![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1813449
¿À¿° °¨Áö Á÷¹° ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç° À¯Çü, ¼ÒÀç À¯Çü, À¯Åë ä³Î, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®Pollution-Sensing Fabrics Market Forecasts to 2032 - Global Analysis By Product Type, Material Type, Distribution Channel, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¿À¿° °¨Áö Á÷¹° ½ÃÀåÀº 2025³â¿¡ 1,549¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 14.8%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 4,072¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
¿À¿° °¨Áö Á÷¹°Àº ¹Ì¸³ÀÚ ¹°Áú(PM2.5, PM10), Èֹ߼º À¯±â ÈÇÕ¹°(VOC), ÀÌ»êÈź¼Ò µî °ø±â Áß ¿À¿° ¹°ÁúÀ» °¨ÁöÇϴ ȯ°æ ¼¾¼¸¦ ÅëÇÕÇÑ °í±Þ ¼¶À¯ Á¦Ç°ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® ¼ÒÀç´Â ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯¿Í µ¥ÀÌÅÍ ÇÁ·Î¼¼¼¸¦ ÅëÇÕÇÏ°í ½Ç½Ã°£À¸·Î °ø±âÀÇ ÁúÀ» ¸ð´ÏÅ͸µÇϸç Á¾Á¾ LED¿Í ¿¬°áµÈ ¾ÛÀ» ÅëÇØ °á°ú¸¦ Ç¥½ÃÇÕ´Ï´Ù. ¿þ¾î·¯ºí ¿ëµµ·Î ¼³°èµÈ ÀÌ·¯ÇÑ ¼ÒÀç´Â ±â´É°ú Æí¾ÈÇÔÀ» °áÇÕÇÏ¿© »ç¿ëÀÚ°¡ ¿À¿°¿¡ ´ëÇÑ ³ëÃâÀ» ½Ã°¢ÈÇÏ°í ±×¿¡ µû¶ó ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ø´ÜÀº °Ç° ÁöÇâ ÆÐ¼Ç°ú µµ½Ã ¾ÈÀü Àåºñ¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.
Journal of Materials Chemistry C ÀâÁö¿¡ µû¸£¸é, ´Ù±â´É ¼¶À¯ ¼¾¼´Â º¯Çü °ËÃâ¿¡¼ 62.2ÀÇ °ÔÀÌÁö ÆÑÅÍ, ½Àµµ·Î 6.27%/%RH, ¿Âµµ¿¡¼ -5.3%/¡É¸¦ ½ÇÁõÇØ, 5,000ȸ ÀÌ»óÀÇ »çÀÌŬ·Î ¾ÈÁ¤µÈ ¼º´ÉÀ» À¯ÁöÇß½À´Ï´Ù.
´ë±â¿À¿°°ú ȯ°æ¿À¿°¿¡ ´ëÇÑ »ç¶÷µéÀÇ ÀÇ½Ä Áõ°¡¿Í °Ç°¿¡ ´ëÇÑ ¿ì·Á
¼ÒºñÀÚ¿Í Á¤ºÎ ¸ðµÎ °ø±â Áß ¿À¿°¹°Áú°ú Àå±âÀûÀÎ °Ç°¿µÇâ¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁ® ³ëÃâ ¼öÁØÀ» ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â ¿þ¾î·¯ºí ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¼¾¼¿Í ¹ÝÀÀ ¼ÒÀ縦 ÅëÇÕÇÑ ÀÌ ¼¶À¯µéÀº °ø±âÀÇ Áú¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇÏ¿© µµ½Ã Áֹΰú »ê¾÷ ³ëµ¿ÀÚ, È£Èí±â ÁúȯÀ» °¡Áø »ç¶÷µé¿¡°Ô ±ÍÁßÇÑ °ÍÀÔ´Ï´Ù. ÇコÄɾî¿Í ȯ°æ ¸ð´ÏÅ͸µ¿¡ ÀÖ¾î¼ÀÇ ½º¸¶Æ® ÅØ½ºÅ¸ÀÏÀÇ Ã¤¿ë È®´ë°¡ ½ÃÀå È®´ë¸¦ ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
³ôÀº »ý»ê ºñ¿ë°ú ´ëü ±â¼ú °£ÀÇ °æÀï
