½ÃÀ庸°í¼­
»óǰÄÚµå
1813451

AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å ½ÃÀå ¿¹Ãø(-2032³â) : ±¸¼º ¿ä¼Ò À¯Çüº°, ÀçÆÇ¸Å À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

AI Component Resale Market Forecasts to 2032 - Global Analysis By Component Type (GPUs, CPUs, TPUs, Neuromorphic Chips, FPGAs, Memory and Storage Components and Other Component Types), Resale Type, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å ½ÃÀåÀº 2025³â¿¡ 23¾ï 6,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 12.4%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 53¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å´Â Ĩ, ¼¾¼­, ¾Ë°í¸®Áò, »çÀü ÇнÀµÈ ¸ðµ¨°ú °°Àº ÀΰøÁö´É Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¸ðµâ, ½Ã½ºÅÛ ¿ä¼Ò¸¦ ¿ø·¡ °³¹ßÀÚ ¹× Á¦Á¶¾÷ü¿¡¼­ °¡Á®¿Í ÃÖÁ¾ »ç¿ëÀÚ ¹× ÅëÇÕÀÚ¿¡°Ô ¹èÆ÷ÇÏ´Â »ó¾÷Àû °üÇàÀÔ´Ï´Ù. ÀÌ ¸ðµ¨À» ÅëÇØ Ÿ»ç °ø±Þ¾÷ü´Â »ç³» R&D ÅõÀÚ ¾øÀÌ °í±Þ AI ±â´ÉÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸®¼¿·¯´Â ƯÁ¤ ½ÃÀå ¿ä±¸¿¡ ¸Â°Ô ±¸¼º ¿ä¼Ò¸¦ ºê·£µå º¯°æ, ¹øµé ¹× »ç¿ëÀÚ Á¤ÀÇÇÒ ¼ö ÀÖ¾î ¶óÀ̼±½º ¹× ¼º´É ±âÁØ Áؼö¸¦ À¯ÁöÇϸ鼭 ¾÷°è Àü¹Ý¿¡ °ÉÃÄ ±¤¹üÀ§ÇÑ µµÀÔÀ» ÃËÁøÇÕ´Ï´Ù.

±â¼úÀÇ ÁøºÎÈ­°¡ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖ´Â °¡¿îµ¥, ¾÷°è Àüü¿¡¼­ AIÀÇ Ã¤¿ëÀÌ È®´ë

Çõ½ÅÀÇ »çÀÌŬÀÌ Âª¾ÆÁü¿¡ µû¶ó ¸¹Àº Á¶Á÷ÀÌ ½Ã½ºÅÛÀ» ÀÚÁÖ ¾÷±×·¹À̵åÇϰí À׿© Àç°í¿Í ÁøºÎÇÑ Àç°í¸¦ º¸À¯Çϰí ÀÖ½À´Ï´Ù. ÀÌ ±Þ¼ÓÇÑ ÁøºÎÈ­´Â GPU, TPU, ½Å°æ ÇÁ·Î¼¼¼­¿Í °°Àº ±¸¼º ¿ä¼Ò°¡ ºñ¿ë¿¡ ¹Î°¨ÇÑ ±¸¸ÅÀÚ¿¡°Ô ÀçÆÇ¸ÅµÇ´Â °­·ÂÇÑ 2Â÷ ½ÃÀåÀ» Çü¼ºÇÕ´Ï´Ù. ÀÌ µ¿ÇâÀº µ¶ÀÚÀûÀÎ Çϵå¿þ¾î¿¡ ÅõÀÚÇÏÁö ¾Ê°í AI ±â´ÉÀ» Àú·ÅÇÑ °¡°ÝÀ¸·Î ÀÌ¿ëÇÏ·Á°í ÇÏ´Â ½ÅÈï±â¾÷À̳ª Áß¼Ò±â¾÷¿¡ ÀÇÇØ ´õ¿í ÁõÆøµÇ¾î ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¼ö¿ä°¡ ³ôÀº ºÎǰ°ø±ÞÀÌ Á¦ÇÑÀû

