½ÃÀ庸°í¼­
»óǰÄÚµå
1813280

¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çüº°, ±¸¼º¿ä¼Òº°, ¿¬°á À¯Çüº°, Á¤°Ý Àü·Âº°, ¼ÒÀ¯ ¸ðµ¨º°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Lithium-Ion Battery Energy Storage System Market Forecasts to 2032 - Global Analysis By Type, Component, Connection Type, Power Rating, Ownership Model, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀº 2025³â¿¡ 51¾ï ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 15%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 137¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº ¸®Æ¬À̿ ¹èÅ͸®¸¦ »ç¿ëÇÏ¿© Àü·ÂÀ» ÀúÀå ¹× ¹æÀüÇϴ ÷´Ü ¿¡³ÊÁö ÀúÀå ±â¼úÀÔ´Ï´Ù. Àü·Â¸Á ¾ÈÁ¤È­, Àç»ý ¿¡³ÊÁö ÅëÇÕ, ¹é¾÷ Àü¿ø, Àüµ¿ ¸ðºô¸®Æ¼ µî¿¡ ³Î¸® Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±âÁ¸ ¹èÅ͸®¿Í ºñ±³ÇÏ¿© ³ôÀº ¿¡³ÊÁö ¹Ðµµ, °í¼Ó Ãæ¹æÀü ´É·Â, ±ä »çÀÌŬ ¼ö¸íÀ» Á¦°øÇÕ´Ï´Ù. ¹èÅ͸® ÆÑ, ÀιöÅÍ, °ü¸® ½Ã½ºÅÛÀ¸·Î ±¸¼ºµÇ¸ç, ¿¡³ÊÁö È¿À²¼º, Áö¼Ó °¡´É¼º, ½Å·Ú¼º ³ôÀº Àü·Â °ø±ÞÀ» Áö¿øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

¹Ì±¹ ¿¡³ÊÁöÁ¤º¸±¹(EIA)¿¡ µû¸£¸é, Á¤ºÎ Àμ¾Æ¼ºê¿Í Àç»ý¿¡³ÊÁöÀÇ ±ÕµîÈ­ ¿¡³ÊÁö ºñ¿ë(LCOE) Ç϶ôÀÌ ¾ÈÁ¤¼º°ú ÇÇÅ© Â÷´ÜÀ» À§ÇÑ ±×¸®µå ±Ô¸ð BESSÀÇ º¸±ÞÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

Àç»ý¿¡³ÊÁö ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(BESS) ½ÃÀåÀº ž籤, dz·Â µî Àç»ý¿¡³ÊÁö¸¦ Àü·Â¸Á¿¡ ÅëÇÕÇÏ·Á´Â ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °£ÇæÀûÀÎ ¿¡³ÊÁö¿øÀº ¼ö¿ä¿Í °ø±ÞÀÇ ±ÕÇüÀ» ¸ÂÃß°í ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇϱâ À§ÇØ È¿À²ÀûÀÎ Àü·Â ÀúÀåÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¸®Æ¬ À̿ BESS´Â ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ºü¸¥ ÀÀ´ä, È®À强À» Á¦°øÇϸç, Àç»ý¿¡³ÊÁö ÅëÇÕ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ûÁ¤¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­ÇÔ¿¡ µû¶ó ÷´Ü ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¸®Æ¬À̿ ½Ã½ºÅÛÀº Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

