![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1813291
¼¼°èÀÇ Æú¸®¾ÆÅ©¸±»ê(PAA) ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç°º°, ºÐÀÚ·®º°, Çüź°, ¿ëµµº°, Áö¿ªº° ºÐ¼®Polyacrylic Acid (PAA) Market Forecasts to 2032 - Global Analysis By Product (Homopolymer PAA, Copolymers, Crosslinked PAA, Sodium polyacrylate and Other Products), Molecular Weight, Form, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Æú¸®¾ÆÅ©¸±»ê(PAA) ½ÃÀåÀº 2025³â¿¡ 6¾ï 1,116¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 7.6%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 10¾ï 2,058¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Æú¸®¾ÆÅ©¸±»ê(PAA)Àº ¾ÆÅ©¸±»ê ´Ü·®Ã¼ÀÇ ÁßÇÕÀ» ÅëÇØ Á¦Á¶µÇ´Â ÇÕ¼º ¼ö¿ë¼º Æú¸®¸ÓÀÔ´Ï´Ù. °íºÐÀÚ·®°ú Ä«¸£º¹½Ç»ê ÀÛ¿ë±â¸¦ Ư¡À¸·Î ÇÏ´Â ¹ü¿ë¼ºÀÌ ³ôÀº ¼ÒÀç·Î, ¿ì¼öÇÑ ºÐ»ê¼º, ÁõÁ¡¼º, °áÇÕ¼ºÀ» ¹ßÈÖÇÕ´Ï´Ù. PAA´Â Á¡µµ Á¶Àý, ÇöŹ¾× ¾ÈÁ¤È, À̿ °áÇÕ ´É·ÂÀÌ ÀÖ¾î ¼öó¸®, ¼¼Á¦, Á¢ÂøÁ¦, ÄÚÆÃÁ¦, °³ÀÎ À§»ý¿ëǰ, ÀǾàǰ µî¿¡ ³Î¸® »ç¿ëµË´Ï´Ù. »ýºÐÇØ¼º°ú ¹«µ¶¼ºÀ¸·Î ȯ°æ Ä£ÈÀûÀ̸ç, ÀÌ´Â »ê¾÷Àû °¡Ä¡¸¦ ´õ¿í ³ôÀÔ´Ï´Ù. ¶ÇÇÑ °³·®Çü PAA´Â À§»ý¿ëǰ ¹× ³ó»ê¹°¿ë °íÈí¼ö¼º Æú¸®¸Ó·Î Ȱ¿ëµË´Ï´Ù.
¼öó¸® ºÐ¾ßÀÇ °·ÂÇÑ ¼ö¿ä
PAA´Â ºÐ»êÁ¦ ¹× ½ºÄÉÀÏ ¹æÁöÁ¦·Î ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, »ê¾÷¿ë¼ö ¹× ÁöÀÚü ¼öó¸® ½Ã½ºÅÛÀÇ È¿À²¼º Çâ»ó¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹° ºÎÁ·¿¡ ´ëÇÑ ¿ì·Á¿Í ±ú²ýÇÏ°í ¾ÈÀüÇÑ ¹°¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼ ÷´Ü ó¸® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µµ½ÃÈ¿Í »ê¾÷ÈÀÇ ÁøÀüÀº Æó¼ö ¹ß»ý·®À» ´õ¿í Áõ°¡½ÃÄÑ PAA ±â¹Ý Á¦Ç°¿¡ ´ëÇÑ ¾ÈÁ¤ÀûÀÎ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¿°úÀûÀÎ ¼öó¸® ¾àǰ¿¡ ´ëÇÑ ÀϰüµÈ ¼ö¿ä°¡ Àüü PAA ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
ȯ°æ ¹× ±ÔÁ¦ Á¦¾à
ÈÇÐ Æó±â¹° ó¸® ¹× ¼ö󸮿¡ ´ëÇÑ ¾ö°ÝÇÑ È¯°æ Á¤Ã¥À¸·Î ÀÎÇØ »ý»ê ¹× ÀÀ¿ë ÇÁ·Î¼¼½º°¡ Á¦Çѵǰí ÀÖ½À´Ï´Ù. »ýºÐÇØ¼º ¹× µ¶¼º °ü·Ã ±ÔÁ¦´Â Á¦Á¶¾÷ü°¡ ½ÂÀÎÀ» ¹Þ´Â µ¥ ÀÖ¾î ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. ÁøÈÇÏ´Â ¼¼°è Ç¥ÁØÀ» ÁؼöÇÏ´Â °ÍÀº ±â¾÷ÀÇ ¿î¿µ ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â PAA ±â¹Ý ½ÅÁ¦Ç°ÀÇ ±â¼ú Çõ½Å°ú »ó¿ëȸ¦ Áö¿¬½Ãŵ´Ï´Ù. ±× °á°ú, ½ÃÀå ¼ºÀå ÀáÀç·ÂÀº ±ÔÁ¦ À庮°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾Ð·ÂÀ¸·Î ÀÎÇØ ¾ïÁ¦µÇ°í ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´É¼º°ú R&D ¸ð¸àÅÒ