¿À¿° °¨Áö Á÷¹°Àº ÀáÀç·Â¿¡µµ ºÒ±¸ÇÏ°í ¼¾¼, Àüµµ»ç ¹× ¹ÝÀÀ¼º Æú¸®¸Ó¸¦ ¼¶À¯ ±âÆÇ¿¡ ÅëÇÕÇÏ´Â º¹À⼺À¸·Î ÀÎÇØ Å« ºñ¿ë À庮¿¡ Á÷¸é ÇØ ÀÖ½À´Ï´Ù. Á¤¹Ð °øÇаú ÷´Ü Á¦Á¶ ±â¼úÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ »ý»ê ºñ¿ëÀÌ »ó½ÂÇϰí È®À强ÀÌ Á¦Çѵ˴ϴÙ. °Ô´Ù°¡ ÈÞ´ë¿ë ¼¾¼³ª ½º¸¶Æ®Æù ÀÏüÇü ½Ã½ºÅÛ µî ´ëü °ø±â ¸ð´ÏÅ͸µ ±â±â¿ÍÀÇ °æÀïÀÌ ½ÃÀå ħÅõ¿¡ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´ÉÇϰí ȯ°æÄ£ÈÀûÀÎ ¼ÒÀç¿ÍÀÇ ÅëÇÕ
Áö¼Ó°¡´É¼ºÀÌ ¾÷°è Àü¹ÝÀÇ Á᫐ ÁÖÁ¦°¡ µÇ´Â °¡¿îµ¥ ¿À¿° °¨Áö Á÷¹° Á¦Á¶¾÷ü´Â ȯ°æ¿¡ ´ëÇÑ ¿µÇâÀ» ÁÙÀ̱â À§ÇØ »ýºÐÇØ¼º ¼¶À¯, ÀçȰ¿ë»ç, ¹«ÇØÇÑ ¼¾¼ ÄÚÆÃÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¼¶À¯¿Í ³ì»ö ¼ÒÀçÀÇ À¶ÇÕÀº ȯ°æ ÀǽÄÀÌ ³ôÀº ¼ÒºñÀÚ¿Í ±ÔÁ¦ ±â°ü¿¡ ¸Å·ÂÀûÀÎ °¡Ä¡ Á¦¾ÈÀÔ´Ï´Ù. À¯±â ÀÏ·ºÆ®·Î´Ð½º¿Í ¹ÙÀÌ¿À Æú¸®¸ÓÀÇ Çõ½ÅÀº ¿À¿°¹°ÁúÀ» °¨ÁöÇÒ »Ó¸¸ ¾Æ´Ï¶ó »ç¿ë ÈÄ ¾ÈÀüÇÏ°Ô ºÐÇØµÇ´Â ¼¶À¯ÀÇ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
º¹ÀâÇÑ ¸¸·áÀÏ °ü¸® ¹× ±ÔÁ¦´ç±¹ ¹Ý¹ß
¿À¿° °¨Áö Á÷¹°Àº Á¾Á¾ ³»ÀåµÈ ÀüÀÚ Àåºñ, ³ª³ë¹°Áú, ÇÕ¼º ÈÇÕ¹°À» Æ÷ÇÔÇÏ¿© Æó±â ¹× ÀçȰ¿ë °úÁ¤À» º¹ÀâÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÚÀç°ü¸®ÀÇ ºÎÀûÀýÇÑ Ãë±ÞÀº ȯ°æ ¿À¿°À¸·Î À̾îÁú ¼ö ÀÖÀ¸¸ç, ±ÔÁ¦ ´ç±¹°ú ȯ°æ °¨½Ã´Ü »çÀÌ¿¡ ¿ì·Á°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀüÀÚ Æó±â¹°¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¦Á¶¾÷ü´Â Àμö ½Ã½ºÅÛ ¹× Àç·á ȸ¼ö ÇÁ·ÎÅäÄÝÀ» Æ÷ÇÔÇÑ Á¦Ç°ÀÇ ¼ö¸íÁֱ⠰ü¸®¿¡ ´ëÇÑ ÁöħÀ» ¾ö°ÝÇÏ°Ô Á÷¸é ÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº ¼ÒºñÀÚÀÇ ¿ì¼± ¼øÀ§¸¦ º¯È½ÃŰ°í ¿À¿° °¨Áö Á÷¹°À» Æ÷ÇÔÇÑ °Ç° ¸ð´ÏÅ͸µ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀ» ÁõÆø½Ãŵ´Ï´Ù. °ø±â °¨¿°°ú È£Èí±â Ãë¾à¼º¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁö¸é¼ °³ÀÎÀº °ø±âÀÇ ÁúÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇÒ ¼ö ÀÖ´Â ¿þ¾î·¯ºí ¼Ö·ç¼ÇÀ» ¿ä±¸Çß½À´Ï´Ù. ±×·¯³ª °ø±Þ¸ÁÀÇ È¥¶õ°ú Á¦Á¶ ´É·ÂÀÇ ÀúÇÏ·Î ÀÎÇØ ÀϽÃÀûÀ¸·Î »ý»ê°ú Àü°³°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. ¹Ý¸é¿¡ ÆÒµ¥¹ÍÀº µðÁöÅÐ ÇコÀÇ Ã¤¿ë°ú ¿ø°Ý ¸ð´ÏÅ͸µÀÇ ½ÇõÀ» °¡¼Ó½ÃÄÑ ½º¸¶Æ® ÅØ½ºÅ¸ÀÏÀÇ ÅëÇÕ¿¡ À¯¸®ÇÑ Á¶°ÇÀ» ¸¸µé¾î ³Â½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ¿À¿° °¨Áö Á÷¹° ºÐ¾ß°¡ ÃÖ´ë鵃 Àü¸Á