´ë±Ô¸ð ¼³ºñÀÇ °íºñ¿ë

¸®Æ¬À̿ BESSÀÇ µµÀÔÀÌ ¼øÁ¶·Ó°Ô ÁøÇàµÇ°í ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, ´ë±Ô¸ð ¸®Æ¬À̿ BESS ¼³Ä¡¿¡ µû¸¥ ³ôÀº Ãʱâºñ¿ëÀÌ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÅõÀÚ¿¡´Â ¹èÅ͸®»Ó¸¸ ¾Æ´Ï¶ó ÷´Ü ÀιöÅÍ, ¾ÈÀü ¸ÞÄ¿´ÏÁò, ÷´Ü ¸ð´ÏÅ͸µ ½Ã½ºÅÛµµ Æ÷ÇԵǸç, ÀÌ ÇÁ·ÎÁ§Æ®´Â ÀÚº» Áý¾àÀûÀÎ ÇÁ·ÎÁ§Æ®ÀÔ´Ï´Ù. Àü·Âȸ»ç¿Í °³¹ßÀÚµéÀº ƯÈ÷ º¸Á¶±ÝÀÌ Á¦ÇÑÀûÀÎ ½ÅÈï °æÁ¦ ±¹°¡¿¡¼­´Â ÀÚ±Ý Á¶´Þ¿¡ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àå±âÀûÀÎ À¯Áöº¸¼öÀÇ Çʿ伺Àº Æò»ý ºñ¿ëÀ» ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤Àû À庮Àº ƯÈ÷ ¿¹»êÀÌ Á¦ÇÑÀûÀÎ Áö¿ªÀ̳ª °æÀïÀûÀÎ Àúºñ¿ë ¿¡³ÊÁö ÀúÀå ¼ö´ÜÀÌ ÀÖ´Â Áö¿ª¿¡¼­´Â º¸±ÞÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.

°íü ¹èÅ͸®ÀÇ ¹ßÀü

½ÃÀå¿¡ À¯¸ÁÇÑ ±âȸ´Â ±âÁ¸ ¸®Æ¬ À̿ ¼³°èº¸´Ù ¿¡³ÊÁö ¹Ðµµ, ¾ÈÀü¼º, ¼ö¸íÁÖ±â Ãø¸é¿¡¼­ ÀåÁ¡À» °¡Áø °íü ¹èÅ͸® ±â¼úÀÇ Áøº¸¿¡ ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ß ÅõÀÚ°¡ °¡¼ÓÈ­µÇ¸é °íü ¹èÅ͸®ÀÇ »ó¿ëÈ­·Î ÀúÀå ¿ë·®ÀÌ Å©°Ô Çâ»óµÇ°í ºÎÇǰ¡ Å« ¼³°è¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãâ ¼ö ÀÖ½À´Ï´Ù. ¿­ ÆøÁÖ À§ÇèÀÌ ³·±â ¶§¹®¿¡ Àü·Â¸Á°ú »ó¾÷Àû »ç¿ëÀÇ ¾ÈÀü¼ºµµ ³ô¾ÆÁý´Ï´Ù. ¶ÇÇÑ, ¼Ö¸®µå ½ºÅ×ÀÌÆ® À̳뺣À̼ÇÀº EV ÃæÀü ÀÎÇÁ¶ó¿¡¼­ ¸®Æ¬ À̿ BESSÀÇ ¿ëµµ¸¦ È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Çõ½ÅÀº °æÀï ±¸µµ¸¦ ÀçÁ¤ÀÇÇÏ°í »õ·Î¿î ¼öÀÍ¿øÀ» âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸®Æ¬ ¿ø·á ºÎÁ·

