½ÃÀ庸°í¼­
»óǰÄÚµå
1813449

¿À¿° °¨Áö Á÷¹° ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç° À¯Çü, ¼ÒÀç À¯Çü, À¯Åë ä³Î, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Pollution-Sensing Fabrics Market Forecasts to 2032 - Global Analysis By Product Type, Material Type, Distribution Channel, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀåÀº 2025³â¿¡ 1,549¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 14.8%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 4,072¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

¿À¿° °¨Áö Á÷¹°Àº ¹Ì¸³ÀÚ ¹°Áú(PM2.5, PM10), Èֹ߼º À¯±â È­ÇÕ¹°(VOC), ÀÌ»êȭź¼Ò µî °ø±â Áß ¿À¿° ¹°ÁúÀ» °¨ÁöÇϴ ȯ°æ ¼¾¼­¸¦ ÅëÇÕÇÑ °í±Þ ¼¶À¯ Á¦Ç°ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® ¼ÒÀç´Â ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯¿Í µ¥ÀÌÅÍ ÇÁ·Î¼¼¼­¸¦ ÅëÇÕÇÏ°í ½Ç½Ã°£À¸·Î °ø±âÀÇ ÁúÀ» ¸ð´ÏÅ͸µÇϸç Á¾Á¾ LED¿Í ¿¬°áµÈ ¾ÛÀ» ÅëÇØ °á°ú¸¦ Ç¥½ÃÇÕ´Ï´Ù. ¿þ¾î·¯ºí ¿ëµµ·Î ¼³°èµÈ ÀÌ·¯ÇÑ ¼ÒÀç´Â ±â´É°ú Æí¾ÈÇÔÀ» °áÇÕÇÏ¿© »ç¿ëÀÚ°¡ ¿À¿°¿¡ ´ëÇÑ ³ëÃâÀ» ½Ã°¢È­ÇÏ°í ±×¿¡ µû¶ó ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ø´ÜÀº °Ç°­ ÁöÇâ ÆÐ¼Ç°ú µµ½Ã ¾ÈÀü Àåºñ¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

Journal of Materials Chemistry C ÀâÁö¿¡ µû¸£¸é, ´Ù±â´É ¼¶À¯ ¼¾¼­´Â º¯Çü °ËÃâ¿¡¼­ 62.2ÀÇ °ÔÀÌÁö ÆÑÅÍ, ½Àµµ·Î 6.27%/%RH, ¿Âµµ¿¡¼­ -5.3%/¡É¸¦ ½ÇÁõÇØ, 5,000ȸ ÀÌ»óÀÇ »çÀÌŬ·Î ¾ÈÁ¤µÈ ¼º´ÉÀ» À¯ÁöÇß½À´Ï´Ù.

´ë±â¿À¿°°ú ȯ°æ¿À¿°¿¡ ´ëÇÑ »ç¶÷µéÀÇ ÀÇ½Ä Áõ°¡¿Í °Ç°­¿¡ ´ëÇÑ ¿ì·Á

¼ÒºñÀÚ¿Í Á¤ºÎ ¸ðµÎ °ø±â Áß ¿À¿°¹°Áú°ú Àå±âÀûÀÎ °Ç°­¿µÇâ¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁ® ³ëÃâ ¼öÁØÀ» ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â ¿þ¾î·¯ºí ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¼¾¼­¿Í ¹ÝÀÀ ¼ÒÀ縦 ÅëÇÕÇÑ ÀÌ ¼¶À¯µéÀº °ø±âÀÇ Áú¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇÏ¿© µµ½Ã Áֹΰú »ê¾÷ ³ëµ¿ÀÚ, È£Èí±â ÁúȯÀ» °¡Áø »ç¶÷µé¿¡°Ô ±ÍÁßÇÑ °ÍÀÔ´Ï´Ù. ÇコÄɾî¿Í ȯ°æ ¸ð´ÏÅ͸µ¿¡ À־ÀÇ ½º¸¶Æ® ÅØ½ºÅ¸ÀÏÀÇ Ã¤¿ë È®´ë°¡ ½ÃÀå È®´ë¸¦ ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

