½ÃÀ庸°í¼­
»óǰÄÚµå
1817962

¼¼°èÀÇ 2Â÷¿ø ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çü, ÇüÅÂ, µî±Þ, ÇÕ¼º, ¿ëµµ, Áö¿ªº° ºÐ¼®

2D Transition Metal Dichalcogenides (TMDs) Market Forecasts to 2032 - Global Analysis By Type (Molybdenum Disulfide (MoS2), Tungsten Disulfide (WS2) and Other Types), Form, Grade, Synthesis, Application, and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ 2Â÷¿ø ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀåÀº 2025³â 18¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 12%·Î ¼ºÀåÇØ 2032³â 41¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ 2Â÷¿ø ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD)´Â 2D ±¸Á¶¿¡¼­ Ä®ÄÚ°Õ ¿øÀÚ(S, Se, Te)¿Í °áÇÕµÈ ÀüÀ̱ݼÓ(Mo, W µî)À¸·Î ±¸¼ºµÈ Ãþ»ó Àç·áÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ´ÜºÐÀÚÃþ±îÁö ¾ã°Ô ¸¸µé¸é TMD´Â Á÷Á¢ÀûÀÎ ¹êµå°¸°ú ³ôÀº ij¸®¾î À̵¿µµ¿Í °°Àº µ¶Æ¯ÇÑ ÀüÀÚÀû, ±¤ÇÐÀû, ±â°èÀû Ư¼ºÀ» ³ªÅ¸³À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº ¹ÝµµÃ¼, ±¤ÀüÀÚ, ¿¡³ÊÁö ÀúÀå ¹× À¯¿¬ÇÑ ÀåÄ¡¿¡ ´ëÇÑ ÀÀ¿ëÀ» À¯¸Á½ÃÇϰí ÀÖ½À´Ï´Ù. ±× Á¶Á¤ °¡´ÉÇÑ Æ¯¼ºÀº TMD¸¦ ¹Ì·¡ÀÇ ³ª³ë ±â¼ú°ú ÀüÀÚ Á¦Ç°ÀÇ Áß¿äÇÑ Àç·á·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¸Å»çÃß¼¼Ã÷ °ø°ú´ëÇÐ(MIT)ÀÇ ¿¬±¸¿¡ µû¸£¸é, ÀÌȲȭ ¸ô¸®ºêµ§°ú °°Àº 2DTMD´Â 3 ¿øÀÚ µÎ²²ÀÇ Æ®·£Áö½ºÅ͸¦ °³¹ßÇÒ ¼ö ÀÖ°Ô Çϰí, Æ÷½ºÆ® ½Ç¸®ÄÜ ÀÏ·ºÆ®·Î´Ð½º·ÎÀÇ ±æÀ» ¿­°í ÀÖ½À´Ï´Ù.

³ôÀº ÀüÀÚ ¹× ±¤ÇРƯ¼º

2Â÷¿ø ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀåÀº ÁÖ·Î ±× Ź¿ùÇÑ ÀüÀÚ ¹× ±¤ÇРƯ¼º¿¡ ÀÇÇØ °ßÀεǰí ÀÖ¾î ¹ÝµµÃ¼, ±¤°ËÃâ±â, ±¤ÀüÀÚ µð¹ÙÀ̽º¿¡ °í¼º´É ÀÀ¿ëÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌȲȭ ¸ô¸®ºêµ§(MoS2)°ú ÀÌȲȭ ÅÖ½ºÅÙ(WSe2)°ú °°Àº Àç·á´Â Á¶Á¤ °¡´ÉÇÑ ¹êµå°¸, ³ôÀº ij¸®¾î À̵¿µµ, °­ÇÑ ±¤-¹°Áú »óÈ£ÀÛ¿ëÀ» ³ªÅ¸³»¸ç Â÷¼¼´ë ÀüÀÚ ºÎǰ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ º»ÁúÀûÀΠƯ¼ºÀº ¼ÒÇüÈ­, À¯¿¬¼º, ÷´Ü µð¹ÙÀ̽º¿¡ÀÇ ÅëÇÕÀ» °¡´ÉÇÏ°Ô Çϰí, ÀÏ·ºÆ®·Î´Ð½º, ¿¡³ÊÁö ÀúÀå, Ç÷º¼­ºí µð½ºÇ÷¹ÀÌÀÇ °¢ ºÐ¾ß¿¡¼­ ¼¼°èÀûÀ¸·Î ä¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