ÀÌ ½ÃÀåÀº ¿øÀÚÀç ºÎÁ·ÀÇ À§Çù¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ƯÈ÷ ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌÀº ¹èÅ͸® »ý»ê¿¡ ÇʼöÀûÀÎ ¿ø·áÀÔ´Ï´Ù. ¼¼°è ¼ö¿ä Áõ°¡¿Í °ø±Þ¸Á È¥¶õÀÌ ¸Â¹°¸®¸é¼­ Á¦Á¶¾÷üÀÇ °¡°Ý º¯µ¿°ú Á¶´Þ ¸®½ºÅ©°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå°ú ä±¼ °üÇàÀÇ ºÒ±ÕÇüÀÌ °ø±Þ ºÒ¾ÈÀ» ´õ¿í ¾ÇÈ­½Ã۰í ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁöÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó ÀÌ·¯ÇÑ Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÏ°í ºÎÁ· À§ÇèÀÌ ³ô¾ÆÁú °ÍÀÔ´Ï´Ù. ÀÌ´Â ÀçȰ¿ëÀ̳ª ´ëü È­ÇÐÁ¦Ç°ÀÌ ¿ì¼±¼øÀ§°¡ µÇÁö ¾Ê´Â ÇÑ BESS äÅÿ¡ Àå±âÀûÀÎ Áö¼Ó°¡´É¼º ¹®Á¦¸¦ ¾ß±âÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 »çÅ·ΠÀÎÇØ °ø±Þ¸Á È¥¶õ, ÇÁ·ÎÁ§Æ® Áö¿¬, »ê¾÷ Ȱµ¿ °¨¼Ò·Î ÀÎÇØ ¸®Æ¬À̿ BESS ½ÃÀåÀÌ ÀϽÃÀûÀ¸·Î µÐÈ­µÇ¾ú½À´Ï´Ù. Á¦Á¶¾÷ÀÇ °¡µ¿ Áߴܰú ¹°·ù º´¸ñ Çö»óÀ¸·Î ¿øÀÚÀç ¼ö±ÞÀÌ ¾î·Á¿öÁö¸é¼­ Àü ¼¼°èÀûÀ¸·Î ¼³Ä¡°¡ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª °¢±¹ Á¤ºÎ°¡ ³ì»ö ºÎÈï ÀÌ´Ï¼ÅÆ¼ºê¸¦ µµÀÔÇϰí Àç»ý¿¡³ÊÁö ÅõÀÚ°¡ ±ÞÁõÇϸ鼭 ºü¸£°Ô ȸº¹µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ, ¿¡³ÊÁö ÀúÀåÀº ź·ÂÀûÀÎ Àü·Â °ø±Þ°ú Àü·Â¸Á Çö´ëÈ­¸¦ À§ÇØ ´õ¿í ÁÖ¸ñ¹Þ°Ô µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹ÍÀº ±Ã±ØÀûÀ¸·Î Àü ¼¼°è Àü±âÈ­¿Í Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÀüȯÀ» µÞ¹ÞħÇÏ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö ÀúÀå ÀÎÇÁ¶óÀÇ Á߿伺À» °­È­Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸®Æ¬ Àλêö(LFP) ºÎ¹®ÀÌ °¡Àå Å« ºÎ¹®À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸®Æ¬ Àλêö(LFP) ºÎ¹®Àº ´Ù¸¥ È­ÇÐÁ¦Ç°¿¡ ºñÇØ ¾ÈÀü¼ºÀÌ ¿ì¼öÇÏ°í ¼ö¸í ÁֱⰡ ±æ°í ºñ¿ëÀÌ Àú·ÅÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. LFP ¹èÅ͸®´Â ¿­ ¾ÈÁ¤¼ºÀÌ ³ô°í, ¿¬¼Ó »çÀÌŬ¿¡¼­µµ ¿­È­°¡ Àû±â ¶§¹®¿¡ ƯÈ÷ °íÁ¤Çü ÃàÀüÁö¿¡ ÀûÇÕÇÕ´Ï´Ù. ±×¸®µå ±Ô¸ðÀÇ ÇÁ·ÎÁ§Æ®¿Í »ó¾÷ ½Ã¼³¿¡¼­ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ±× ¿ìÀ§¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾Æ¿Í À¯·´¿¡¼­ Àü±âÀÚµ¿Â÷ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó LFP ±â¹Ý ½ºÅ丮Áö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ¼±µµÀûÀÎ ÀÔÁö¸¦ È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¿­ °ü¸® ½Ã½ºÅÛ ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¿­ °ü¸® ½Ã½ºÅÛ ºÎ¹®Àº °í¿ë·® ¹èÅ͸® ÀúÀåÀÇ ¾ÈÀü¼º°ú È¿À²¼ºÀ» º¸ÀåÇϱâ À§ÇÑ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå ³ôÀº ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸®Æ¬À̿ BESSÀÇ µµÀÔÀÌ È®´ëµÊ¿¡ µû¶ó ¿­ÆøÁÖ¸¦ ¹æÁöÇÏ°í ¼ö¸íÀ» ¿¬ÀåÇϱâ À§Çؼ­´Â ¿­À» È¿°úÀûÀ¸·Î °ü¸®ÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù. ¾×ü ±â¹Ý ½Ã½ºÅÛ°ú °°Àº °í±Þ ³Ã°¢ ±â¼úÀº ´ë±Ô¸ð ÀÀ¿ë ºÐ¾ß¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¾ÈÀü°ú ½Å·Ú¼º¿¡ ´ëÇÑ ±ÔÁ¦°¡ °­È­µÇ¸é¼­ ¿­ °ü¸® ½Ã½ºÅÛÀº ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â ºÐ¾ß·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àû±ØÀûÀÎ Àç»ý¿¡³ÊÁö ¸ñÇ¥, Àü±âÀÚµ¿Â÷ º¸±Þ È®´ë, ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ Á¤ºÎÀÇ °­·ÂÇÑ Àμ¾Æ¼ºê¿¡ ÈûÀÔ¾î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹Àº ´ë±Ô¸ð ¼ÛÀü¸Á ±Ô¸ðÀÇ Àü·Â ÀúÀå ÇÁ·ÎÁ§Æ®¿Í źźÇÑ ±¹³» ¹èÅ͸® Á¦Á¶ ´É·ÂÀ¸·Î ÀÌ Áö¿ª ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ÀϺ»°ú Çѱ¹µµ ¼±Áø ±â¼ú °³¹ßÀ» ÅëÇØ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿øÀÚÀç Á¶´Þ ¹× Á¦Á¶¿¡ ÀÖ¾î ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºñ¿ë ¿ìÀ§·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àü ¼¼°è ¸®Æ¬ À̿ BESS ¹èÄ¡ÀÇ Áß½ÉÁö°¡ µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â ±Þ¼ÓÇÑ Àü·Â¸Á Çö´ëÈ­, Àç»ý¿¡³ÊÁö ÅëÇÕ Áõ°¡, ûÁ¤¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¿¬¹æ Á¤ºÎÀÇ Àμ¾Æ¼ºê Á¦°ø¿¡ ±âÀÎÇÕ´Ï´Ù. ¹Ì±¹Àº Żź¼ÒÈ­ ¸ñÇ¥¸¦ Áö¿øÇϰí Àç»ý¿¡³ÊÁö°¡ ¸¹Àº Àü·Â¸ÁÀ» ¾ÈÁ¤È­Çϱâ À§ÇØ ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, EV ÃæÀü ³×Æ®¿öÅ©ÀÇ È®ÀåÀº BESS ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú Á¦°ø¾÷üÀÇ Á¸Àç¿Í ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ È®´ë·Î ºÏ¹Ì´Â °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ª ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ±â¾÷ ¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå : À¯Çüº°

