused or scaled back, reducing short-term demand. Supply chains were strained due to travel restrictions and workforce limitations, delaying production and delivery. However, the pandemic also underscored the importance of durable infrastructure and reliable equipment. As recovery efforts gain momentum, industries are investing in materials that support automation and reduce maintenance needs. This renewed focus on resilience and efficiency is expected to drive long-term growth in the wear-resistant materials sector.

The wear plates segment is expected to be the largest during the forecast period

The wear plates segment is expected to account for the largest market share during the forecast period, growing industrial activity in sectors like mining, heavy machinery, and construction is fueling demand for wear plates that offer extended service life under harsh operating conditions. Innovations in materials such as ceramic-reinforced alloys and advanced carbide blends are improving resistance to abrasion and heat. Trends like equipment automation, eco-efficiency, and reduced maintenance costs are shaping product development. Recent breakthroughs like nanocoatings, enhanced steel hardening techniques, and better weld compatibility. Rapid infrastructure expansion in emerging regions is further boosting the use of wear plates in critical, high-load environments.

The mining & quarrying segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the mining & quarrying segment is predicted to witness the highest growth rate, due to withstand intense abrasion and extend machinery lifespan. Technological progress in ceramic-infused metals and carbide-enhanced alloys is boosting resistance to impact and environmental degradation. Key trends include digitalization, eco-friendly material use, and smart maintenance strategies. Recent innovations involve nano-engineered surfaces, reinforced liners, and thermally optimized wear components. Growing mineral extraction needs and infrastructure development in developing regions are accelerating market growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by rising industrial activity in sectors like mining, infrastructure, and heavy machinery. Advanced technologies such as abrasion-proof coatings, ceramic-reinforced alloys, and high-strength composites are enhancing durability. Notable innovations include nano-engineered surfaces and thermally hardened steel for demanding environments. Emerging trends like smart manufacturing, eco-efficiency, and condition-based maintenance are influencing material choices. Rapid development across India, China, and ASEAN nations is boosting adoption, improving operational reliability and reducing lifecycle costs.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, due to rising demand across sectors like mining, construction, and heavy industry. Advanced solutions such as ceramic-metal composites, heat-hardened alloys, and anti-abrasion coatings are improving durability and performance. Recent breakthroughs include nano-layered surfaces and shock-resistant materials designed for automated and high-load systems. Emerging trends like smart maintenance, green engineering, and digital process optimization are influencing adoption. Infrastructure upgrades and energy investments in the U.S. and Canada are driving growth, enhancing reliability and lowering operational costs.

Key players in the market

Some of the key players in Wear-Resistant Materials Market include SSAB, Posco, JFE Steel Corporation, DuPont de Nemours, Inc., ThyssenKrupp AG, Kyocera Corporation, ArcelorMittal, The Sherwin-Williams Company, Dillinger, AkzoNobel N.V., Kennametal Inc., Metso Outotec, Sandvik AB, Tega Industries Ltd., and Saint-Gobain S.A.

Key Developments:

In August 2025, DuPont de Nemours, Inc., The Chemours Company and Corteva, Inc. announced a settlement to comprehensively resolve all pending environmental and other claims by the State of New Jersey against the Companies in various litigation matters and other state directives. The Settlement will resolve all legacy contamination claims related to the companies' current and former operating sites and claims of statewide PFAS contamination unrelated to those sites, including from the use of aqueous film forming foam.

In June 2025, SSAB has entered into an agreement with Polmotors an innovative Tier 1 supplier to future supplies of fossil-free steel for their structural automotive components and assemblies. The collaboration aims to explore the potential of fossil-free materials in demanding automotive applications, combining SSAB's pioneering work in decarbonized steel production with Polmotors' experience in manufacturing components for leading OEMs.

In April 2025, POSCO Group and Hyundai Motor Group, representing South Korea's manufacturing industry, have joined hands to secure a leading position in the global future mobility materials market. POSCO Group held a signing ceremony for a 'Memorandum of Understanding for Mutual Cooperation in Steel and Secondary Battery Fields' with Hyundai Motor Group, agreeing to create sustainable synergy in low-carbon steel and secondary battery markets amid global economic blocks and rapidly changing trade environments.

Product Types Covered:

  • Wear Plates
  • Coatings
  • Liners
  • Other Product Types

Material Types Covered:

  • Metals & Alloys
  • Ceramics
  • Polymers & Composites
  • Other Material Types

Distribution Channels Covered:

  • Direct Sales
  • Retail Outlets
  • Distributors
  • Online Platforms

Applications Covered:

  • Cutting Tools
  • Dump Bodies
  • Pipes & Fittings
  • Conveyor Systems
  • Protective Coatings
  • Grinding Equipment
  • Rollers
  • Other Applications

End Users Covered:

  • Mining & Quarrying
  • Construction
  • Power Generation
  • Oil & Gas
  • Aerospace & Defense
  • Automotive & Transportation
  • Marine
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Wear-Resistant Materials Market, By Product Type

  • 5.1 Introduction
  • 5.2 Wear Plates
  • 5.3 Coatings
  • 5.4 Liners
  • 5.5 Other Product Types

6 Global Wear-Resistant Materials Market, By Material Type

  • 6.1 Introduction
  • 6.2 Metals & Alloys
    • 6.2.1 Steel
    • 6.2.2 Tungsten Carbide
    • 6.2.3 Chromium Alloys
  • 6.3 Ceramics
    • 6.3.1 Alumina
    • 6.3.2 Zirconia
    • 6.3.3 Silicon Nitride
    • 6.3.4 Silicon Carbide
  • 6.4 Polymers & Composites
    • 6.4.1 UHMWPE
    • 6.4.2 Polyurethane
    • 6.4.3 Fiber-Reinforced Composites
  • 6.5 Other Material Types

7 Global Wear-Resistant Materials Market, By Distribution Channel

  • 7.1 Introduction
  • 7.2 Direct Sales
  • 7.3 Retail Outlets
  • 7.4 Distributors
  • 7.5 Online Platforms

8 Global Wear-Resistant Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Cutting Tools
  • 8.3 Dump Bodies
  • 8.4 Pipes & Fittings
  • 8.5 Conveyor Systems
  • 8.6 Protective Coatings
  • 8.7 Grinding Equipment
  • 8.8 Rollers
  • 8.9 Other Applications

9 Global Wear-Resistant Materials Market, By End User

  • 9.1 Introduction
  • 9.2 Mining & Quarrying
  • 9.3 Construction
  • 9.4 Power Generation
  • 9.5 Oil & Gas
  • 9.6 Aerospace & Defense
  • 9.7 Automotive & Transportation
  • 9.8 Marine
  • 9.9 Other End Users

10 Global Wear-Resistant Materials Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 SSAB
  • 12.2 Posco
  • 12.3 JFE Steel Corporation
  • 12.4 DuPont de Nemours, Inc.
  • 12.5 ThyssenKrupp AG
  • 12.6 Kyocera Corporation
  • 12.7 ArcelorMittal
  • 12.8 The Sherwin-Williams Company
  • 12.9 Dillinger
  • 12.10 AkzoNobel N.V.
  • 12.11 Kennametal Inc.
  • 12.12 Metso Outotec
  • 12.13 Sandvik AB
  • 12.14 Tega Industries Ltd.
  • 12.15 Saint-Gobain S.A.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