Á¦ÇÑµÈ ´ë±Ô¸ð »ý»ê ¹æ¹ý

2Â÷¿ø TMDÀÇ ´ë·® »ý»êÀº »ê¾÷ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ¹æ¹ýÀÌ ¾ø±â ¶§¹®¿¡ Á¦¾àÀ» ¹Þ°í ÀÖ½À´Ï´Ù. °í¼øµµ·Î ÀçÇö¼º ÀÖ´Â ±ÕÀÏÇÑ ´ÜÃþ¸·À» ´Þ¼ºÇÏ´Â °ÍÀº ±â¼úÀûÀ¸·Î ¾î·Æ½À´Ï´Ù. ¹èÄ¡ »çÀÌÀÇ º¯µ¿, °áÇÔ ¹× ¿À¿°Àº ÀåÄ¡ ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç »ó¾÷¿ë ÀüÀÚ ¹× ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ Ã¤¿ëÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ÇÕ¼º ±â¼úÀÌ °³¹ßµÉ ¶§±îÁö ½ÃÀå ¼ºÀåÀº Á¦ÇÑµÉ ¼ö ÀÖÀ¸¸ç, ä¿ëÀº ÁÖ·Î ½ÇÇè½Ç, ÇÏÀÌ ¿£µå ¹ÝµµÃ¼ Á¦Á¶, Ư¼ö ±¤ÀüÀÚ ÀÀ¿ë ºÐ¾ß¿¡ ÁýÁßÇÕ´Ï´Ù.

Â÷¼¼´ë ¹ÝµµÃ¼¿¡ÀÇ ÀÀ¿ë

2Â÷¿ø TMD´Â Â÷¼¼´ë ¹ÝµµÃ¼ ±â¼ú¿¡ Å« ÀáÀç·ÂÀ» Á¦°øÇÕ´Ï´Ù. Á¶Á¤ °¡´ÉÇÑ ÀüÀÚ Æ¯¼º°ú ¿øÀÚ ¼öÁØÀÇ ¾ãÀº ±¸Á¶´Â ÃÊÀúÀü·Â Æ®·£Áö½ºÅÍ, °í¼Ó ·ÎÁ÷ µð¹ÙÀ̽º, ¾çÀÚ ÄÄÇ»ÆÃ ÄÄÆ÷³ÍÆ®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±â¾÷Àº TMD¿Í ´Ù¸¥ 2D Àç·á¸¦ °áÇÕÇÑ ÇìÅ×·Î ±¸Á¶¸¦ ޱ¸ÇÏ°í ¿ì¼öÇÑ ¼º´ÉÀ» ½ÇÇöÇÏ·Á°í ÇÕ´Ï´Ù. ¹ÝµµÃ¼ »ê¾÷ÀÌ ½Ç¸®ÄÜÀÇ ½ºÄÉÀϸµ ÇѰ迡 Á÷¸éÇÏ´Â °¡¿îµ¥, TMD´Â ¶Ç ´Ù¸¥ ±æÀ» Á¦°øÇØ ÇâÈÄ 5³â°£ °¡Àü, AI Çϵå¿þ¾î, °í¼º´É ÄÄÇ»ÆÃ ½ÃÀå ÀüüÀÇ ¼ºÀå °¡´É¼ºÀ» Ç®¾î³¾ °ÍÀÔ´Ï´Ù.