  • Àλêö¸®Æ¬(LFP)
  • ¸®Æ¬ ´ÏÄÌ ¸Á°£ ÄÚ¹ßÆ® »êÈ­¹°(NMC)
  • Ƽź»ê ¸®Æ¬(LTO)
  • ¸®Æ¬ ´ÏÄÌ ÄÚ¹ßÆ® ¾Ë·ç¹Ì´½ »êÈ­¹°(NCA)

Á¦6Àå ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¹èÅ͸® ¼¿
  • Àü·Â º¯È¯ ½Ã½ºÅÛ(PCS)
  • ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)
  • ¿­ °ü¸® ½Ã½ºÅÛ
  • ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛ(EMS)
  • Á¦¾î ½Ã½ºÅÛ

Á¦7Àå ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå : ¿¬°á À¯Çüº°

  • ¿ÀÇÁ±×¸®µå
  • µ¶¸³Çü

Á¦8Àå ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå : Á¤°Ý Àü·Âº°

  • 100kW ÀÌÇÏ
  • 100kW-1MW
  • 1MW-10MW
  • 10MW ÀÌ»ó

Á¦9Àå ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå : ¼ÒÀ¯ ¸ðµ¨º°

  • À¯Æ¿¸®Æ¼ ¼ÒÀ¯
  • ¼­µåÆÄƼ ¼ÒÀ¯
  • °í°´ ¼ÒÀ¯

Á¦10Àå ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

  • Á֯ļö Á¶Á¤
  • ÇÇÅ© ½¦À̺ù
  • Àç»ý¿¡³ÊÁöÀÇ ÅëÇÕ
  • ºÎÇÏ À̵¿
  • ¹é¾÷ ¹× ºñ»ó¿ë Àü¿ø

Á¦11Àå ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÁÖÅÃ
  • »ó¾÷ ¹× »ê¾÷(C&I)
  • À¯Æ¿¸®Æ¼ ¹× ¼ÛÀü¸Á ¿î¿µÀÚ
  • µ¥ÀÌÅͼ¾ÅÍ

Á¦12Àå ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦13Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦14Àå ±â¾÷ °³¿ä

  • CATL
  • BYD Company Limited
  • Tesla, Inc.
  • LG Energy Solution
  • Samsung SDI
  • Panasonic Holdings Corporation
  • Siemens Energy
  • ABB Ltd
  • Fluence
  • Huawei Digital Power
  • Schneider Electric
  • Hitachi Energy
  • NEC Energy Solutions
  • Saft(TotalEnergies)
  • Eaton Corporation
  • Johnson Controls
  • NextEra Energy Resources
  • GE Vernova
KSM

According to Stratistics MRC, the Global Lithium-Ion Battery Energy Storage System Market is accounted for $5.1 billion in 2025 and is expected to reach $13.7 billion by 2032 growing at a CAGR of 15% during the forecast period. Lithium-Ion Battery Energy Storage Systems are advanced energy storage technologies that use lithium-ion cells to store and discharge electrical power. They are widely used for grid stabilization, renewable energy integration, backup power, and electric mobility. These systems provide high energy density, fast charge-discharge capability, and long cycle life compared to conventional batteries. Comprising battery packs, inverters, and management systems, they play a critical role in supporting energy efficiency, sustainability, and reliable power supply.

According to the U.S. Energy Information Administration (EIA), government incentives and the falling Levelized Cost of Energy (LCOE) for renewables are accelerating the deployment of grid-scale BESS for stability and peak shaving.

Market Dynamics:

Driver:

Rising renewable energy integration needs

The lithium-ion battery energy storage system (BESS) market is propelled by the increasing need to integrate renewable energy sources such as solar and wind into power grids. These intermittent sources require efficient storage to balance supply-demand fluctuations and ensure grid stability. Lithium-ion BESS offers high energy density, fast response, and scalability, making it ideal for renewable integration. With governments worldwide accelerating clean energy transitions, demand for advanced storage solutions is expected to grow significantly, positioning lithium-ion systems as critical enablers.

Restraint:

High cost of large installations

Despite strong adoption, the high upfront costs associated with large-scale lithium-ion BESS installations act as a significant restraint. The investment includes not only batteries but also sophisticated inverters, safety mechanisms, and advanced monitoring systems, making projects capital-intensive. Utilities and developers often face financing hurdles, especially in emerging economies with limited subsidies. Additionally, the need for long-term maintenance further increases lifetime costs. These financial barriers restrict widespread deployment, particularly in regions with budget constraints or competing low-cost energy storage alternatives.

Opportunity:

Advancements in solid-state batteries

A promising opportunity for the market lies in advancements in solid-state battery technology, which offer enhanced energy density, safety, and lifecycle benefits over traditional lithium-ion designs. As R&D investment accelerates, commercialization of solid-state batteries could significantly improve storage capabilities, reducing reliance on bulky designs. Their lower risk of thermal runaway enhances safety for grid and commercial use. Furthermore, solid-state innovations can expand lithium-ion BESS applications in EV charging infrastructure. Such technological breakthroughs will likely redefine the competitive landscape and unlock new revenue streams.