¼ö¿ä°¡ Áõ°¡ÇÔ¿¡µµ ºÒ±¸ÇÏ°í °í±Þ ASIC, ¾çÀÚ ÇÁ·Î¼¼¼­, °í´ë¿ªÆø ¸Þ¸ð¸® ¸ðµâ µî ÃÖ»ó±Þ AI ±¸¼º ¿ä¼Ò°ø±Þ¿¡´Â Á¦¾àÀÌ ÀÖ½À´Ï´Ù. °ø±Þ¸ÁÀÇ º´¸ñ, ÁöÁ¤ÇÐÀû ±äÀå, ±â¹Ð±â¼úÀÇ ¼öÃâ ±ÔÁ¦°¡ °ø±Þ ºÎÁ·À» ¾ÇÈ­½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷ü´Â OEM Á¦Á¶¾÷ü¿¡ Á÷Á¢ ÆÇ¸Å¸¦ ¼±È£ÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç ÀçÆÇ¸Å °¡´ÉÇÑ ¼ö·®ÀÌ Á¦Çѵ˴ϴÙ. ÀÌ·¯ÇÑ ¼ö¿ä ¹× °ø±Þ ºÒ±ÕÇüÀº ƯÈ÷ ¼Ò±Ô¸ð ¸®¼¿·¯ ¹× ÅëÇÕ¾÷üÀÇ °æ¿ì °¡°ÝÀ» ¿Ã¸®°í ½ÃÀåÀÇ È®À强À» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü¹®ÀûÀÎ ÀçÆÇ¸Å¡¤Àç»ý ¼­ºñ½ºÀÇ Áøº¸

½ÅÈï ±â¾÷Àº Å×½ºÆ®, À籸¼º, º¸ÁõÀÌ Æ÷ÇÔµÈ ÀçÆÇ¸Å¿Í °°Àº ºÎ°¡°¡Ä¡ ¼­ºñ½º¸¦ Á¦°øÇÔÀ¸·Î½á ÀÎÁõµÈ Áß°í AI ±¸¼º ¿ä¼ÒÀÇ ¿ä±¸¸¦ Ȱ¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº Åõ¸íÇÑ Á¶´Þ, ¼º´É °ËÁõ, ±¹Á¦ Ç¥ÁØ Áؼö¸¦ ÅëÇØ ½Å·Ú¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ±¸¼º ¿ä¼Ò µî±ÞÈ­, ¼ö¸íÁÖ±â ÃßÀû, °íÀå ¿¹Ãø ºÐ¼®ÀÇ Çõ½ÅÀº ±¸¸ÅÀÚÀÇ ½Å·Ú¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ÃßÀû¼ºÀ» À§ÇÑ ºí·ÏüÀΰú ÀçÆÇ¸Å °Å·¡¸¦ À§ÇÑ ½º¸¶Æ® °è¾àÀÇ ÅëÇÕÀº ÀçÆÇ¸Å »óȲÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

IP ¹× µ¥ÀÌÅÍ º¸¾È À§Çè ¹× ±ÔÁ¦ ¸ð´ÏÅ͸µ

AI ±¸¼º ¿ä¼ÒÀÇ ÀçÆÇ¸Å¿¡´Â µ¶ÀÚÀûÀÎ Æß¿þ¾î, ÀÓº£µðµå ¾Ë°í¸®Áò, µ¥ÀÌÅÍ ±â¹Ð ¸ðµâÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹¾Æ IP Ä§ÇØ³ª »çÀ̹ö º¸¾È¿¡ °üÇÑ ¿ì·Á°¡ »ý±é´Ï´Ù. ÀÓº£µðµå ¼ÒÇÁÆ®¿þ¾îÀÇ ¹«´Ü Àç¹èÆ÷ ¹× º¯Á¶´Â ±¸¸ÅÀÚ¸¦ ¹ýÀû Ã¥ÀÓÀ̳ª ¿î¿µ Ãë¾àÁ¡¿¡ ³ëÃâ½Ãų ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦±â°üÀº ƯÈ÷ ±¹¹æ, °¨½Ã ¹× Áß¿ä ÀÎÇÁ¶ó ¿ëµµ¿¡¼­ AI Çϵå¿þ¾î ±¹°æÀ» ³Ñ¾î ÀçÆÇ¸Å¿¡ ´ëÇÑ ±ÔÁ¦¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ¼öÃâ¹ý, µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤, À±¸®Àû Á¶´Þ ±âÁØÀÇ Áؼö´Â ½ÃÀå ÁøÀÔÀÇ Çʼö Á¶°ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