±×·¡ÇÉ ¹× 2D Àç·á¿ÍÀÇ °æÀï

TMD´Â ±×·¡ÇÉ, Èæ¸° ¹× ±âŸ µ¶Æ¯ÇÑ Æ¯¼ºÀ» °¡Áø ½ÅÈï 2D ¼ÒÀç¿ÍÀÇ °æÀï ¾Ð·Â¿¡ Á÷¸éÇÕ´Ï´Ù. ±×·¡ÇÉÀº Àüµµ¼º°ú ±â°èÀû °­µµ°¡ ³ôÀ¸¸ç ƯÁ¤ ÀüÀÚ ¹× ¿¡³ÊÁö ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ °æÀïÀº Àç·á ¼º´É, ºñ¿ë ¹× ÅëÇÕ Àü·«ÀÌ °³¼±µÇÁö ¾Ê´Â ÇÑ ´ë·® »ý»ê ½ÃÀå¿¡¼­ TMD äÅÃÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ´ëü Àç·á°¡ Áõ°¡ÇÏ´Â µ¿¾È °ü·Ã¼ºÀ» À¯ÁöÇÏ°í ½ÃÀå Á¡À¯À²À» ¾ò±â À§ÇØ Æ¯¼º ÃÖÀûÈ­, ÇÏÀ̺긮µå Àç·á °³¹ß ¹× ÀÀ¿ë ºÐ¾ß¿¡ ƯȭµÈ ¼Ö·ç¼ÇÀ» ÅëÇØ Â÷º°È­ÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19ÀÇ ´ëÀ¯ÇàÀ¸·Î ÀÎÇØ 2Â÷¿ø TMD °ø±Þ¸ÁÀº ÀϽÃÀûÀ¸·Î È¥¶õ½º·¯¿ö Àü±¸Ã¼ÀÇ °¡¿ë¼º, Á¦Á¶ ¿î¿µ, R&D Ȱµ¿¿¡ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ÀüÀÚ ¹× ¹ÝµµÃ¼ »ê¾÷¿¡¼­´Â »ý»ê°ú »ó¾÷È­¿¡ Áö¿¬ÀÌ ¹ß»ýÇÏ¿© TMD ä¿ë¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª À¯Çà ÈÄ È¸º¹À¸·Î À¯¿¬ÇÑ ÀüÀÚ, ±¤ÀüÀÚ ¹× ¿¡³ÊÁö ÀúÀåÀÇ Ã·´Ü Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼ÓÈ­µÇ°í TMDÀÇ Àü·«Àû Á߿伺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. À¯ÅëÀº °ø±Þ¸ÁÀÇ Ãë¾à¼ºÀ» µ¸º¸ÀÌ°Ô ÇÏ´Â µ¿½Ã¿¡ TMD¿Í °°Àº °í¼º´É Àç·áÀÇ Åº·ÂÀûÀÎ »ý»ê °øÁ¤°ú ÇöÁö Á¶´Þ Àü·«ÀÇ Çʿ伺À» °­Á¶Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀÌȲȭ ¸ô¸®ºêµ§(MoS2) ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

ÀÌȲȭ ¸ô¸®ºêµ§(MoS2) ºÎ¹®Àº Ź¿ùÇÑ ÀüÀÚ Æ¯¼º, ¿­ ¾ÈÁ¤¼º ¹× À¯¿¬ÇÑ ÀüÀÚ Á¦Ç°ÀÇ ÅëÇÕ ÆíÀǼºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. MoS2ÀÇ Ãþ»ó ±¸Á¶¿Í Á¶Á¤ °¡´ÉÇÑ ¹êµå °¸Àº Æ®·£Áö½ºÅÍ, ±¤ °ËÃâ±â ¹× ¿¡³ÊÁö ÀåÄ¡¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ƯÈ÷ ºÏ¹Ì¿Í ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿¬±¸°³¹ß ¹× »ó¾÷¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô±â ¶§¹®¿¡ ÇâÈÄ 5³â°£Àº TMD ±â¹ÝÀÇ ÀÏ·ºÆ®·Î´Ð½º ¹× ±¤ÀüÀÚÀÇ Áö¹èÀûÀÎ Àç·á ºÎ¹®ÀÌ µË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ºÐ¸» ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È ºÐ¸» ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̰ÍÀº ´Ù¸ñÀû °¡°ø ¿É¼Ç°ú ¶ó¹Ì³×ÀÌÆ® ¼ºÇü ¹× º¹ÇÕÀç·á¿ÍÀÇ È£È¯¼ºÀ» µÞ¹ÞħÇÕ´Ï´Ù. ºÐ¸» TMD´Â È®Àå °¡´ÉÇÑ ÄÚÆÃ, À×Å© ó¹æ ¹× ¼Ö·ç¼Ç °¡°ø ±â¼úÀ» ¿ëÀÌÇÏ°Ô Çϸç À¯¿¬ÇÑ ÀüÀÚ Á¦Ç°, ¼¾¼­ ¹× ¿¡³ÊÁö ÀúÀå ¿ëµµ¸¦ Áö¿øÇÕ´Ï´Ù. ÇÏÀ̺긮µå ÀåÄ¡, ³ª³ëº¹ÇÕÀç ¹× ±â´É¼º À×Å©¿¡ ´ëÇÑ ½ÃÀåÀÇ ¸Å·ÂÀº »ê¾÷ ±Ô¸ðÀÇ Ã¤¿ë¿¡ ¸Å·ÂÀûÀÌ¸ç ¿¬±¸, »ó¾÷ ÀüÀÚ Á¦Ç° ¹× ÷´Ü Àç·á ½ÃÀå¿¡¼­ ³ôÀº CAGRÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â °ßÁ¶ÇÑ ÀüÀÚ Á¦Á¶, ¹ÝµµÃ¼ Á¦Á¶ ¹× ÷´Ü Àç·á ¿¬±¸¸¦ ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ±âÀÎÇÕ´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½º, ¿ÉÅäÀÏ·ºÆ®·Î´Ð½º, ³ª³ë Å×Å©³î·ÎÁöÀÇ Ã¤¿ëÀ¸·Î ¸®µåÇϰí ÀÖÀ¸¸ç, TMDÀÇ ÀÌ¿ëÀ» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿ø·á °ø±Þ±¹ÀÇ Á¸Àç, ¿¬±¸°³¹ß ÀÎÇÁ¶óÀÇ ¼ºÀå, ¿Õ¼ºÇÑ ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â ¼ö¿ä·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀº TMD ½ÃÀåÀÇ È®´ë¿¡ ÀÖ¾î Áö¹èÀûÀÎ Áö¿ªÀ¸·Î¼­ÀÇ ÁöÀ§¸¦ ´õ¿í °ß°íÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø±â°£ µ¿¾È ºÏ¹Ì´Â ¹ÝµµÃ¼ ¿¬±¸, ¹æÀ§ÀüÀÚ, ÇÏÀÌÅ×Å© Á¦Á¶¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â Â÷¼¼´ë ÀÏ·ºÆ®·Î´Ð½º, ¾çÀÚ µð¹ÙÀ̽º, ±¤ÀüÀÚ ±â¼ú Çõ½Å¿¡ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç TMD ä¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ¿¬±¸±â°üÀÇ Á¸Àç, Áß¿äÇÑ Àç·á¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø, ¼¼°èÀûÀÎ Àç·á Á¦Á¶¾÷ü¿ÍÀÇ Çù·Â°ü°è Áõ°¡°¡ ±Þ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ºÏ¹Ì´Â ÇâÈÄ 5³â°£ 2Â÷¿ø TMD ¿ëµµÀÇ °í¼ºÀå ½ÃÀåÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ 2D ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀå : À¯Çüº°