±â¾÷µéÀº ¼öó¸®, ¼¼Á¦, °íÈí¼ö¼º °íºÐÀÚ µîÀÇ ºÐ¾ß¿¡¼ Á¦Ç°ÀÇ È¿À²¼ºÀ» ³ôÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ Çõ½ÅÀûÀÎ ¿¬±¸¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ±×¸° Äɹ̽ºÆ®¸®¿Í ¹ÙÀÌ¿À ±â¹Ý ¿ø·áÀÇ ¹ßÀüÀ¸·Î ±âÁ¸ ¼®À¯ÈÇÐ À¯·¡ PAA¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀÌ µîÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Ãß±¸ÇÏ´Â Àü ¼¼°èÀûÀÎ ±ÔÁ¦ ¹× ¼ÒºñÀÚ ¼ö¿ä¿Í ¸Â¹°·Á ½ÃÀå µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀ¸·Î PAA´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ Áß¿äÇÑ ¼ÒÀç·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿øÀÚÀç °¡°Ý º¯µ¿
PAAÀÇ ÁÖ¿ø·áÀÎ ¾ÆÅ©¸±»êÀº ¿øÀ¯¿¡¼ ¾ò¾îÁö±â ¶§¹®¿¡ »ý»êºñ¿ëÀº ¿øÀ¯ °¡°Ý º¯µ¿¿¡ Å« ¿µÇâÀ» ¹Þ½À´Ï´Ù. ¿øÀÚÀç °¡°ÝÀÇ ±Þµî°ú ºÒ¾ÈÁ¤¼ºÀº Á¦Á¶¾÷üÀÇ ¼öÀÍ·üÀ» ¾Ð¹ÚÇÏ°í °æÀï·Â ÀÖ´Â °¡°ÝÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÒÈ®½Ç¼ºÀº Àå±âÀûÀÎ ÅõÀÚ¿¡ °É¸²µ¹ÀÌ µÇ°í, ÀÌ ºÐ¾ßÀÇ »ý»ê´É·Â È®´ë¸¦ Á¦ÇÑÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. ÃÖÁ¾»ç¿ëÀÚ´Â ºÒ±ÔÄ¢ÇÑ °ø±Þ°ú ºñ¿ë »ó½Â¿¡ Á÷¸éÇÏ¿© ´ëü Àç·á·ÎÀÇ ÀüȯÀ» Ã˱¸ÇÕ´Ï´Ù. ±× °á°ú, ¿ø·á °¡°ÝÀÇ º¯µ¿Àº ½ÃÀåÀÇ ¾ÈÁ¤¼ºÀ» ÇØÄ¡°í PAA »ê¾÷ÀÇ ¼ºÀå¿¡ °É¸²µ¹ÀÌ µË´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 »çÅ´ ¼¼°è °ø±Þ¸Á°ú ¿ø·á °ø±Þ·ÂÀ» È¥¶õ¿¡ ºü¶ß·Á »ý»ê Á¤Ã¼¿Í ³³±â Áö¿¬À¸·Î À̾îÁ® Æú¸® ¾ÆÅ©¸±»ê ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÛ½º³ÎÄɾî, ÇコÄɾî, À§»ý¿ëǰ µîÀÇ ºÐ¾ß¿¡¼´Â À§»ý¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ »ç¿ë·®ÀÌ Áõ°¡ÇßÁö¸¸, °Ç¼³, ¼¶À¯, »ê¾÷ °øÁ¤ µîÀÇ ºÐ¾ß¿¡¼´Â ÇÁ·ÎÁ§Æ® Áß´Ü ¹× °¡µ¿·ü ÀúÇÏ·Î ÀÎÇØ »ç¿ë·®ÀÌ °¨¼ÒÇß½À´Ï´Ù. ¶ÇÇÑ, ¹«¿ª Á¦ÇѰú ³ëµ¿·Â ºÎÁ·Àº ½ÃÀå ¼ºÀåÀ» ´õ¿í ¾Ð¹ÚÇß½À´Ï´Ù. ±×·¯³ª ¿Ï¸¸ÇÑ È¸º¹°ú »ê¾÷ Ȱµ¿ÀÇ Àç°³°¡ ½ÃÀå ȸº¹À» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È È£¸ðÆú¸®¸Ó PAA ºÎ¹®ÀÌ °¡Àå Å« ºÎ¹®ÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
È£¸ðÆú¸®¸Ó PAA ºÎ¹®Àº ³ôÀº ¼öºÐ Èí¼ö ¹× À¯Áö ´É·ÂÀ¸·Î ÀÎÇØ ±âÀú±Í ¹× À§»ý¿ëǰ°ú °°Àº ¿ëµµ¿¡ ÀûÇÕÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÄÚÆú¸®¸Ó¿¡ ºñÇØ ºñ¿ë È¿À²ÀûÀ̱⠶§¹®¿¡ È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â Á¦Á¶¾÷ü¸¦ ²ø¾îµéÀ̰í ÀÖ½À´Ï´Ù. ³ó¾÷, ƯÈ÷ Åä¾ç °³·®Á¦·Î¼ÀÇ ½ÇÀûÀÌ ³ô¾Æ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ½±°Ô ±¸ÇÒ ¼ö ÀÖ°í »ý»ê °øÁ¤ÀÌ È®¸³µÇ¾î ÀÖ¾î ¾ÈÁ¤ÀûÀÎ °ø±ÞÀÌ °¡´ÉÇÏ¿© ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À§»ý°ú Áö¼Ó°¡´ÉÇÑ ¹° °ü¸®¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Àü ¼¼°èÀûÀ¸·Î È£¸ðÆú¸®¸Ó PAAÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾×ü ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ Àû¿ëÀÌ ¿ëÀÌÇÏ°í ±ÕÀÏÇÑ À¯ÅëÀÌ °¡´ÉÇϱ⠶§¹®¿¡ ¾×ü ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶Ù¾î³ ¼öºÐ Èí¼ö ¹× À¯Áö ´É·ÂÀ¸·Î ÀÎÇØ ³ó¾÷ ¹× ÆÛ½º³ÎÄɾî Á¦Ç°¿¡¼ ¸Å¿ì ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¾×ü PAA´Â Á¤È®ÇÑ Åõ¿©°¡ °¡´ÉÇÏ¿© ³¶ºñ¸¦ ÁÙÀ̰í Á¦Ç°ÀÇ È¿À²¼ºÀ» ³ôÀÔ´Ï´Ù. ¼¼Á¦ ¹× ¼¶À¯ Á¦Ç° µîÀÇ »ê¾÷¿¡¼´Â ¿ëÇØ¼º°ú ¾ÈÁ¤µÈ ¼º´ÉÀ¸·Î ÀÎÇØ ÀÌ ÇüŰ¡ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î, ¾×ü PAA´Â ´Ù¾çÇÑ ¿ëµµ¿Í Á¶ÀÛÀÇ Æí¸®ÇÔÀ» Á¦°øÇÔÀ¸·Î½á ½ÃÀå µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼öó¸®, ³ó¾÷ ¹× ÆÛ½º³ÎÄÉ¾î »ê¾÷ÀÇ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±Þ¼ÓÇÑ »ê¾÷È, Á¦Á¶¾÷ÀÇ È®´ë, µµ½ÃȰ¡ ¼Òºñ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ȯ°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í À§»ý¿ëǰ¿¡ °íÈí¼ö¼º ¼öÁö°¡ »ç¿ëµÇ¸é¼ ½ÃÀå È®´ë°¡ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù. °í¼º´É, ģȯ°æ PAA Á¦Ç°ÀÇ Çõ½ÅÀº »ê¾÷ ¼ºÀåÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ ³ë·Â°ú ÇÔ²² Áö¿ª ¾÷üµéÀÌ »ý»ê´É·Â°ú R&D Ȱµ¿¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ÀÎÇÁ¶ó °³¹ß, ¼öó¸® ÇÁ·ÎÁ§Æ®, ³ó¾à ºÎ¹®À¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ê¾÷ÀÇ È®´ë¿Í µµ½ÃȰ¡ ¼ö¿ä¸¦ ÃËÁøÇϰí È¿À²ÀûÀÎ ¹° °ü¸® ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ PAAÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ¿øÀÚÀç °¡°Ý º¯µ¿°ú ÇöÁö »ý»ê´É·ÂÀÇ ÇѰè¶ó´Â ¾î·Á¿ò¿¡ Á÷¸éÇØ ÀÖÁö¸¸, »ê¾÷¿ë ÈÇÐÁ¦Ç°¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í Áö¼Ó°¡´ÉÇÑ ¿ëµµ¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¡Â÷ ½ÃÀå ħÅõ°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¿ª °£ Çù·Â °ü°è¿Í ¼öÀÔ ÀÇÁ¸µµµµ ¼ºÀå ¿ªÇп¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Polyacrylic Acid (PAA) Market is accounted for $611.16 million in 2025 and is expected to reach $1020.58 million by 2032 growing at a CAGR of 7.6% during the forecast period. Polyacrylic acid (PAA) is a synthetic, water-soluble polymer made by the polymerization of acrylic acid monomers. It is a versatile material characterized by its high molecular weight and