ÆÒµ¥¹ÍÀº ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ½ÃÄÑ ºÎǰ ºÎÁ·°ú ÃâÇÏ Áö¿¬À» ÃÊ·¡Çß½À´Ï´Ù. ±×·¯³ª µ¿½Ã¿¡ µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈ­ÇÏ°í ±â¾÷¿¡ AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀÇ ´ë±Ô¸ð µµÀÔÀ» Ã˱¸Çß½À´Ï´Ù. ¿¹»êÀÌ ¹Ú¹ÚÇÑ °¡¿îµ¥ ¸¹Àº ±â¾÷µéÀÌ ºñ¿ë´ëºñ È¿°ú°¡ ³ôÀº Á¶´ÞÀ» ¿ä±¸ÇØ ÀçÆÇ¸Å ½ÃÀå¿¡ ´«±æÀ» µ¹·È½À´Ï´Ù. AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å¿¡ ƯȭµÈ ¿Â¶óÀÎ Ç÷§Æû¿¡¼­´Â Æ®·¡ÇÈÀÌ Áõ°¡ÇÏ°í ¿ø°Ý Áø´Ü ¹× °¡»ó Å×½ºÆ®°¡ Ç¥ÁØÀ¸·Î ÀÌ·ç¾îÁö°Ô µÊÀ¸·Î½á Àç»ýǰÀÇ ¿§Áö AI µð¹ÙÀ̽º ¹× ¸ðµâ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í ³ô¾ÆÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È CPU(Áß¾Ó Ã³¸® ÀåÄ¡) ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

CPU(Central Processing Unit) ºÎ¹®Àº AI ¿öÅ©·Îµå ¹× ½Ã½ºÅÛ ¿ÀÄɽºÆ®·¹À̼ǿ¡¼­ ±âº»ÀûÀÎ ¿ªÇÒÀ» ÅëÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ãß·Ð, Æ®·¹ÀÌ´×, ¹ü¿ë ÄÄÇ»ÆÃ¿¡ À̸£´Â ¹ü¿ë¼ºÀ¸·Î ÀÎÇØ ÀçÆÇ¸Å ä³Î¿¡¼­ ³ôÀº ÀαⰡ ÀÖ½À´Ï´Ù. »õ·Î¿î ¾ÆÅ°ÅØÃ³·Î ¾÷±×·¹À̵åÇÏ´Â °³¹ß ±â¾÷Àº Á¾Á¾ ·¹°Å½Ã CPU¸¦ ´ë·®À¸·Î ¹æÃâÇϸç, ±³À° ±â°ü, ½ÅÈï ±â¾÷ ¹× ÀÓº£µðµå ½Ã½ºÅÛ °³¹ßÀÚ¿¡°Ô Àç¹èÆ÷µË´Ï´Ù.

À׿© Àç°í ÀçÆÇ¸Å ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È À׿© Àç°í ÀçÆÇ¸Å ºÐ¾ß´Â ¿¹»ê¿¡ ÁßÁ¡À» µÐ ±¸¸ÅÀÚ¿¡°Ô ¸Å·ÂÀûÀÎ °íǰÁú ºÎǰÀ» ÇÒÀÎ °¡°ÝÀ¸·Î ÀÌ¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °ø±Þ¾÷ü´Â ¿¹Ãø ºÐ¼®À» Ȱ¿ëÇÏ¿© Á¦Ç° ¼ö¸í ÁÖ±â Ãʱ⿡ ÀçÆÇ¸Å °¡´É¼ºÀ» ÆÄ¾ÇÇϰí ȸ¼ö °¡Ä¡¸¦ ÃÖÀûÈ­ÇÕ´Ï´Ù. ÀÌ ¸ðµ¨Àº ºÎǰ ¼ö¸íÀ» ¿¬ÀåÇϰí ÀüÀÚ Æó±â¹°À» ÁÙÀÓÀ¸·Î½á ¼øÈ¯ °æÁ¦ÀÇ ¿øÄ¢À» Áö¿øÇÕ´Ï´Ù. ¹Ì»ç¿ë, °úÀ× Àç°í ¶Ç´Â »ý»ê Áß´Ü ±¸¼º ¿ä¼Ò·Î ±¸¼ºµÈ À׿© AI Àç°í ÀçÆÇ¸Å´Â °¡Àå ºü¸¥ ¼Óµµ·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¼º¼÷ÇÑ AI »ýŰè¿Í ±â¼ú ¼±µµÀûÀÎ °­·ÂÇÑ Á¸Àç·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀº °ß°íÇÑ ÀÎÇÁ¶ó, ³ôÀº R&D ÅõÀÚ, ¸®¼¿·¯ ¹× ¸®³ëº£ÀÌÅÍÀÇ È®¸³µÈ ³×Æ®¿öÅ©·ÎºÎÅÍ ÀÌÀÍÀ» ¾ò°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ÀÇ ¸íÈ®¼º°ú À¯¸®ÇÑ ¼¼Á¦µµ À¯Åë ½ÃÀå ¿î¿µÀ» Áö¿øÇÕ´Ï´Ù. °Ô´Ù°¡ AIÀÇ ½ÅÈï±â¾÷°ú Çмú±â°üÀÇ ±ÞÁõÀº ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ °í¼º´É ±¸¼º ¿ä¼Ò¿¡ ´ëÇÑ ÀϰüµÈ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷È­, µðÁöÅÐÈ­, ½ÅÈï±¹¿¡¼­ÀÇ AI µµÀÔ È®´ë·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, Çѱ¹ µîÀÇ ±¹°¡µéÀº AI ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ±¸¼º ¿ä¼ÒÀÇ È°±âÂù ÀçÆÇ¸Å ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÇöÁö Á¦Á¶¾÷ü¿Í À¯Åë¾÷ü´Â ¼¼°è ±â¾÷ÀÇ À׿© Àç°í¸¦ Ȱ¿ëÇϱâ À§ÇØ Àü·«Àû Á¦ÈÞ¸¦ ¸Î°í ÀÖ½À´Ï´Ù. ±â¼ú¿¡ ´ëÇÑ Á¢±Ù¼º°ú ¼øÈ¯ °æÁ¦ÀÇ ½ÇõÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å ½ÃÀå : ±¸¼º ¿ä¼Ò À¯Çüº°

