½ÃÀ庸°í¼­
»óǰÄÚµå
1818081

¼¼°èÀÇ ±ÝÀ¶ ÄÄÇöóÀÌ¾ð½º¿ë ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå ¿¹Ãø(-2032³â) : ±¸¼º¿ä¼Òº°, Àü°³ ¸ðµ¨º°, ±â¾÷ ±Ô¸ðº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Robotic Process Automation for Financial Compliance Market Forecasts to 2032 - Global Analysis By Component, Deployment Model, Enterprise Size (Large Enterprises, and Small & Medium Enterprises ), Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ±ÝÀ¶ ÄÄÇöóÀ̾𽺿ë RPA(·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­) ½ÃÀåÀº 2025³â¿¡ 38¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â 137¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 20.1%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

±ÝÀ¶ ÄÄÇöóÀÌ¾ð½º¿ë ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­(RPA)´Â ±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠¿öÅ©Ç÷ο쿡¼­ ¹Ýº¹ÀûÀÎ ±ÔÄ¢ ±â¹Ý ÀÛ¾÷À» ÀÚµ¿È­Çϱâ À§ÇØ ¼ÒÇÁÆ®¿þ¾î ·Îº¿À» »ç¿ëÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ¿©±â¿¡´Â °Å·¡ ¸ð´ÏÅ͸µ, ¸®½ºÅ© Æò°¡, ±ÔÁ¦ º¸°í, °¨»ç ÃßÀû µîÀÇ ¾÷¹«°¡ Æ÷ÇԵ˴ϴÙ. RPA´Â È¿À²¼ºÀ» ³ôÀ̰í, ÀÎÀû ¿À·ù¸¦ ÁÙÀ̸ç, ±ÝÀ¶±â°üÀÇ ÄÄÇöóÀ̾𽺠¾÷¹«¸¦ ½Å¼ÓÇÏ°Ô Ã³¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. RPA´Â ¿î¿µ ºñ¿ë Àý°¨, µ¥ÀÌÅÍ Á¤È®µµ Çâ»ó, °íµµ·Î ¿ªµ¿ÀûÀÎ ±ÝÀ¶ ȯ°æ¿¡¼­ ½Ç½Ã°£ ±ÔÁ¦ ¸ð´ÏÅ͸µÀ» Áö¿øÇϸ鼭 ÁøÈ­ÇÏ´Â ±ÔÁ¦ Áؼö¸¦ À¯ÁöÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

º¹ÀâÇØÁö´Â ÄÄÇöóÀ̾𽺠±ÔÁ¦

±ÔÁ¦°¡ Á¡Á¡ ´õ ¾ö°ÝÇØÁü¿¡ µû¶ó ±â¾÷µéÀº ÄÄÇöóÀ̾𽺠¿ä°ÇÀ» ¼öÀÛ¾÷À¸·Î °ü¸®ÇØ¾ß ÇÏ´Â ¾î·Á¿ò¿¡ Á÷¸éÇϰí ÀÖÀ¸¸ç, ¿î¿µ ºñ¿ë Áõ°¡¿Í ÄÄÇöóÀ̾𽺠À§¹ÝÀ¸·Î ÀÎÇÑ Ã³¹úÀÇ À§Çè¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. RPA´Â °Å·¡ ¸ð´ÏÅ͸µ, ±ÔÁ¦ ´ç±¹ º¸°í, °¨»ç ÃßÀû À¯Áö µî ¹Ýº¹ÀûÀÎ ÄÄÇöóÀ̾𽺠¾÷¹«ÀÇ ÀÚµ¿È­¸¦ ÅëÇØ ÀÎÀû ¿À·ù¸¦ ÁÙÀ̰í È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ÔÁ¦ º¯°æ¿¡ µû¸¥ ½Ç½Ã°£ ÄÄÇöóÀ̾𽺠¾÷µ¥ÀÌÆ®¸¦ º¸ÀåÇÏ¿© ÀûÀÀ¼ºÀ» ³ôÀÔ´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ´ëÇü ±ÝÀ¶±â°ü¿¡¼­´Â ÀÚµ¿È­¸¦ ÅëÇØ ÄÄÇöóÀ̾𽺠¾÷¹«ÀÇ È®À强À» Çâ»ó½ÃÄÑ ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