  • ÀÌȲȭ ¸ô¸®ºêµ§(MoS2)
  • ÀÌȲȭ ÅÖ½ºÅÙ(WS2)
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ 2D ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀå : Çüź°

  • ÆÄ¿ì´õ
  • Ç÷¹ÀÌÅ©
  • CVD Çʸ§

Á¦7Àå ¼¼°èÀÇ 2DÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀå : µî±Þº°

  • ÀüÀÚ
  • Ç¥ÁØ µî±Þ
  • »ê¾÷¿ë µî±Þ

Á¦8Àå ¼¼°èÀÇ 2D ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀå : ÇÕ¼ºº°

  • È­ÇÐ ÁõÂø¹ý(CVD)
  • ¾×»ó ¹Ú¸®(LPE)
  • ±â°èÀû ¹Ú¸®

Á¦9Àå ¼¼°èÀÇ 2D ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀå : ¿ëµµº°

  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • ¿ÉÅäÀÏ·ºÆ®·Î´Ð½º ¹× ¼¾¼­
  • ¿¡³ÊÁö ¹× Ã˸Å
  • ¹ÙÀÌ¿À¸ÞµðÄÃ

Á¦10Àå ¼¼°èÀÇ 2D ÀüÀÌ±Ý¼Ó µðÄ®ÄÚ°Ô³ªÀ̵å(TMD) ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • 2D Semiconductors Inc.
  • HQ Graphene
  • Graphene Supermarket
  • SixCarbon Technology
  • ACS Material LLC
  • Nanografi Nano Technology
  • American Elements
  • NanoIntegris Technologies
  • Strem Chemicals Inc.
  • 2D Materials Pte Ltd.
  • Graphene Laboratories Inc.
  • Nanochemazone
  • Goodfellow Corporation
  • Cheaptubes Inc.
  • Sigma-Aldrich
  • Sixonia Tech GmbH
  • Smart-elements GmbH
  • NanoXplore Inc.
JHS

According to Stratistics MRC, the Global 2D Transition Metal Dichalcogenides (TMDs) Market is accounted for $1.8 billion in 2025 and is expected to reach $4.1 billion by 2032 growing at a CAGR of 12% during the forecast period. 2D transition metal dichalcogenides (TMDs) are a class of layered materials composed of transition metals (such as Mo, W) bonded with chalcogen atoms (S, Se, Te) in a two-dimensional structure. When thinned to a monolayer, TMDs exhibit unique electronic, optical, and mechanical properties, including direct bandgaps and high carrier mobility. These characteristics make them promising for applications in semiconductors, optoelectronics, energy storage, and flexible devices. Their tunable properties position TMDs as key materials for future nanotechnology and electronics.