  • GPU(±×·¡ÇÈ Ã³¸® ÀåÄ¡)
    • ÇÏÀÌ¿£µå µ¥ÀÌÅͼ¾ÅÍ GPU(¿¹ : NVIDIA A100, H100)
    • ¹Ìµå·¹ÀÎÁö ¹× µ¥½ºÅ©Åé GPU
    • Áß°í ¹× ¸®ÆÛºñ½Ãµå
  • CPU(Áß¾Óó¸®ÀåÄ¡)
  • TPU(ÅÙ¼­Ã³¸®ÀåÄ¡)
  • ½Å°æ¸ð¹æ Ĩ
  • FPGA(ÇöÀå ÇÁ·Î±×·¡¹Ö °¡´É °ÔÀÌÆ® ¾î·¹ÀÌ)
  • ¸Þ¸ð¸® ¹× ½ºÅ丮Áö ±¸¼º ¿ä¼Ò
  • ±âŸ ±¸¼º ¿ä¼Ò À¯Çü

Á¦6Àå ¼¼°èÀÇ AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å ½ÃÀå : ÀçÆÇ¸Å À¯Çüº°

  • ¸®ÆÛºñ½Ãµå ºÎǰ
  • ÀüÀÚÆó±â¹° ȸ¼ö ¹× Àç»ç¿ë
  • À׿© Àç°í ÀçÆÇ¸Å
  • 2Â÷ ½ÃÀå À¯Åë
  • ±âŸ ÀçÆÇ¸Å À¯Çü

Á¦7Àå ¼¼°èÀÇ AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å ½ÃÀå : ¿ëµµº°

  • µö·¯´× ÈÆ·Ã
  • Ŭ¶ó¿ìµå ¹× µ¥ÀÌÅͼ¾ÅÍ Ãß·Ð
  • ¿§Áö AI Ãß·Ð
  • °í¼º´É ÄÄÇ»ÆÃ(HPC)
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü ¹× ÇÏÀÌÆÛ½ºÄÉÀÏ·¯
  • Á¤ºÎ ¹× ¹æÀ§
  • ±â¾÷
  • Çмú ¹× ¿¬±¸ ±â°ü
  • ½ºÅ¸Æ®¾÷ ¹× Áß¼Ò±â¾÷
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Arrow Electronics
  • Avnet Inc.
  • Newegg Business
  • Insight Enterprises
  • Tech Data
  • Microsemi
  • Mouser Electronics
  • Digi-Key Electronics
  • Future Electronics
  • Allied Electronics & Automation
  • WPG Holdings
  • RS Group plc
  • Premier Farnell
  • ASUS AI Resale Division
  • NVIDIA Certified Resellers
  • Intel Authorized Distributors
  • AI Components Direct
  • Refurb.io
  • CDW Corporation
KTH

According to Stratistics MRC, the Global AI Component Resale Market is accounted for $2.36 billion in 2025 and is expected to reach $5.34 billion by 2032 growing at a CAGR of 12.4% during the forecast period. AI component resale is the commercial practice of acquiring artificial intelligence hardware, software modules, or system elements such as chips, sensors, algorithms, or pre-trained models from original developers or manufacturers and distributing them to end-users or integrators. This model enables third-party vendors to offer advanced AI capabilities without internal R&D investment. Resellers may rebrand, bundle, or customize components to suit specific market needs, facilitating broader adoption across industries while maintaining compliance with licensing and performance standards.