¾×Ƽºê ¿À¿° °¨Áö Á÷¹° ºÐ¾ß´Â ȯ°æ º¯È¸¦ °¨ÁöÇÏ°í ´ëÀÀÇÏ´Â °í±Þ ±â´ÉÀ» ÅëÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼¶À¯¿¡´Â PM2.5, NOx, Èֹ߼º À¯±â ÈÇÕ¹°°ú °°Àº ¿À¿°¹°ÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÀÓº£µðµå ¼¾¼, Àüµµ»ç, ¹ÝÀÀ¼º ÄÚÆÃÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ´ë±â ¿À¿°¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ´Éµ¿ °¨Áö Á÷¹° ¼ö¿ä´Â ¼ÒºñÀÚ ºÎ¹®°ú ½Ã¼³ ºÎ¹® ¸ðµÎ¿¡¼ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÁýÀû ¹× »óÈ£ ¿¬°á Àç·á ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ Àü¸Á
¿¹Ãø±â°£ µ¿¾È ÅëÇÕ¡¤ÀÎÅÍÄ¿³ØÆ® Àç·áºÐ¾ß´Â Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º¿Í ¼¶À¯È¸·ÎÀÇ ±â¼ú Çõ½Å¿¡ °ßÀÎµÇ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Àç·á´Â ¼¾¼¸¦ ³»ÀåÇÏ°í ¿À¿°À» °¨ÁöÇÏ´Â Á÷¹° ³»¿¡¼ ½ÅÈ£ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¹éº» ¿ªÇÒÀ» ÇÕ´Ï´Ù. Àüµµ¼º À×Å©, ½ÅÃ༺ ±âÆÇ ¹× ÇÏÀ̺긮µå ¼¶À¯ º¹ÇÕÀç·áÀÇ ¹ßÀüÀ¸·Î °í¼º´É °¨Áö ±â´ÉÀ» Á¦°øÇÏ¸é¼ Æí¾ÈÇÔÀ» À¯ÁöÇÏ´Â ¼¶À¯ µðÀÚÀÎÀÌ °¡´ÉÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °·ÂÇÑ ±â¼ú ÀÎÇÁ¶ó, ³ôÀº ¼ÒºñÀÚ ÀǽÄ, Àû±ØÀûÀΠȯ°æ Á¤Ã¥À¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ½º¸¶Æ® ÅØ½ºÅ¸Àϰú ¿þ¾î·¯ºí ¼¾¼¸¦ Àü¹®À¸·Î ÇÏ´Â ¼±±¸ ±â¾÷ÀÌ ¿©·¯ °³ ÀÖÀ¸¸ç, ±â¼ú Çõ½Å°ú »ó¾÷ȸ¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´ë±âÀÇ Áú ¸ð´ÏÅ͸µ°ú ³ëµ¿¾ÈÀüÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê°¡ ÀÇ·á, ¹æÀ§, »ê¾÷ºÐ¾ß¿¡¼ÀÇ Ã¤¿ëÀ» ´õ¿í ÃËÁøÇϰí ÀÖÀ¸¸ç, ºÏ¹Ì´Â ½ÃÀåÀÇ Áö¹èÀû ¼¼·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ µµ½ÃÈ, ¿À¿°¼öÁØ »ó½Â, Áß·ù°è±Þ Àα¸È®´ë µîÀ» ¹ÙÅÁÀ¸·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, Çѱ¹ µîÀÇ ±¹°¡¿¡¼´Â ƯÈ÷ ´ë±âÁú Áö¼ö°¡ ³·Àº Àα¸ ¹ÐÁý µµ½Ã¿¡¼ °³ÀÎ ´ë±â ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °øÇØ ´ëÃ¥°ú °øÁß À§»ý Çâ»óÀ» À§ÇÑ Á¤ºÎ ÁÖµµÀÇ ´ëó°¡ ½º¸¶Æ® ÅØ½ºÅ¸ÀÏÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ªÀÇ °·ÂÇÑ ¼¶À¯ Á¦Á¶°ÅÁ¡°ú ¿þ¾î·¯ºí ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ½ÃÀå È®´ë¸¦ À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» ¸¸µé¾î ³»°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Pollution-Sensing Fabrics Market is accounted for $154.9 billion in 2025 and is expected