³ôÀº »ý»ê ºñ¿ë°ú ´ëü ±â¼ú °£ÀÇ °æÀï

¿À¿° °¨Áö Á÷¹°Àº ÀáÀç·Â¿¡µµ ºÒ±¸ÇÏ°í ¼¾¼­, Àüµµ»ç ¹× ¹ÝÀÀ¼º Æú¸®¸Ó¸¦ ¼¶À¯ ±âÆÇ¿¡ ÅëÇÕÇÏ´Â º¹À⼺À¸·Î ÀÎÇØ Å« ºñ¿ë À庮¿¡ Á÷¸é ÇØ ÀÖ½À´Ï´Ù. Á¤¹Ð °øÇаú ÷´Ü Á¦Á¶ ±â¼úÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ »ý»ê ºñ¿ëÀÌ »ó½ÂÇϰí È®À强ÀÌ Á¦Çѵ˴ϴÙ. °Ô´Ù°¡ ÈÞ´ë¿ë ¼¾¼­³ª ½º¸¶Æ®Æù ÀÏüÇü ½Ã½ºÅÛ µî ´ëü °ø±â ¸ð´ÏÅ͸µ ±â±â¿ÍÀÇ °æÀïÀÌ ½ÃÀå ħÅõ¿¡ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇϰí ȯ°æÄ£È­ÀûÀÎ ¼ÒÀç¿ÍÀÇ ÅëÇÕ

Áö¼Ó°¡´É¼ºÀÌ ¾÷°è Àü¹ÝÀÇ Á᫐ ÁÖÁ¦°¡ µÇ´Â °¡¿îµ¥ ¿À¿° °¨Áö Á÷¹° Á¦Á¶¾÷ü´Â ȯ°æ¿¡ ´ëÇÑ ¿µÇâÀ» ÁÙÀ̱â À§ÇØ »ýºÐÇØ¼º ¼¶À¯, ÀçȰ¿ë»ç, ¹«ÇØÇÑ ¼¾¼­ ÄÚÆÃÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¼¶À¯¿Í ³ì»ö ¼ÒÀçÀÇ À¶ÇÕÀº ȯ°æ ÀǽÄÀÌ ³ôÀº ¼ÒºñÀÚ¿Í ±ÔÁ¦ ±â°ü¿¡ ¸Å·ÂÀûÀÎ °¡Ä¡ Á¦¾ÈÀÔ´Ï´Ù. À¯±â ÀÏ·ºÆ®·Î´Ð½º¿Í ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ Çõ½ÅÀº ¿À¿°¹°ÁúÀ» °¨ÁöÇÒ »Ó¸¸ ¾Æ´Ï¶ó »ç¿ë ÈÄ ¾ÈÀüÇÏ°Ô ºÐÇØµÇ´Â ¼¶À¯ÀÇ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