Market Dynamics:

Driver:

Growing adoption of AI across industries with rapid obsolescence of technology

As innovation cycles shorten, many organizations are upgrading systems frequently, leading to surplus and obsolete inventories. This rapid obsolescence creates a robust secondary market for resale, where components like GPUs, TPUs, and neural processors are redistributed to cost-sensitive buyers. The trend is further amplified by startups and SMEs seeking affordable access to AI capabilities without investing in proprietary hardware propelling the market growth.

Restraint:

Limited supply of high-demand components

Despite growing demand, the availability of top-tier AI components such as advanced ASICs, quantum processors, and high-bandwidth memory modules remains constrained. Supply chain bottlenecks, geopolitical tensions, and export restrictions on sensitive technologies have exacerbated shortages. Additionally, manufacturers often prioritize direct sales to OEMs, limiting the volume available for resale. This imbalance between demand and supply can inflate prices and hinder market scalability, especially for smaller resellers and integrators.

Opportunity:

Advancements in specialized resale and refurbishment services

Emerging players are capitalizing on the need for certified, pre-owned AI components by offering value-added services such as testing, reconfiguration, and warranty-backed resale. These platforms are building trust through transparent sourcing, performance validation, and compliance with international standards. Innovations in component grading, lifecycle tracking, and predictive failure analytics are enhancing buyer confidence. Moreover, the integration of blockchain for traceability and smart contracts for resale transactions is reshaping the resale landscape.

Threat:

IP and data security risks & regulatory scrutiny

The resale of AI components often involves proprietary firmware, embedded algorithms, or data-sensitive modules, raising concerns around IP infringement and cybersecurity. Unauthorized redistribution or tampering with embedded software can expose buyers to legal liabilities and operational vulnerabilities. Regulatory bodies are tightening controls on cross-border resale of AI hardware, especially in defense, surveillance, and critical infrastructure applications. Compliance with export laws, data protection regulations, and ethical sourcing standards is becoming a prerequisite for market participation.

Covid-19 Impact:

The pandemic disrupted global supply chains, leading to component shortages and delayed shipments. However, it also accelerated digital transformation, prompting enterprises to adopt AI-driven solutions at scale. As budgets tightened, many turned to resale markets for cost-effective procurement. Online platforms specializing in AI component resale saw increased traffic, with remote diagnostics and virtual testing becoming standard practice further boosted demand for refurbished edge AI devices and modular systems.

The CPUs (central processing units) segment is expected to be the largest during the forecast period

The CPUs (central processing units) segment is expected to account for the largest market share during the forecast period due to their foundational role in AI workloads and system orchestration. Their versatility across inference, training, and general-purpose computing makes them highly sought after in resale channels. Enterprises upgrading to newer architectures often release large volumes of legacy CPUs, which are then redistributed to educational institutions, startups, and embedded system developers.

The surplus inventory resale segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the surplus inventory resale segment is predicted to witness the highest growth rate thriving on the availability of high-quality parts at discounted prices, appealing to budget-conscious buyers. Vendors are leveraging predictive analytics to identify resale potential early in the product lifecycle, optimizing recovery value. The model supports circular economy principles by extending component lifespans and reducing electronic waste. The resale of surplus AI inventory comprising unused, overstocked, or discontinued components is projected to grow at the fastest rate.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share driven by its mature AI ecosystem and strong presence of technology giants. The region benefits from robust infrastructure, high R&D investments, and a well-established network of resellers and refurbishers. Regulatory clarity and favorable tax policies also support secondary market operations. Additionally, the proliferation of AI startups and academic institutions creates consistent demand for affordable, high-performance components.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid industrialization, digitalization, and expanding AI adoption across emerging economies. Countries like China, India, and South Korea are investing heavily in AI infrastructure, creating a vibrant resale market for components. Local manufacturers and distributors are forming strategic alliances to tap into surplus inventories from global players. Government initiatives promoting tech accessibility and circular economy practices are further propelling regional growth.