to reach $407.2 billion by 2032 growing at a CAGR of 14.8% during the forecast period. Pollution-sensing fabrics are advanced textiles embedded with environmental sensors that detect airborne pollutants such as particulate matter (PM2.5, PM10), volatile organic compounds (VOCs), and carbon dioxide. These smart materials integrate microcontrollers and data processors to monitor air quality in real time, often displaying results via LEDs or connected apps. Designed for wearable applications, they combine functionality with comfort, enabling users to visualize pollution exposure and respond accordingly. Such fabrics are increasingly used in health-focused fashion and urban safety gear
According to Journal of Materials Chemistry C, a multifunctional textile sensor demonstrated a gauge factor of 62.2 for strain detection, 6.27%/%RH for humidity, and -5.3%/°C for temperature, maintaining stable performance over 5,000+ cycles.
Growing public awareness and health concerns on air and environmental pollution
Consumers and governments alike are becoming more conscious of airborne pollutants and their long-term health effects, prompting interest in wearable technologies that can monitor exposure levels. These fabrics, embedded with sensors and responsive materials, offer real-time data on air quality, making them valuable for urban populations, industrial workers, and individuals with respiratory conditions. The growing adoption of smart textiles in healthcare and environmental monitoring is further accelerating market expansion.
High cost of production & competition from alternative technologies
Despite their potential, pollution-sensing fabrics face significant cost barriers due to the complexity of integrating sensors, conductive threads, and responsive polymers into textile substrates. The need for precision engineering and advanced manufacturing techniques elevates production expenses, limiting scalability. Moreover, competition from alternative air monitoring devices such as portable sensors and smartphone-integrated systems poses a challenge to market penetration.