·¹°Å½Ã ½Ã½ºÅÛ°úÀÇ ÅëÇÕ °úÁ¦

¸¹Àº ±ÝÀ¶±â°üÀº ±¸½Ä IT ÀÎÇÁ¶ó·Î ¿î¿µµÇ°í ÀÖÀ¸¸ç, ÃֽŠÀÚµ¿È­ ÅøÀ» ¿øÈ°ÇÏ°Ô µµÀÔÇÏ´Â µ¥ ÇÊ¿äÇÑ À¯¿¬¼ºÀÌ ºÎÁ·ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ·¹°Å½Ã ½Ã½ºÅÛÀº »óÈ£¿î¿ë¼ºÀÌ ³·°í, API°¡ Á¦ÇÑÀûÀ̸ç, µ¥ÀÌÅÍ ±¸Á¶°¡ ¿À·¡µÇ°í, ÅëÇÕÀÌ ¾î·Æ°í, ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ, ÅëÇÕ Áß ½Ã½ºÅÛ ´Ù¿îÀÌ ¹ß»ýÇÒ ¼ö ÀÖ¾î ¿î¿µ»óÀÇ ¸®½ºÅ©°¡ ¹ß»ýÇÏ¿© µµÀÔ¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÅëÇÕ ÇÁ·ÎÁ§Æ®¸¦ °ü¸®ÇÒ ¼ö ÀÖ´Â ¼÷·ÃµÈ ÀηÂÀÌ ºÎÁ·ÇÏ¿© µµÀÔ¿¡ ¼Ò¿äµÇ´Â ½Ã°£°ú ºñ¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

AI¸¦ ÅëÇÑ °íµµÀÇ ÄÄÇöóÀ̾𽺠¸ð´ÏÅ͸µ

±âÁ¸ ±ÔÄ¢ ±â¹Ý ½Ã½ºÅÛ°ú ´Þ¸® AI ±â¹Ý Ç÷§ÆûÀº ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© ÄÄÇöóÀ̾𽺠À§¹ÝÀ» ³ªÅ¸³»´Â º¹ÀâÇÑ ÆÐÅÏÀ» °¨ÁöÇÏ°í ¿¹ÃøÀû ¸®½ºÅ© °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÁøÈ­ÇÏ´Â ±ÔÁ¦¿Í °Å·¡ µ¥ÀÌÅͷκÎÅÍ Áö¼ÓÀûÀ¸·Î ÇнÀÇÏ¿© ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀÇ»ç°áÁ¤ÀÇ Á¤È®¼ºÀ» ³ôÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÚ¿¬¾î ó¸®(NLP)¸¦ ÅëÇÕÇÏ¿© ¹ý·ü ¹®¼­, °í°´°úÀÇ Ä¿¹Â´ÏÄÉÀÌ¼Ç µî ºñÁ¤Çü µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÀÚµ¿ °ËÅä°¡ °¡´ÉÇÏ¿© ¼öÀÛ¾÷ÀÇ ºÎ´ãÀ» ´õ¿í ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼­ ±ÝÀ¶±â°üÀº Á¾ÇÕÀûÀÎ ÄÄÇöóÀ̾𽺠Ȯº¸, ó¹ú ÃÖ¼ÒÈ­, ¾÷¹« È¿À²¼º À¯Áö¸¦ À§ÇØ AI¸¦ Ȱ¿ëÇÑ RPA ¼Ö·ç¼Ç µµÀÔÀ» ´Ã¸®°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå È®´ë¿¡ ÈûÀ» ½Ç¾îÁÖ°í ÀÖ½À´Ï´Ù.