Key players in the market

Some of the key players in AI Component Resale Market include Arrow Electronics, Avnet Inc., Newegg Business, Insight Enterprises, Tech Data, Microsemi, Mouser Electronics, Digi-Key Electronics, Future Electronics, Allied Electronics & Automation, WPG Holdings, RS Group plc, Premier Farnell, ASUS AI Resale Division, NVIDIA Certified Resellers, Intel Authorized Distributors, AI Components Direct, Refurb.io, and CDW Corporation.

Key Developments:

In June 2025, ASUS unveiled an enterprise AI ecosystem and AI POD/AI Hub solutions at Computex 2025, showcasing AI infrastructure and partner resale programs. ASUS's 2025 press emphasizes enabling AI-ready infrastructure across partners and resellers.

In March 2025, TD SYNNEX (Tech Data brand) announced the launch of Tech Data Capital in India to provide partner financing and enable partner growth. The item is part of TD SYNNEX's 2025 regional product/service rollouts supporting channel finance and partner enablement.

In January 2025, Mouser Electronics expanded its global distribution agreement with Eaton's electrical business (new manufacturer partnership).

Component Types Covered:

  • GPUs (Graphics Processing Units)
  • CPUs (Central Processing Units)
  • TPUs (Tensor Processing Units)
  • Neuromorphic Chips
  • FPGAs (Field-Programmable Gate Arrays)
  • Memory and Storage Components
  • Other Component Types

Resale Types Covered:

  • Refurbished Components
  • E-waste Recovery & Reuse
  • Surplus Inventory Resale
  • Secondary Market Distribution
  • Other Resale Types

Applications Covered:

  • Deep Learning Training
  • Cloud & Data Center Inference
  • Edge AI Inference
  • High-Performance Computing (HPC)
  • Other Applications

End Users Covered:

  • Cloud Service Providers & Hyperscalers
  • Government and Defense
  • Enterprises
  • Academic & Research Institutions
  • Startups & SMEs
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global AI Component Resale Market, By Component Type

  • 5.1 Introduction
  • 5.2 GPUs (Graphics Processing Units)
    • 5.2.1 High-end Data Center GPUs (e.g., NVIDIA A100, H100)
    • 5.2.2 Mid-range and Desktop GPUs
    • 5.2.3 Used vs. Refurbished
  • 5.3 CPUs (Central Processing Units)
  • 5.4 TPUs (Tensor Processing Units)
  • 5.5 Neuromorphic Chips
  • 5.6 FPGAs (Field-Programmable Gate Arrays)
  • 5.7 Memory and Storage Components
  • 5.8 Other Component Types

6 Global AI Component Resale Market, By Resale Type

  • 6.1 Introduction
  • 6.2 Refurbished Components
  • 6.3 E-waste Recovery & Reuse
  • 6.4 Surplus Inventory Resale
  • 6.5 Secondary Market Distribution
  • 6.6 Other Resale Types

7 Global AI Component Resale Market, By Application

  • 7.1 Introduction
  • 7.2 Deep Learning Training
  • 7.3 Cloud & Data Center Inference
  • 7.4 Edge AI Inference
  • 7.5 High-Performance Computing (HPC)
  • 7.6 Other Applications

8 Global AI Component Resale Market, By End User

  • 8.1 Introduction
  • 8.2 Cloud Service Providers & Hyperscalers
  • 8.3 Government and Defense
  • 8.4 Enterprises
  • 8.5 Academic & Research Institutions
  • 8.6 Startups & SMEs
  • 8.7 Other End Users

9 Global AI Component Resale Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Arrow Electronics
  • 11.2 Avnet Inc.
  • 11.3 Newegg Business
  • 11.4 Insight Enterprises
  • 11.5 Tech Data
  • 11.6 Microsemi
  • 11.7 Mouser Electronics
  • 11.8 Digi-Key Electronics
  • 11.9 Future Electronics
  • 11.10 Allied Electronics & Automation
  • 11.11 WPG Holdings
  • 11.12 RS Group plc
  • 11.13 Premier Farnell
  • 11.14 ASUS AI Resale Division
  • 11.15 NVIDIA Certified Resellers
  • 11.16 Intel Authorized Distributors
  • 11.17 AI Components Direct
  • 11.18 Refurb.io
  • 11.19 CDW Corporation
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