Threat:

Raw material shortages for lithium

The market faces a pressing threat from raw material shortages, particularly lithium, cobalt, and nickel, which are critical inputs for battery production. Increasing global demand, coupled with supply chain disruptions, has led to price volatility and procurement risks for manufacturers. Geopolitical tensions and uneven mining practices further exacerbate supply insecurity. As renewable deployment accelerates, demand for these materials will rise sharply, intensifying the risk of shortages. This poses long-term sustainability challenges for BESS adoption unless recycling and alternative chemistries are prioritized.

Covid-19 Impact:

The COVID-19 pandemic temporarily slowed the lithium-ion BESS market due to supply chain disruptions, project delays, and reduced industrial activities. Manufacturing shutdowns and logistical bottlenecks hindered raw material availability and delayed installations globally. However, recovery was swift as governments introduced green recovery initiatives and renewable energy investments surged. Post-pandemic, energy storage gained greater prominence for resilient power supply and grid modernization. The pandemic ultimately reinforced the importance of reliable energy storage infrastructure in supporting electrification and sustainable energy transitions worldwide.

The lithium iron phosphate (LFP) segment is expected to be the largest during the forecast period

The lithium iron phosphate (LFP) segment is expected to account for the largest market share during the forecast period, owing to its superior safety, longer lifecycle, and lower cost compared to other chemistries. LFP batteries are particularly suited for stationary storage due to their thermal stability and resistance to degradation under continuous cycling. Their increasing use in grid-scale projects and commercial facilities strengthens dominance. Furthermore, rising EV adoption in Asia and Europe boosts demand for LFP-based storage, solidifying its leadership position.

The thermal management systems segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the thermal management systems segment is predicted to witness the highest growth rate, impelled by the rising need to ensure safety and efficiency in high-capacity battery storage. As lithium-ion BESS deployments scale, managing heat effectively becomes critical to preventing thermal runaway and enhancing lifespan. Advanced cooling technologies such as liquid-based systems are gaining traction in large-scale applications. Increasing regulatory emphasis on safety and reliability further drives adoption, positioning thermal management systems as a rapidly expanding segment.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by aggressive renewable energy targets, growing EV adoption, and strong government incentives for energy storage. China dominates the regional market with extensive grid-scale storage projects and robust domestic battery manufacturing capabilities. Japan and South Korea also contribute significantly through advanced technology development. Moreover, regional cost advantages in raw material sourcing and manufacturing make Asia Pacific the hub of global lithium-ion BESS deployment.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, attributed to rapid grid modernization, rising renewable integration, and federal incentives for clean energy projects. The U.S. is investing heavily in large-scale energy storage to support decarbonization targets and stabilize renewable-heavy grids. In addition, the expansion of EV charging networks creates further demand for BESS solutions. The presence of leading technology providers and growing private sector investments position North America as the fastest-growing regional market.

Key players in the market

Some of the key players in Lithium-Ion Battery Energy Storage System Market include CATL, BYD Company Limited, Tesla, Inc., LG Energy Solution, Samsung SDI, Panasonic Holdings Corporation, Siemens Energy, ABB Ltd, Fluence, Huawei Digital Power, Schneider Electric, Hitachi Energy, NEC Energy Solutions, Saft (TotalEnergies), Eaton Corporation, Johnson Controls, NextEra Energy Resources, and GE Vernova.

Key Developments:

In August 2025, CATL launched a new lithium-ion battery storage system featuring higher energy density and enhanced thermal management, targeting grid-scale renewable integration and utility support applications.

In July 2025, BYD Company Limited introduced a modular, scalable energy storage system for residential and commercial use, enhancing ease of installation and lifecycle management.

In June 2025, Tesla, Inc. unveiled a next-gen Powerwall system optimized with AI-driven energy management for improved efficiency in home energy backup and solar integration.

