![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1813280
¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çüº°, ±¸¼º¿ä¼Òº°, ¿¬°á À¯Çüº°, Á¤°Ý Àü·Âº°, ¼ÒÀ¯ ¸ðµ¨º°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Lithium-Ion Battery Energy Storage System Market Forecasts to 2032 - Global Analysis By Type, Component, Connection Type, Power Rating, Ownership Model, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀº 2025³â¿¡ 51¾ï ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 15%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 137¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. ¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº ¸®Æ¬À̿ ¹èÅ͸®¸¦ »ç¿ëÇÏ¿© Àü·ÂÀ» ÀúÀå ¹× ¹æÀüÇϴ ÷´Ü ¿¡³ÊÁö ÀúÀå ±â¼úÀÔ´Ï´Ù. Àü·Â¸Á ¾ÈÁ¤È, Àç»ý ¿¡³ÊÁö ÅëÇÕ, ¹é¾÷ Àü¿ø, Àüµ¿ ¸ðºô¸®Æ¼ µî¿¡ ³Î¸® Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±âÁ¸ ¹èÅ͸®¿Í ºñ±³ÇÏ¿© ³ôÀº ¿¡³ÊÁö ¹Ðµµ, °í¼Ó Ãæ¹æÀü ´É·Â, ±ä »çÀÌŬ ¼ö¸íÀ» Á¦°øÇÕ´Ï´Ù. ¹èÅ͸® ÆÑ, ÀιöÅÍ, °ü¸® ½Ã½ºÅÛÀ¸·Î ±¸¼ºµÇ¸ç, ¿¡³ÊÁö È¿À²¼º, Áö¼Ó °¡´É¼º, ½Å·Ú¼º ³ôÀº Àü·Â °ø±ÞÀ» Áö¿øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
¹Ì±¹ ¿¡³ÊÁöÁ¤º¸±¹(EIA)¿¡ µû¸£¸é, Á¤ºÎ Àμ¾Æ¼ºê¿Í Àç»ý¿¡³ÊÁöÀÇ ±ÕµîÈ ¿¡³ÊÁö ºñ¿ë(LCOE) Ç϶ôÀÌ ¾ÈÁ¤¼º°ú ÇÇÅ© Â÷´ÜÀ» À§ÇÑ ±×¸®µå ±Ô¸ð BESSÀÇ º¸±ÞÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
Àç»ý¿¡³ÊÁö ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
¸®Æ¬À̿ ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(BESS) ½ÃÀåÀº ž籤, dz·Â µî Àç»ý¿¡³ÊÁö¸¦ Àü·Â¸Á¿¡ ÅëÇÕÇÏ·Á´Â ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °£ÇæÀûÀÎ ¿¡³ÊÁö¿øÀº ¼ö¿ä¿Í °ø±ÞÀÇ ±ÕÇüÀ» ¸ÂÃß°í ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇϱâ À§ÇØ È¿À²ÀûÀÎ Àü·Â ÀúÀåÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¸®Æ¬ À̿ BESS´Â ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ºü¸¥ ÀÀ´ä, È®À强À» Á¦°øÇϸç, Àç»ý¿¡³ÊÁö ÅëÇÕ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ûÁ¤¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» °¡¼ÓÈÇÔ¿¡ µû¶ó ÷´Ü ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¸®Æ¬À̿ ½Ã½ºÅÛÀº Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
´ë±Ô¸ð ¼³ºñÀÇ °íºñ¿ë