º¹ÀâÇÑ ¸¸·áÀÏ °ü¸® ¹× ±ÔÁ¦´ç±¹ ¹Ý¹ß

¿À¿° °¨Áö Á÷¹°Àº Á¾Á¾ ³»ÀåµÈ ÀüÀÚ Àåºñ, ³ª³ë¹°Áú, ÇÕ¼º È­ÇÕ¹°À» Æ÷ÇÔÇÏ¿© Æó±â ¹× ÀçȰ¿ë °úÁ¤À» º¹ÀâÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÚÀç°ü¸®ÀÇ ºÎÀûÀýÇÑ Ãë±ÞÀº ȯ°æ ¿À¿°À¸·Î À̾îÁú ¼ö ÀÖÀ¸¸ç, ±ÔÁ¦ ´ç±¹°ú ȯ°æ °¨½Ã´Ü »çÀÌ¿¡ ¿ì·Á°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀüÀÚ Æó±â¹°¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¦Á¶¾÷ü´Â Àμö ½Ã½ºÅÛ ¹× Àç·á ȸ¼ö ÇÁ·ÎÅäÄÝÀ» Æ÷ÇÔÇÑ Á¦Ç°ÀÇ ¼ö¸íÁֱ⠰ü¸®¿¡ ´ëÇÑ ÁöħÀ» ¾ö°ÝÇÏ°Ô Á÷¸é ÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ À¯ÇàÀº ¼ÒºñÀÚÀÇ ¿ì¼± ¼øÀ§¸¦ º¯È­½ÃŰ°í ¿À¿° °¨Áö Á÷¹°À» Æ÷ÇÔÇÑ °Ç°­ ¸ð´ÏÅ͸µ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» ÁõÆø½Ãŵ´Ï´Ù. °ø±â °¨¿°°ú È£Èí±â Ãë¾à¼º¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁö¸é¼­ °³ÀÎÀº °ø±âÀÇ ÁúÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇÒ ¼ö ÀÖ´Â ¿þ¾î·¯ºí ¼Ö·ç¼ÇÀ» ¿ä±¸Çß½À´Ï´Ù. ±×·¯³ª °ø±Þ¸ÁÀÇ È¥¶õ°ú Á¦Á¶ ´É·ÂÀÇ ÀúÇÏ·Î ÀÎÇØ ÀϽÃÀûÀ¸·Î »ý»ê°ú Àü°³°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. ¹Ý¸é¿¡ ÆÒµ¥¹ÍÀº µðÁöÅÐ ÇコÀÇ Ã¤¿ë°ú ¿ø°Ý ¸ð´ÏÅ͸µÀÇ ½ÇõÀ» °¡¼Ó½ÃÄÑ ½º¸¶Æ® ÅØ½ºÅ¸ÀÏÀÇ ÅëÇÕ¿¡ À¯¸®ÇÑ Á¶°ÇÀ» ¸¸µé¾î ³Â½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È ¿À¿° °¨Áö Á÷¹° ºÐ¾ß°¡ ÃÖ´ëÈ­µÉ Àü¸Á

¾×Ƽºê ¿À¿° °¨Áö Á÷¹° ºÐ¾ß´Â ȯ°æ º¯È­¸¦ °¨ÁöÇÏ°í ´ëÀÀÇÏ´Â °í±Þ ±â´ÉÀ» ÅëÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼¶À¯¿¡´Â PM2.5, NOx, Èֹ߼º À¯±â È­ÇÕ¹°°ú °°Àº ¿À¿°¹°ÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÀÓº£µðµå ¼¾¼­, Àüµµ»ç, ¹ÝÀÀ¼º ÄÚÆÃÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ´ë±â ¿À¿°¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ´Éµ¿ °¨Áö Á÷¹° ¼ö¿ä´Â ¼ÒºñÀÚ ºÎ¹®°ú ½Ã¼³ ºÎ¹® ¸ðµÎ¿¡¼­ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÁýÀû ¹× »óÈ£ ¿¬°á Àç·á ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ Àü¸Á