In May 2025, LG Energy Solution announced an expansion of its lithium-ion battery packs with improved safety features and extended cycle life, targeting electric vehicle charging and microgrid markets.

Types Covered:

  • Lithium Iron Phosphate (LFP)
  • Lithium Nickel Manganese Cobalt Oxide (NMC)
  • Lithium Titanate (LTO)
  • Lithium Nickel Cobalt Aluminum Oxide (NCA)

Components Covered:

  • Battery Cells
  • Power Conversion Systems (PCS)
  • Battery Management Systems (BMS)
  • Thermal Management Systems
  • Energy Management Systems (EMS)
  • Control Systems

Connection TypesCovered:

  • Connection Type
  • Off-Grid / Standalone

Power Ratings Covered:

  • Below 100 kW
  • 100 kW-1 MW
  • 1 MW-10 MW
  • Above 10 MW

Ownership Models Covered:

  • Utility-Owned
  • Third-Party Owned
  • Customer-Owned

Applications Covered:

  • Frequency Regulation
  • Peak Shaving
  • Renewable Integration
  • Load Shifting
  • Backup & Emergency Power

End Users Covered:

  • Residential
  • Commercial & Industrial (C&I)
  • Utilities & Grid Operators
  • Data Centers

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Lithium-Ion Battery Energy Storage System Market, By Type

  • 5.1 Introduction
  • 5.2 Lithium Iron Phosphate (LFP)
  • 5.3 Lithium Nickel Manganese Cobalt Oxide (NMC)
  • 5.4 Lithium Titanate (LTO)
  • 5.5 Lithium Nickel Cobalt Aluminum Oxide (NCA)

6 Global Lithium-Ion Battery Energy Storage System Market, By Component

  • 6.1 Introduction
  • 6.2 Battery Cells
  • 6.3 Power Conversion Systems (PCS)
  • 6.4 Battery Management Systems (BMS)
  • 6.5 Thermal Management Systems
  • 6.6 Energy Management Systems (EMS)
  • 6.7 Control Systems

7 Global Lithium-Ion Battery Energy Storage System Market, By Connection Type

  • 7.1 Introduction
  • 7.2 Connection Type
  • 7.3 Off-Grid / Standalone

8 Global Lithium-Ion Battery Energy Storage System Market, By Power Rating

  • 8.1 Introduction
  • 8.2 Below 100 kW
  • 8.3 100 kW-1 MW
  • 8.4 1 MW-10 MW
  • 8.5 Above 10 MW

9 Global Lithium-Ion Battery Energy Storage System Market, By Ownership Model

  • 9.1 Introduction
  • 9.2 Utility-Owned
  • 9.3 Third-Party Owned
  • 9.4 Customer-Owned

10 Global Lithium-Ion Battery Energy Storage System Market, By Application

  • 10.1 Introduction
  • 10.2 Frequency Regulation
  • 10.3 Peak Shaving
  • 10.4 Renewable Integration
  • 10.5 Load Shifting
  • 10.6 Backup & Emergency Power

11 Global Lithium-Ion Battery Energy Storage System Market, By End User

  • 11.1 Introduction
  • 11.2 Residential
  • 11.3 Commercial & Industrial (C&I)
  • 11.4 Utilities & Grid Operators
  • 11.5 Data Centers

12 Global Lithium-Ion Battery Energy Storage System Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 CATL
  • 14.2 BYD Company Limited
  • 14.3 Tesla, Inc.
  • 14.4 LG Energy Solution
  • 14.5 Samsung SDI
  • 14.6 Panasonic Holdings Corporation
  • 14.7 Siemens Energy
  • 14.8 ABB Ltd
  • 14.9 Fluence
  • 14.10 Huawei Digital Power
  • 14.11 Schneider Electric
  • 14.12 Hitachi Energy
  • 14.13 NEC Energy Solutions
  • 14.14 Saft (TotalEnergies)
  • 14.15 Eaton Corporation
  • 14.16 Johnson Controls
  • 14.17 NextEra Energy Resources
  • 14.18 GE Vernova
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