¸®Æ¬À̿ BESSÀÇ µµÀÔÀÌ ¼øÁ¶·Ó°Ô ÁøÇàµÇ°í ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, ´ë±Ô¸ð ¸®Æ¬À̿ BESS ¼³Ä¡¿¡ µû¸¥ ³ôÀº Ãʱâºñ¿ëÀÌ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÅõÀÚ¿¡´Â ¹èÅ͸®»Ó¸¸ ¾Æ´Ï¶ó ÷´Ü ÀιöÅÍ, ¾ÈÀü ¸ÞÄ¿´ÏÁò, ÷´Ü ¸ð´ÏÅ͸µ ½Ã½ºÅÛµµ Æ÷ÇԵǸç, ÀÌ ÇÁ·ÎÁ§Æ®´Â ÀÚº» Áý¾àÀûÀÎ ÇÁ·ÎÁ§Æ®ÀÔ´Ï´Ù. Àü·Âȸ»ç¿Í °³¹ßÀÚµéÀº ƯÈ÷ º¸Á¶±ÝÀÌ Á¦ÇÑÀûÀÎ ½ÅÈï °æÁ¦ ±¹°¡¿¡¼´Â ÀÚ±Ý Á¶´Þ¿¡ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àå±âÀûÀÎ À¯Áöº¸¼öÀÇ Çʿ伺Àº Æò»ý ºñ¿ëÀ» ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤Àû À庮Àº ƯÈ÷ ¿¹»êÀÌ Á¦ÇÑÀûÀÎ Áö¿ªÀ̳ª °æÀïÀûÀÎ Àúºñ¿ë ¿¡³ÊÁö ÀúÀå ¼ö´ÜÀÌ ÀÖ´Â Áö¿ª¿¡¼´Â º¸±ÞÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
°íü ¹èÅ͸®ÀÇ ¹ßÀü
½ÃÀå¿¡ À¯¸ÁÇÑ ±âȸ´Â ±âÁ¸ ¸®Æ¬ À̿ ¼³°èº¸´Ù ¿¡³ÊÁö ¹Ðµµ, ¾ÈÀü¼º, ¼ö¸íÁÖ±â Ãø¸é¿¡¼ ÀåÁ¡À» °¡Áø °íü ¹èÅ͸® ±â¼úÀÇ Áøº¸¿¡ ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ß ÅõÀÚ°¡ °¡¼ÓÈµÇ¸é °íü ¹èÅ͸®ÀÇ »ó¿ëÈ·Î ÀúÀå ¿ë·®ÀÌ Å©°Ô Çâ»óµÇ°í ºÎÇǰ¡ Å« ¼³°è¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãâ ¼ö ÀÖ½À´Ï´Ù. ¿ ÆøÁÖ À§ÇèÀÌ ³·±â ¶§¹®¿¡ Àü·Â¸Á°ú »ó¾÷Àû »ç¿ëÀÇ ¾ÈÀü¼ºµµ ³ô¾ÆÁý´Ï´Ù. ¶ÇÇÑ, ¼Ö¸®µå ½ºÅ×ÀÌÆ® À̳뺣À̼ÇÀº EV ÃæÀü ÀÎÇÁ¶ó¿¡¼ ¸®Æ¬ À̿ BESSÀÇ ¿ëµµ¸¦ È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Çõ½ÅÀº °æÀï ±¸µµ¸¦ ÀçÁ¤ÀÇÇÏ°í »õ·Î¿î ¼öÀÍ¿øÀ» âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù.
¸®Æ¬ ¿ø·á ºÎÁ·
ÀÌ ½ÃÀåÀº ¿øÀÚÀç ºÎÁ·ÀÇ À§Çù¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ƯÈ÷ ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌÀº ¹èÅ͸® »ý»ê¿¡ ÇʼöÀûÀÎ ¿ø·áÀÔ´Ï´Ù. ¼¼°è ¼ö¿ä Áõ°¡¿Í °ø±Þ¸Á È¥¶õÀÌ ¸Â¹°¸®¸é¼ Á¦Á¶¾÷üÀÇ °¡°Ý º¯µ¿°ú Á¶´Þ ¸®½ºÅ©°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå°ú ä±¼ °üÇàÀÇ ºÒ±ÕÇüÀÌ °ø±Þ ºÒ¾ÈÀ» ´õ¿í ¾ÇȽÃ۰í ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁöÀÇ µµÀÔÀÌ °¡¼Óȵʿ¡ µû¶ó ÀÌ·¯ÇÑ Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÏ°í ºÎÁ· À§ÇèÀÌ ³ô¾ÆÁú °ÍÀÔ´Ï´Ù. ÀÌ´Â ÀçȰ¿ëÀ̳ª ´ëü ÈÇÐÁ¦Ç°ÀÌ ¿ì¼±¼øÀ§°¡ µÇÁö ¾Ê´Â ÇÑ BESS äÅÿ¡ Àå±âÀûÀÎ Áö¼Ó°¡´É¼º ¹®Á¦¸¦ ¾ß±âÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19 »çÅ·ΠÀÎÇØ °ø±Þ¸Á È¥¶õ, ÇÁ·ÎÁ§Æ® Áö¿¬, »ê¾÷ Ȱµ¿ °¨¼Ò·Î ÀÎÇØ ¸®Æ¬À̿ BESS ½ÃÀåÀÌ ÀϽÃÀûÀ¸·Î µÐȵǾú½À´Ï´Ù. Á¦Á¶¾÷ÀÇ °¡µ¿ Áߴܰú ¹°·ù º´¸ñ Çö»óÀ¸·Î ¿øÀÚÀç ¼ö±ÞÀÌ ¾î·Á¿öÁö¸é¼ Àü ¼¼°èÀûÀ¸·Î ¼³Ä¡°¡ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª °¢±¹ Á¤ºÎ°¡ ³ì»ö ºÎÈï ÀÌ´Ï¼ÅÆ¼ºê¸¦ µµÀÔÇϰí Àç»ý¿¡³ÊÁö ÅõÀÚ°¡ ±ÞÁõÇÏ¸é¼ ºü¸£°Ô ȸº¹µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ, ¿¡³ÊÁö ÀúÀåÀº ź·ÂÀûÀÎ Àü·Â °ø±Þ°ú Àü·Â¸Á Çö´ëȸ¦ À§ÇØ ´õ¿í ÁÖ¸ñ¹Þ°Ô µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹ÍÀº ±Ã±ØÀûÀ¸·Î Àü ¼¼°è Àü±âÈ¿Í Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÀüȯÀ» µÞ¹ÞħÇÏ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö ÀúÀå ÀÎÇÁ¶óÀÇ Á߿伺À» °ÈÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¸®Æ¬ Àλêö(LFP) ºÎ¹®ÀÌ °¡Àå Å« ºÎ¹®À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¸®Æ¬ Àλêö(LFP) ºÎ¹®Àº ´Ù¸¥ ÈÇÐÁ¦Ç°¿¡ ºñÇØ ¾ÈÀü¼ºÀÌ ¿ì¼öÇÏ°í ¼ö¸í ÁֱⰡ ±æ°í ºñ¿ëÀÌ Àú·ÅÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. LFP ¹èÅ͸®´Â ¿ ¾ÈÁ¤¼ºÀÌ ³ô°í, ¿¬¼Ó »çÀÌŬ¿¡¼µµ ¿È°¡ Àû±â ¶§¹®¿¡ ƯÈ÷ °íÁ¤Çü ÃàÀüÁö¿¡ ÀûÇÕÇÕ´Ï´Ù. ±×¸®µå ±Ô¸ðÀÇ ÇÁ·ÎÁ§Æ®¿Í »ó¾÷ ½Ã¼³¿¡¼ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ±× ¿ìÀ§¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾Æ¿Í À¯·´¿¡¼ Àü±âÀÚµ¿Â÷ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó LFP ±â¹Ý ½ºÅ丮Áö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ¼±µµÀûÀÎ ÀÔÁö¸¦ È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿ °ü¸® ½Ã½ºÅÛ ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿ °ü¸® ½Ã½ºÅÛ ºÎ¹®Àº °í¿ë·® ¹èÅ͸® ÀúÀåÀÇ ¾ÈÀü¼º°ú È¿À²¼ºÀ» º¸ÀåÇϱâ À§ÇÑ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå ³ôÀº ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸®Æ¬À̿ BESSÀÇ µµÀÔÀÌ È®´ëµÊ¿¡ µû¶ó ¿ÆøÁÖ¸¦ ¹æÁöÇÏ°í ¼ö¸íÀ» ¿¬ÀåÇϱâ À§Çؼ´Â ¿À» È¿°úÀûÀ¸·Î °ü¸®ÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù. ¾×ü ±â¹Ý ½Ã½ºÅÛ°ú °°Àº °í±Þ ³Ã°¢ ±â¼úÀº ´ë±Ô¸ð ÀÀ¿ë ºÐ¾ß¿¡¼ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¾ÈÀü°ú ½Å·Ú¼º¿¡ ´ëÇÑ ±ÔÁ¦°¡ °ÈµÇ¸é¼ ¿ °ü¸® ½Ã½ºÅÛÀº ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â ºÐ¾ß·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àû±ØÀûÀÎ Àç»ý¿¡³ÊÁö ¸ñÇ¥, Àü±âÀÚµ¿Â÷ º¸±Þ È®´ë, ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ Á¤ºÎÀÇ °·ÂÇÑ Àμ¾Æ¼ºê¿¡ ÈûÀÔ¾î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹Àº ´ë±Ô¸ð ¼ÛÀü¸Á ±Ô¸ðÀÇ Àü·Â ÀúÀå ÇÁ·ÎÁ§Æ®¿Í źźÇÑ ±¹³» ¹èÅ͸® Á¦Á¶ ´É·ÂÀ¸·Î ÀÌ Áö¿ª ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ÀϺ»°ú Çѱ¹µµ ¼±Áø ±â¼ú °³¹ßÀ» ÅëÇØ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿øÀÚÀç Á¶´Þ ¹× Á¦Á¶¿¡ ÀÖ¾î ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºñ¿ë ¿ìÀ§·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àü ¼¼°è ¸®Æ¬ À̿ BESS ¹èÄ¡ÀÇ Áß½ÉÁö°¡ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â ±Þ¼ÓÇÑ Àü·Â¸Á Çö´ëÈ, Àç»ý¿¡³ÊÁö ÅëÇÕ Áõ°¡, ûÁ¤¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¿¬¹æ Á¤ºÎÀÇ Àμ¾Æ¼ºê Á¦°ø¿¡ ±âÀÎÇÕ´Ï´Ù. ¹Ì±¹Àº Żź¼ÒÈ ¸ñÇ¥¸¦ Áö¿øÇϰí Àç»ý¿¡³ÊÁö°¡ ¸¹Àº Àü·Â¸ÁÀ» ¾ÈÁ¤ÈÇϱâ À§ÇØ ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, EV ÃæÀü ³×Æ®¿öÅ©ÀÇ È®ÀåÀº BESS ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú Á¦°ø¾÷üÀÇ Á¸Àç¿Í ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ È®´ë·Î ºÏ¹Ì´Â °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ª ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Lithium-Ion Battery Energy Storage System Market is accounted for $5.1 billion in 2025 and is expected to reach $13.7 billion by 2032 growing at a CAGR of 15% during the forecast period. Lithium-Ion Battery Energy Storage Systems are advanced energy storage technologies that use lithium-ion cells to store and discharge electrical power. They are widely used for grid stabilization, renewable energy integration, backup power, and electric mobility. These systems provide high energy density, fast charge-discharge capability, and long cycle life compared to conventional batteries. Comprising battery packs, inverters, and management systems, they play a critical role in supporting energy efficiency, sustainability, and reliable power supply.
According to the U.S. Energy Information Administration (EIA), government incentives and the falling Levelized Cost of Energy (LCOE) for renewables are accelerating the deployment of grid-scale BESS for stability and peak shaving.
Rising renewable energy integration needs
The lithium-ion battery energy storage system (BESS) market is propelled by the increasing need to integrate renewable energy sources such as solar and wind into power grids. These intermittent sources require efficient storage to balance supply-demand fluctuations and ensure grid stability. Lithium-ion BESS offers high energy density, fast response, and scalability, making it ideal for renewable integration. With governments worldwide accelerating clean energy transitions, demand for advanced storage solutions is expected to grow significantly, positioning lithium-ion systems as critical enablers.
High cost of large installations
Despite strong adoption, the high upfront costs associated with large-scale lithium-ion BESS installations act as a significant restraint. The investment includes not only batteries but also sophisticated inverters, safety mechanisms, and advanced monitoring systems, making projects capital-intensive. Utilities and developers often face financing hurdles, especially in emerging economies with limited subsidies. Additionally, the need for long-term maintenance further increases lifetime costs. These financial barriers restrict widespread deployment, particularly in regions with budget constraints or competing low-cost energy storage alternatives.