According to research at MIT, 2D TMDs like molybdenum disulfide are enabling the development of transistors that are just three atoms thick, paving the way for post-silicon electronics.

Market Dynamics:

Driver:

High electronic and optical properties

The 2D Transition Metal Dichalcogenides (TMDs) market is primarily driven by their exceptional electronic and optical properties, which enable high-performance applications in semiconductors, photodetectors, and optoelectronic devices. Materials such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) exhibit tunable bandgaps, high carrier mobility, and strong light-matter interactions, making them ideal for next-generation electronic components. These intrinsic properties allow miniaturization, flexibility, and integration into advanced devices, thereby fueling adoption across electronics, energy storage, and flexible display sectors globally.

Restraint:

Limited large-scale production methods

Large-scale production of 2D TMDs is constrained by the lack of industrially viable methods. Achieving uniform monolayer films with high purity and reproducibility is technologically challenging. Batch-to-batch variations, defects, and contamination can impact device performance, restricting adoption in commercial electronics and energy storage. Until cost-effective, scalable synthesis techniques are developed, market growth may be restricted, with adoption primarily concentrated in research labs, high-end semiconductor fabrication, and specialized optoelectronic applications.

Opportunity:

Applications in next-gen semiconductors

2D TMDs present significant opportunities in next-generation semiconductor technologies. Their tunable electronic properties and atomically thin structure enable ultra-low-power transistors, high-speed logic devices, and quantum computing components. Companies are exploring heterostructures combining TMDs with other 2D materials to achieve superior performance. As the semiconductor industry faces scaling limitations with silicon, TMDs offer an alternative path, unlocking growth potential across consumer electronics, AI hardware, and high-performance computing markets over the next five years.

Threat:

Competition from graphene and 2D materials

TMDs face competitive pressures from graphene, black phosphorus, and other emerging 2D materials with unique properties. Graphene offers higher conductivity and mechanical strength, making it preferable for certain electronic and energy applications. This competition may limit TMD adoption in high-volume markets unless material performance, cost, and integration strategies improve. Companies must differentiate through property optimization, hybrid material development, and application-specific solutions to maintain relevance and capture market share amidst growing alternatives.

Covid-19 Impact:

The Covid-19 pandemic temporarily disrupted the 2D TMDs supply chain, impacting precursor availability, manufacturing operations, and R&D activities. Electronics and semiconductor industries experienced delays in production and commercialization, which affected TMD adoption. However, post-pandemic recovery has accelerated demand for advanced materials in flexible electronics, optoelectronics, and energy storage, highlighting TMDs' strategic importance. The pandemic underscored supply chain vulnerabilities while simultaneously emphasizing the need for resilient production processes and local sourcing strategies for high-performance materials like TMDs.

The molybdenum disulfide (MoS2) segment is expected to be the largest during the forecast period

The molybdenum disulfide (MoS2) segment is expected to account for the largest market share during the forecast period due to its superior electronic properties, thermal stability, and ease of integration in flexible electronics. MoS2's layered structure and tunable bandgap make it ideal for transistors, photodetectors, and energy devices. Its high demand in R&D and commercial applications, particularly in North America and Asia Pacific, positions it as the dominant material segment in TMD-based electronics and optoelectronics over the next five years.

The powder segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the powder segment is predicted to witness the highest growth rate, propelled by its versatile processing options and compatibility with additive manufacturing and composite materials. Powdered TMDs facilitate scalable coating, ink formulations, and solution-processing techniques, supporting flexible electronics, sensors, and energy storage applications. Their adaptability for hybrid devices, nanocomposites, and functional inks makes them attractive for industrial-scale adoption, driving high CAGR in research, commercial electronics, and advanced materials markets.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to robust electronics manufacturing, semiconductor fabrication, and government initiatives promoting advanced materials research. Countries like China, Japan, and South Korea lead in flexible electronics, optoelectronics, and nanotechnology adoption, increasing TMD utilization. The presence of major raw material suppliers, growing R&D infrastructure, and strong consumer electronics demand further solidify Asia Pacific as the dominant region for TMD market expansion globally.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with increasing investments in semiconductor research, defense electronics, and high-tech manufacturing. The U.S. and Canada are focusing on next-generation electronics, quantum devices, and optoelectronic innovations, driving TMD adoption. Presence of advanced research institutions, government support for critical materials, and rising collaborations with global material manufacturers contribute to rapid growth, positioning North America as a high-growth market for 2D TMD applications over the next five years.