¿¹Ãø±â°£ µ¿¾È ÅëÇÕ¡¤ÀÎÅÍÄ¿³ØÆ® Àç·áºÐ¾ß´Â Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½º¿Í ¼¶À¯È¸·ÎÀÇ ±â¼ú Çõ½Å¿¡ °ßÀÎµÇ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Àç·á´Â ¼¾¼­¸¦ ³»ÀåÇÏ°í ¿À¿°À» °¨ÁöÇÏ´Â Á÷¹° ³»¿¡¼­ ½ÅÈ£ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¹éº» ¿ªÇÒÀ» ÇÕ´Ï´Ù. Àüµµ¼º À×Å©, ½ÅÃ༺ ±âÆÇ ¹× ÇÏÀ̺긮µå ¼¶À¯ º¹ÇÕÀç·áÀÇ ¹ßÀüÀ¸·Î °í¼º´É °¨Áö ±â´ÉÀ» Á¦°øÇϸ鼭 Æí¾ÈÇÔÀ» À¯ÁöÇÏ´Â ¼¶À¯ µðÀÚÀÎÀÌ °¡´ÉÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °­·ÂÇÑ ±â¼ú ÀÎÇÁ¶ó, ³ôÀº ¼ÒºñÀÚ ÀǽÄ, Àû±ØÀûÀΠȯ°æ Á¤Ã¥À¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ½º¸¶Æ® ÅØ½ºÅ¸Àϰú ¿þ¾î·¯ºí ¼¾¼­¸¦ Àü¹®À¸·Î ÇÏ´Â ¼±±¸ ±â¾÷ÀÌ ¿©·¯ °³ ÀÖÀ¸¸ç, ±â¼ú Çõ½Å°ú »ó¾÷È­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´ë±âÀÇ Áú ¸ð´ÏÅ͸µ°ú ³ëµ¿¾ÈÀüÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê°¡ ÀÇ·á, ¹æÀ§, »ê¾÷ºÐ¾ß¿¡¼­ÀÇ Ã¤¿ëÀ» ´õ¿í ÃËÁøÇϰí ÀÖÀ¸¸ç, ºÏ¹Ì´Â ½ÃÀåÀÇ Áö¹èÀû ¼¼·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ µµ½ÃÈ­, ¿À¿°¼öÁØ »ó½Â, Áß·ù°è±Þ Àα¸È®´ë µîÀ» ¹ÙÅÁÀ¸·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, Çѱ¹ µîÀÇ ±¹°¡¿¡¼­´Â ƯÈ÷ ´ë±âÁú Áö¼ö°¡ ³·Àº Àα¸ ¹ÐÁý µµ½Ã¿¡¼­ °³ÀÎ ´ë±â ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °øÇØ ´ëÃ¥°ú °øÁß À§»ý Çâ»óÀ» À§ÇÑ Á¤ºÎ ÁÖµµÀÇ ´ëó°¡ ½º¸¶Æ® ÅØ½ºÅ¸ÀÏÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ªÀÇ °­·ÂÇÑ ¼¶À¯ Á¦Á¶°ÅÁ¡°ú ¿þ¾î·¯ºí ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ½ÃÀå È®´ë¸¦ À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» ¸¸µé¾î ³»°í ÀÖ½À´Ï´Ù.

»ç¿ëÀÚ Á¤ÀÇ ¹«·á Á¦°ø :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀå : Á¦Ç° À¯Çüº°

  • ¼öµ¿Çü ¿À¿° °¨Áö Á÷¹°
  • ´Éµ¿Çü ¿À¿° °¨Áö Á÷¹°
  • ÃÊÁö´ÉÇü ¿À¿° °¨Áö Á÷¹°

Á¦6Àå ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀå : ¼ÒÀç À¯Çüº°

  • ±âº» Á÷¹°
    • õ¿¬ ¼¶À¯
    • ÇÕ¼º ¼¶À¯
    • È¥¹æ Á÷¹°
  • °¨Áö ¼ÒÀç
    • Àüµµ¼º Æú¸®¸Ó
    • ź¼Ò ±â¹Ý ¼ÒÀç
    • ±Ý¼Ó ³ª³ëÀÔÀÚ
    • ±Ý¼Ó »êÈ­¹°
  • ÅëÇÕ ¹× »óÈ£ ¿¬°á ¼ÒÀç
    • Àüµµ¼º ½Ç ¹× ¿ø»ç
    • Àüµµ¼º À×Å© ¹× ÆäÀ̽ºÆ®
    • ĸ½¶È­ ¹× º¸È£ ÄÚÆÃ
  • Àü¿ø ¹× °¡°ø ºÎǰ
    • À¯¿¬ ¹× ¹ÚÇü ¹èÅ͸®
    • ¿¡³ÊÁö ¼öÈ® Àç·á
    • ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯ ¹× ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­