Advancements in solid-state batteries
A promising opportunity for the market lies in advancements in solid-state battery technology, which offer enhanced energy density, safety, and lifecycle benefits over traditional lithium-ion designs. As R&D investment accelerates, commercialization of solid-state batteries could significantly improve storage capabilities, reducing reliance on bulky designs. Their lower risk of thermal runaway enhances safety for grid and commercial use. Furthermore, solid-state innovations can expand lithium-ion BESS applications in EV charging infrastructure. Such technological breakthroughs will likely redefine the competitive landscape and unlock new revenue streams.
Raw material shortages for lithium
The market faces a pressing threat from raw material shortages, particularly lithium, cobalt, and nickel, which are critical inputs for battery production. Increasing global demand, coupled with supply chain disruptions, has led to price volatility and procurement risks for manufacturers. Geopolitical tensions and uneven mining practices further exacerbate supply insecurity. As renewable deployment accelerates, demand for these materials will rise sharply, intensifying the risk of shortages. This poses long-term sustainability challenges for BESS adoption unless recycling and alternative chemistries are prioritized.
The COVID-19 pandemic temporarily slowed the lithium-ion BESS market due to supply chain disruptions, project delays, and reduced industrial activities. Manufacturing shutdowns and logistical bottlenecks hindered raw material availability and delayed installations globally. However, recovery was swift as governments introduced green recovery initiatives and renewable energy investments surged. Post-pandemic, energy storage gained greater prominence for resilient power supply and grid modernization. The pandemic ultimately reinforced the importance of reliable energy storage infrastructure in supporting electrification and sustainable energy transitions worldwide.
The lithium iron phosphate (LFP) segment is expected to be the largest during the forecast period
The lithium iron phosphate (LFP) segment is expected to account for the largest market share during the forecast period, owing to its superior safety, longer lifecycle, and lower cost compared to other chemistries. LFP batteries are particularly suited for stationary storage due to their thermal stability and resistance to degradation under continuous cycling. Their increasing use in grid-scale projects and commercial facilities strengthens dominance. Furthermore, rising EV adoption in Asia and Europe boosts demand for LFP-based storage, solidifying its leadership position.
The thermal management systems segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the thermal management systems segment is predicted to witness the highest growth rate, impelled by the rising need to ensure safety and efficiency in high-capacity battery storage. As lithium-ion BESS deployments scale, managing heat effectively becomes critical to preventing thermal runaway and enhancing lifespan. Advanced cooling technologies such as liquid-based systems are gaining traction in large-scale applications. Increasing regulatory emphasis on safety and reliability further drives adoption, positioning thermal management systems as a rapidly expanding segment.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by aggressive renewable energy targets, growing EV adoption, and strong government incentives for energy storage. China dominates the regional market with extensive grid-scale storage projects and robust domestic battery manufacturing capabilities. Japan and South Korea also contribute significantly through advanced technology development. Moreover, regional cost advantages in raw material sourcing and manufacturing make Asia Pacific the hub of global lithium-ion BESS deployment.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, attributed to rapid grid modernization, rising renewable integration, and federal incentives for clean energy projects. The U.S. is investing heavily in large-scale energy storage to support decarbonization targets and stabilize renewable-heavy grids. In addition, the expansion of EV charging networks creates further demand for BESS solutions. The presence of leading technology providers and growing private sector investments position North America as the fastest-growing regional market.
Key players in the market
Some of the key players in Lithium-Ion Battery Energy Storage System Market include CATL, BYD Company Limited, Tesla, Inc., LG Energy Solution, Samsung SDI, Panasonic Holdings Corporation, Siemens Energy, ABB Ltd, Fluence, Huawei Digital Power, Schneider Electric, Hitachi Energy, NEC Energy Solutions, Saft (TotalEnergies), Eaton Corporation, Johnson Controls, NextEra Energy Resources, and GE Vernova.
In August 2025, CATL launched a new lithium-ion battery storage system featuring higher energy density and enhanced thermal management, targeting grid-scale renewable integration and utility support applications.
In July 2025, BYD Company Limited introduced a modular, scalable energy storage system for residential and commercial use, enhancing ease of installation and lifecycle management.
In June 2025, Tesla, Inc. unveiled a next-gen Powerwall system optimized with AI-driven energy management for improved efficiency in home energy backup and solar integration.
In May 2025, LG Energy Solution announced an expansion of its lithium-ion battery packs with improved safety features and extended cycle life, targeting electric vehicle charging and microgrid markets.