Integration with sustainable and eco-friendly materials
As sustainability becomes a central theme across industries, pollution-sensing fabric manufacturers are exploring biodegradable fibers, recycled yarns, and non-toxic sensor coatings to reduce environmental impact. The convergence of smart textiles with green materials presents a compelling value proposition for eco-conscious consumers and regulatory bodies. Innovations in organic electronics and bio-based polymers are enabling the development of fabrics that not only detect pollutants but also degrade safely after use.
Complex end-of-life management & regulatory backlash
Pollution-sensing fabrics often contain embedded electronics, nanomaterials, and synthetic compounds that complicate disposal and recycling processes. Improper handling of these materials can lead to environmental contamination, raising concerns among regulators and environmental watchdogs. As awareness of e-waste grows, manufacturers may face stricter guidelines on product lifecycle management, including take-back schemes and material recovery protocols.
The COVID-19 pandemic reshapes consumer priorities, amplifying interest in health-monitoring technologies, including pollution-sensing fabrics. With heightened awareness of airborne transmission and respiratory vulnerabilities, individuals sought wearable solutions that could track air quality in real-time. However, supply chain disruptions and reduced manufacturing capacity temporarily slowed production and deployment. On the flip side, the pandemic accelerated digital health adoption and remote monitoring practices, creating favorable conditions for smart textile integration.
The active pollution-sensing fabrics segment is expected to be the largest during the forecast period
The active pollution-sensing fabrics segment is expected to account for the largest market share during the forecast period due to their advanced capabilities in detecting and responding to environmental changes. These textiles incorporate embedded sensors, conductive threads, and responsive coatings that enable real-time monitoring of pollutants such as PM2.5, NOx, and volatile organic compounds. As awareness of air pollution intensifies, demand for active sensing fabrics is expected to surge across both consumer and institutional sectors.
The integration & interconnect materials segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the integration & interconnect materials segment is predicted to witness the highest growth rate driven by innovations in flexible electronics and textile circuitry. These materials serve as the backbone for embedding sensors and enabling signal transmission within pollution-sensing fabrics. Advances in conductive inks, stretchable substrates, and hybrid fiber composites are making it possible to design textiles that maintain comfort while delivering high-performance sensing capabilities.
During the forecast period, the North America region is expected to hold the largest market share attributed to strong technological infrastructure, high consumer awareness, and proactive environmental policies. The region hosts several pioneering companies specializing in smart textiles and wearable sensors, fostering innovation and commercialization. Government initiatives promoting air quality monitoring and occupational safety are further driving adoption across healthcare, defense, and industrial sectors positions North America as a dominant force in the market.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid urbanization, rising pollution levels, and expanding middle-class populations. Countries such as China, India, and South Korea are witnessing increased demand for personal air monitoring solutions, especially in densely populated cities with poor air quality indices. Government-led initiatives to combat pollution and improve public health are encouraging the adoption of smart textiles. Moreover, the region's strong textile manufacturing base and growing investments in wearable technology are creating fertile ground for market expansion.
Key players in the market
Some of the key players in Pollution-Sensing Fabrics Market include DuPont, Hexoskin, Schoeller Textil AG, Nextiles, Sensoria Inc., OMsignal, Xenoma Inc., Wearable X, Textronics Inc., Graphene Flagship, Adidas, Google ATAP, MIT Media Lab, NanoScent, BeBop Sensors, SmartTex Innovations GmbH, and E-Textiles Ltd.
In August 2025, DuPont announced an agreement to divest its aramids (Kevlar / Nomex) business to Arclin in a transaction designed to streamline DuPont's portfolio and unlock value.
In August 2025, Industry coverage reported that Textilcolor AG acquired the Pyroshell(TM) patents from Schoeller Textil AG. The article notes the transaction details and positions it as Schoeller refocusing core IP /product lines while transferring Pyroshell patents to Textilcolor.