Á¦7Àå ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀå : À¯Åë ä³Îº°

  • ¿Â¶óÀÎ ½ºÅä¾î
  • ÇÏÀÌÆÛ¸¶ÄÏ ¹× ½´ÆÛ¸¶ÄÏ
  • Àü¹®Á¡
  • Á÷Á¢ ÆÇ¸Å

Á¦8Àå ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀå : ±â¼úº°

  • È­ÇÐ ¼¾¼­
  • °¡½º/´ë±âÁú ¼¾¼­
  • ¹Ì¼¼¸ÕÁö ¼¾¼­
  • »ý¹°ÇÐÀû ¼¾¼­
  • ¼öºÐ/¾×ü ¼¾¼­
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀå : ¿ëµµº°

  • °ø±âÁú ¸ð´ÏÅ͸µ
  • ¹æ»ç¼± °¨Áö
  • ¼öÁú ¿À¿° °¨Áö
  • È­ÇÐ ¹× µ¶¼º¹°Áú ¸ð´ÏÅ͸µ
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÇコÄÉ¾î ¹× ÀÇ·á
  • ±º»ç ¹× ¹æÀ§
  • »ê¾÷ ¾ÈÀü
  • ½ºÆ÷Ã÷ ¹× ÇÇÆ®´Ï½º
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • ÆÐ¼Ç ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • °ÇÃà ¹× °Ç¼³
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • DuPont
  • Hexoskin
  • Schoeller Textil AG
  • Nextiles
  • Sensoria Inc.
  • OMsignal
  • Xenoma Inc.
  • Wearable X
  • Textronics Inc.
  • Graphene Flagship
  • Adidas
  • Google ATAP
  • MIT Media Lab
  • NanoScent
  • BeBop Sensors
  • SmartTex Innovations GmbH
  • E-Textiles Ltd.
KTH 25.09.26

According to Stratistics MRC, the Global Pollution-Sensing Fabrics Market is accounted for $154.9 billion in 2025 and is expected to reach $407.2 billion by 2032 growing at a CAGR of 14.8% during the forecast period. Pollution-sensing fabrics are advanced textiles embedded with environmental sensors that detect airborne pollutants such as particulate matter (PM2.5, PM10), volatile organic compounds (VOCs), and carbon dioxide. These smart materials integrate microcontrollers and data processors to monitor air quality in real time, often displaying results via LEDs or connected apps. Designed for wearable applications, they combine functionality with comfort, enabling users to visualize pollution exposure and respond accordingly. Such fabrics are increasingly used in health-focused fashion and urban safety gear

According to Journal of Materials Chemistry C, a multifunctional textile sensor demonstrated a gauge factor of 62.2 for strain detection, 6.27%/%RH for humidity, and -5.3%/°C for temperature, maintaining stable performance over 5,000+ cycles.

Market Dynamics:

Driver:

Growing public awareness and health concerns on air and environmental pollution

Consumers and governments alike are becoming more conscious of airborne pollutants and their long-term health effects, prompting interest in wearable technologies that can monitor exposure levels. These fabrics, embedded with sensors and responsive materials, offer real-time data on air quality, making them valuable for urban populations, industrial workers, and individuals with respiratory conditions. The growing adoption of smart textiles in healthcare and environmental monitoring is further accelerating market expansion.

Restraint:

High cost of production & competition from alternative technologies

Despite their potential, pollution-sensing fabrics face significant cost barriers due to the complexity of integrating sensors, conductive threads, and responsive polymers into textile substrates. The need for precision engineering and advanced manufacturing techniques elevates production expenses, limiting scalability. Moreover, competition from alternative air monitoring devices such as portable sensors and smartphone-integrated systems poses a challenge to market penetration.

Opportunity:

Integration with sustainable and eco-friendly materials

As sustainability becomes a central theme across industries, pollution-sensing fabric manufacturers are exploring biodegradable fibers, recycled yarns, and non-toxic sensor coatings to reduce environmental impact. The convergence of smart textiles with green materials presents a compelling value proposition for eco-conscious consumers and regulatory bodies. Innovations in organic electronics and bio-based polymers are enabling the development of fabrics that not only detect pollutants but also degrade safely after use.