Key players in the market

Some of the key players in 2D Transition Metal Dichalcogenides (TMDs) Market include 2D Semiconductors Inc., HQ Graphene, Graphene Supermarket, SixCarbon Technology, ACS Material LLC, Nanografi Nano Technology, American Elements, NanoIntegris Technologies, Strem Chemicals Inc., 2D Materials Pte Ltd., Graphene Laboratories Inc., Nanochemazone, Goodfellow Corporation, Cheaptubes Inc., Sigma-Aldrich, Sixonia Tech GmbH, Smart-elements GmbH, and NanoXplore Inc.

Key Developments:

In Sep 2025, HQ Graphene announced the commercial launch of its large-scale, roll-to-roll (R2R) production process for monolayer molybdenum disulfide (MoS2) films, significantly reducing costs for next-generation flexible electronics manufacturers.

In Aug 2025, ACS Material LLC introduced a new high-purity, single-crystal tungsten diselenide (WSe2) product line, specifically engineered for advanced optoelectronic research and the development of high-efficiency photodetectors.

In July 2025, 2D Semiconductors Inc. launched its proprietary 'TMD-Alloy' series, a new class of alloyed TMDs (e.g., MoS2(1-x)Se2x) that allows for precise bandgap tuning, enabling customized performance for specific semiconductor applications.

Types Covered:

  • Molybdenum Disulfide (MoS2)
  • Tungsten Disulfide (WS2)
  • Other Types

Forms Covered:

  • Powder
  • Flakes
  • CVD Films

Grades Covered:

  • Electronic
  • Standard Grade
  • Industrial Grade

Synthesis's Covered:

  • Chemical Vapor Deposition (CVD)
  • Liquid-Phase Exfoliation (LPE)
  • Mechanical Exfoliation

Applications Covered:

  • Electronics & Semiconductors
  • Optoelectronics & Sensors
  • Energy & Catalysis
  • Biomedical

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global 2D Transition Metal Dichalcogenides (TMDs) Market, By Type

  • 5.1 Introduction
  • 5.2 Molybdenum Disulfide (MoS2)
  • 5.3 Tungsten Disulfide (WS2)
  • 5.4 Other Types

6 Global 2D Transition Metal Dichalcogenides (TMDs) Market, By Form

  • 6.1 Introduction
  • 6.2 Powder
  • 6.3 Flakes
  • 6.4 CVD Films

7 Global 2D Transition Metal Dichalcogenides (TMDs) Market, By Grade

  • 7.1 Introduction
  • 7.2 Electronic
  • 7.3 Standard Grade
  • 7.4 Industrial Grade

8 Global 2D Transition Metal Dichalcogenides (TMDs) Market, By Synthesis

  • 8.1 Introduction
  • 8.2 Chemical Vapor Deposition (CVD)
  • 8.3 Liquid-Phase Exfoliation (LPE)
  • 8.4 Mechanical Exfoliation

9 Global 2D Transition Metal Dichalcogenides (TMDs) Market, By Application

  • 9.1 Introduction
  • 9.2 Electronics & Semiconductors
  • 9.3 Optoelectronics & Sensors
  • 9.4 Energy & Catalysis
  • 9.5 Biomedical

10 Global 2D Transition Metal Dichalcogenides (TMDs) Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 2D Semiconductors Inc.
  • 12.2 HQ Graphene
  • 12.3 Graphene Supermarket
  • 12.4 SixCarbon Technology
  • 12.5 ACS Material LLC
  • 12.6 Nanografi Nano Technology
  • 12.7 American Elements
  • 12.8 NanoIntegris Technologies
  • 12.9 Strem Chemicals Inc.
  • 12.10 2D Materials Pte Ltd.
  • 12.11 Graphene Laboratories Inc.
  • 12.12 Nanochemazone
  • 12.13 Goodfellow Corporation
  • 12.14 Cheaptubes Inc.
  • 12.15 Sigma-Aldrich
  • 12.16 Sixonia Tech GmbH
  • 12.17 Smart-elements GmbH
  • 12.18 NanoXplore Inc.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