carboxylic acid functional groups, which provide excellent dispersing, thickening, and binding properties. PAA is widely used in applications such as water treatment, detergents, adhesives, coatings, personal care products, and pharmaceuticals due to its ability to control viscosity, stabilize suspensions, and bind ions. Its biodegradability and non-toxic nature make it environmentally friendly, further enhancing its industrial value. Additionally, modified forms of PAA are utilized in superabsorbent polymers for hygiene and agricultural products.
Strong demand in water treatment
PAA is widely used as a dispersant and scale inhibitor, helping improve efficiency in industrial and municipal water treatment systems. Increasing concerns over water scarcity and the need for clean, safe water boost the adoption of advanced treatment solutions. Rising urbanization and industrialization further increase wastewater generation, creating steady demand for PAA-based products. This consistent need for effective water treatment chemicals propels the overall growth of the PAA market.
Environmental & regulatory constraints
Strict environmental policies regarding chemical waste disposal and water treatment restrict production and application processes. Regulations related to biodegradability and toxicity concerns create challenges for manufacturers in gaining approvals. Compliance with evolving global standards increases operational costs for companies. These restrictions also slow down innovation and commercialization of new PAA-based products. As a result, the market growth potential is restrained by regulatory hurdles and sustainability pressures.
Momentum in sustainability & R&D
Companies are investing in innovative research to reduce environmental impact while enhancing product efficiency in applications like water treatment, detergents, and superabsorbent polymers. Advancements in green chemistry and bio-based raw materials are creating sustainable alternatives to traditional petrochemical-derived PAA. This aligns with global regulations and consumer demand for sustainable solutions, boosting market adoption. As a result, continuous R&D and sustainability initiatives are positioning PAA as a key material in diverse industrial applications.