Threat:

Complex end-of-life management & regulatory backlash

Pollution-sensing fabrics often contain embedded electronics, nanomaterials, and synthetic compounds that complicate disposal and recycling processes. Improper handling of these materials can lead to environmental contamination, raising concerns among regulators and environmental watchdogs. As awareness of e-waste grows, manufacturers may face stricter guidelines on product lifecycle management, including take-back schemes and material recovery protocols.

Covid-19 Impact:

The COVID-19 pandemic reshapes consumer priorities, amplifying interest in health-monitoring technologies, including pollution-sensing fabrics. With heightened awareness of airborne transmission and respiratory vulnerabilities, individuals sought wearable solutions that could track air quality in real-time. However, supply chain disruptions and reduced manufacturing capacity temporarily slowed production and deployment. On the flip side, the pandemic accelerated digital health adoption and remote monitoring practices, creating favorable conditions for smart textile integration.

The active pollution-sensing fabrics segment is expected to be the largest during the forecast period

The active pollution-sensing fabrics segment is expected to account for the largest market share during the forecast period due to their advanced capabilities in detecting and responding to environmental changes. These textiles incorporate embedded sensors, conductive threads, and responsive coatings that enable real-time monitoring of pollutants such as PM2.5, NOx, and volatile organic compounds. As awareness of air pollution intensifies, demand for active sensing fabrics is expected to surge across both consumer and institutional sectors.

The integration & interconnect materials segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the integration & interconnect materials segment is predicted to witness the highest growth rate driven by innovations in flexible electronics and textile circuitry. These materials serve as the backbone for embedding sensors and enabling signal transmission within pollution-sensing fabrics. Advances in conductive inks, stretchable substrates, and hybrid fiber composites are making it possible to design textiles that maintain comfort while delivering high-performance sensing capabilities.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share attributed to strong technological infrastructure, high consumer awareness, and proactive environmental policies. The region hosts several pioneering companies specializing in smart textiles and wearable sensors, fostering innovation and commercialization. Government initiatives promoting air quality monitoring and occupational safety are further driving adoption across healthcare, defense, and industrial sectors positions North America as a dominant force in the market.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid urbanization, rising pollution levels, and expanding middle-class populations. Countries such as China, India, and South Korea are witnessing increased demand for personal air monitoring solutions, especially in densely populated cities with poor air quality indices. Government-led initiatives to combat pollution and improve public health are encouraging the adoption of smart textiles. Moreover, the region's strong textile manufacturing base and growing investments in wearable technology are creating fertile ground for market expansion.

Key players in the market

Some of the key players in Pollution-Sensing Fabrics Market include DuPont, Hexoskin, Schoeller Textil AG, Nextiles, Sensoria Inc., OMsignal, Xenoma Inc., Wearable X, Textronics Inc., Graphene Flagship, Adidas, Google ATAP, MIT Media Lab, NanoScent, BeBop Sensors, SmartTex Innovations GmbH, and E-Textiles Ltd.

Key Developments:

In August 2025, DuPont announced an agreement to divest its aramids (Kevlar / Nomex) business to Arclin in a transaction designed to streamline DuPont's portfolio and unlock value.

In August 2025, Industry coverage reported that Textilcolor AG acquired the Pyroshell(TM) patents from Schoeller Textil AG. The article notes the transaction details and positions it as Schoeller refocusing core IP /product lines while transferring Pyroshell patents to Textilcolor.

Product Types Covered:

  • Passive Pollution-Sensing Fabrics
  • Active Pollution-Sensing Fabrics
  • Ultra-Smart Pollution-Sensing Fabrics

Material Types Covered:

  • Base Fabrics
  • Sensing Materials
  • Integration & Interconnect Materials
  • Power & Processing Components

Distribution Channels Covered:

  • Online Stores
  • Hypermarkets/Supermarkets
  • Specialty Stores
  • Direct Sales

Technologies Covered:

  • Chemical Sensors
  • Gas/Air Quality Sensors
  • Particulate Matter Sensors
  • Biological Sensors
  • Moisture/Liquid Sensors
  • Other Technologies

Applications Covered:

  • Air Quality Monitoring
  • Radiation Detection
  • Water Pollution Detection
  • Chemical & Toxic Substance Monitoring
  • Other Applications

End Users Covered:

  • Healthcare & Medical
  • Military & Defense
  • Industrial Safety
  • Sports & Fitness
  • Automotive & Transportation
  • Fashion & Entertainment
  • Building & Construction
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Pollution-Sensing Fabrics Market, By Product Type

  • 5.1 Introduction
  • 5.2 Passive Pollution-Sensing Fabrics
  • 5.3 Active Pollution-Sensing Fabrics
  • 5.4 Ultra-Smart Pollution-Sensing Fabrics

6 Global Pollution-Sensing Fabrics Market, By Material Type

  • 6.1 Introduction
  • 6.2 Base Fabrics
    • 6.2.1 Natural Fibers
    • 6.2.2 Synthetic Fibers
    • 6.2.3 Blended Fabrics
  • 6.3 Sensing Materials
    • 6.3.1 Conductive Polymers
    • 6.3.2 Carbon-based Materials
    • 6.3.3 Metallic Nanoparticles
    • 6.3.4 Metal Oxides
  • 6.4 Integration & Interconnect Materials
    • 6.4.1 Conductive Threads & Yarns
    • 6.4.2 Conductive Inks & Pastes
    • 6.4.3 Encapsulation & Protective Coatings
  • 6.5 Power & Processing Components
    • 6.5.1 Flexible & Thin Batteries
    • 6.5.2 Energy Harvesting Materials
    • 6.5.3 Microcontrollers and Microprocessors

7 Global Pollution-Sensing Fabrics Market, By Distribution Channel

  • 7.1 Introduction
  • 7.2 Online Stores
  • 7.3 Hypermarkets/Supermarkets
  • 7.4 Specialty Stores
  • 7.5 Direct Sales

8 Global Pollution-Sensing Fabrics Market, By Technology

  • 8.1 Introduction
  • 8.2 Chemical Sensors
  • 8.3 Gas/Air Quality Sensors
  • 8.4 Particulate Matter Sensors
  • 8.5 Biological Sensors
  • 8.6 Moisture/Liquid Sensors
  • 8.7 Other Technologies

9 Global Pollution-Sensing Fabrics Market, By Application

  • 9.1 Introduction
  • 9.2 Air Quality Monitoring
  • 9.3 Radiation Detection
  • 9.4 Water Pollution Detection
  • 9.5 Chemical & Toxic Substance Monitoring
  • 9.6 Other Applications

10 Global Pollution-Sensing Fabrics Market, By End User

  • 10.1 Introduction
  • 10.2 Healthcare & Medical
  • 10.3 Military & Defense
  • 10.4 Industrial Safety
  • 10.5 Sports & Fitness
  • 10.6 Automotive & Transportation
  • 10.7 Fashion & Entertainment
  • 10.8 Building & Construction
  • 10.9 Other End Users

11 Global Pollution-Sensing Fabrics Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 DuPont
  • 13.2 Hexoskin
  • 13.3 Schoeller Textil AG
  • 13.4 Nextiles
  • 13.5 Sensoria Inc.
  • 13.6 OMsignal
  • 13.7 Xenoma Inc.
  • 13.8 Wearable X
  • 13.9 Textronics Inc.
  • 13.10 Graphene Flagship
  • 13.11 Adidas
  • 13.12 Google ATAP
  • 13.13 MIT Media Lab
  • 13.14 NanoScent
  • 13.15 BeBop Sensors
  • 13.16 SmartTex Innovations GmbH
  • 13.17 E-Textiles Ltd.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