Volatility of raw material prices
Acrylic acid, the primary feedstock for PAA, is derived from crude oil, making its production costs highly sensitive to oil price fluctuations. Rising and unstable input expenses squeeze manufacturers' profit margins, limiting their ability to offer competitive prices. Such uncertainty also hampers long-term investments and restricts capacity expansion in the sector. End-users encounter irregular supply and higher costs, prompting a shift toward substitute materials. Consequently, volatility in raw material prices undermines market stability and acts as a barrier to the growth of the PAA industry.
Covid-19 Impact
The Covid-19 pandemic significantly impacted the polyacrylic acid market by disrupting global supply chains and raw material availability, leading to production slowdowns and delivery delays. Demand fluctuated across industries, with sectors like personal care, healthcare, and hygiene products witnessing increased usage due to heightened awareness of cleanliness, while applications in construction, textiles, and industrial processes faced setbacks from halted projects and reduced operations. Additionally, trade restrictions and labour shortages further strained market growth. However, gradual recovery and renewed industrial activities are supporting the market's rebound.
The homopolymer PAA segment is expected to be the largest during the forecast period
The homopolymer PAA segment is expected to account for the largest market share during the forecast period, due to its high water absorption and retention capabilities, making it ideal for applications like diapers and hygiene products. Its cost-effectiveness compared to copolymers attracts manufacturers seeking efficient solutions. The segment's strong performance in agriculture, particularly as a soil conditioner, further boosts demand. Easy availability and well-established production processes ensure consistent supply, supporting market growth. Additionally, rising awareness of hygiene and sustainable water management practices propels the adoption of homopolymer PAA globally.
The liquid segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the liquid segment is predicted to witness the highest growth rate, due to its ease of application and uniform distribution in various industries. Its superior water absorption and retention capabilities make it highly preferred in agriculture and personal care products. Liquid PAA allows precise dosing, reducing waste and enhancing product efficiency. Industries such as detergents and textiles favor this form for its solubility and consistent performance. Overall, the liquid segment boosts market adoption by offering versatility and operational convenience across applications.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rising demand across water treatment, agriculture, and personal care industries. Rapid industrialization, expanding manufacturing sectors, and urbanization are boosting consumption. Increasing awareness of environmental sustainability and the use of superabsorbent polymers in hygiene products are further supporting market expansion. Innovation in high-performance and eco-friendly PAA products, along with government initiatives promoting industrial growth, is encouraging regional players to invest in production capacity and R&D activities.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by infrastructure development, water treatment projects, and the agrochemical sector. Industrial expansion and urbanization are fueling demand, while the need for efficient water management solutions is encouraging PAA adoption. The market faces challenges from fluctuating raw material prices and limited local production capacities, but increasing investments in industrial chemicals and rising awareness of sustainable applications are promoting gradual market penetration. Regional collaborations and import reliance also influence growth dynamics.
Key players in the market
Some of the key players profiled in the Polyacrylic Acid (PAA) Market include BASF SE, Arkema, Dow, Evonik Industries AG, Ashland Inc., Nippon Shokubai Co., Ltd., Sumitomo Seika Chemicals Co., Ltd., Kemira, Merck KGaA, Polysciences Inc., Acuro Organics Limited, Henan Qingshuiyuan Technology Co., Ltd., Anhui Newman Fine Chemicals Co., Ltd., Chemtex Specialty Limited, Maxwell Additives Pvt. Ltd., MKS DevO, Protex International and Zouping Dongfang Chemical Co., Ltd.
In June 2025, Arkema launched a new polyacrylic acid-based thickener under its Coatex brands Ecodis(TM) and Viscophobe(TM), tailored for architectural coatings and industrial formulations. It enhances flow and stability while ensuring excellent compatibility with low-VOC systems, supporting eco-friendly and high-performance applications.
In January 2024, BASF acquired one of two MDI production plants from Huntsman via Shanghai Lianheng Isocyanate Co., Ltd., including precursor units for aniline and nitrobenzene. This move secures upstream chemical inputs, indirectly supporting stable, cost-efficient production of PAA-based polymers.