»çÀ̹ö º¸¾È ¸®½ºÅ©

RPA ½Ã½ºÅÛÀº ±â¹Ð¼ºÀÌ ³ôÀº ±ÝÀ¶ ÄÄÇöóÀ̾𽺠¾÷¹«¸¦ ÀÚµ¿È­ÇÏ°í ¹æ´ëÇÑ ¾çÀÇ ±â¹Ð µ¥ÀÌÅÍ¿¡ Á¢±ÙÇϱ⠶§¹®¿¡ »çÀ̹ö °ø°ÝÀÇ Ç¥ÀûÀÌ µÇ±â ½±½À´Ï´Ù. Ä§ÇØµÉ °æ¿ì, µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¹«´Ü Á¢±Ù, ±ÔÁ¦ ´ç±¹ÀÇ ¹ú±Ý, À¯¾ðºñ¾î µîÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿©·¯ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ¸é °ø°Ý ´ë»óÀÌ ´Ã¾î³ª±â ¶§¹®¿¡ Ãë¾àÁ¡ÀÌ ÁõÆøµË´Ï´Ù. ¶ÇÇÑ, ºÒÃæºÐÇÑ ¾Ïȣȭ, Ãë¾àÇÑ ÀÎÁõ ÇÁ·ÎÅäÄÝ µî RPA µµÀÔ ½Ã ºÒÃæºÐÇÑ º¸¾È ´ëÃ¥Àº À§ÇùÀ» ´õ¿í ¾ÇÈ­½Ãŵ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ±ÝÀ¶ ÄÄÇöóÀ̾𽺠ºÐ¾ß¿¡¼­ ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­(RPA)ÀÇ µµÀÔÀÌ Å©°Ô °¡¼ÓÈ­µÇ¾ú°í, Á¶Á÷ÀÇ ¿ø°Ý ¿î¿µÀ¸·ÎÀÇ ÀüȯÀÌ °¡¼ÓÈ­µÇ¾ú½À´Ï´Ù. »çȸÀû °Å¸®µÎ±â¿Í Àη °¨ÃàÀ¸·Î ÀÎÇØ ¼öÀÛ¾÷¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ÄÄÇöóÀ̾𽺸¦ À¯ÁöÇϱâ À§ÇÑ ÀÚµ¿È­ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹Í ±â°£ µ¿¾È µðÁöÅÐ °Å·¡°¡ ±ÞÁõÇϸ鼭 ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã°¡ °­È­µÇ¾ú°í, ±â¾÷µéÀº ÀÚµ¿È­µÈ ½Ç½Ã°£ ÄÄÇöóÀ̾𽺠¸ð´ÏÅ͸µÀ» ¿ä±¸ÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í Ãʱ⿡´Â °ø±Þ¸ÁÀÌ ´ÜÀýµÇ°í IT ÀÚ¿øÀÌ Á¦ÇÑµÇ¾î µµÀÔ¿¡ ¾î·Á¿òÀ» °Þ¾ú½À´Ï´Ù. ¶ÇÇÑ, °æ±âÀÇ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¹Ì·ç´Â ±ÝÀ¶±â°üµµ ÀÖ¾ú½À´Ï´Ù. °á±¹, ÆÒµ¥¹ÍÀº ¾÷¹« ȸº¹·Â È®º¸¿¡ ÀÖ¾î RPAÀÇ °¡Ä¡¸¦ ´Ù½Ã ÇÑ ¹ø °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼­ºñ½º ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼­ºñ½º ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ±ÝÀ¶±â°üÀÌ º¹ÀâÇÑ RPA ¼Ö·ç¼Ç µµÀÔ¿¡ Àü¹®°¡ÀÇ Áöµµ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ÄÁ¼³ÆÃ, ½Ã½ºÅÛ ÅëÇÕ, À¯Áöº¸¼ö ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¼­ºñ½ºÇü ÄÄÇöóÀ̾𽺠¸ð´ÏÅ͸µ, ½Ã½ºÅÛ ¾÷±×·¹À̵å, Áö¼ÓÀûÀÎ ±â¼ú Áö¿ø µîÀÇ ¼­ºñ½º¸¦ ÅëÇØ Á¶Á÷ÀÌ ±ÔÁ¦ ¹®Á¦¸¦ È¿À²ÀûÀ¸·Î ÇØ°áÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, ¸¹Àº ±ÝÀ¶±â°üµéÀº »ç³» Àü¹®Áö½Ä°ú ¼±Çà ¼³ºñÅõÀÚ ºÎ´ãÀ» ÁÙÀ̱â À§ÇØ ¸Å´ÏÁöµå ¼­ºñ½º ¸ðµ¨À» ¼±È£Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼­ºñ½º Á¦°ø¾÷üµéÀº ƯÁ¤ ±ÔÁ¦ ȯ°æ¿¡ ¸Â´Â ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖÀ¸¸ç, À̴ äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®

¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå µµÀÔÀ¸·Î È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ RPA ¼Ö·ç¼ÇÀ» ±¸ÇöÇÒ ¼ö ÀÖ¾î ´ë±Ô¸ð ¿ÂÇÁ·¹¹Ì½º ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÏÁö ¾Ê½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý ¸ðµ¨Àº º¸´Ù ºü¸¥ ¹èÆ÷¿Í ½Ç½Ã°£ ¾÷µ¥ÀÌÆ®¸¦ ÅëÇØ ÁøÈ­ÇÏ´Â ±ÔÁ¦¸¦ ÁؼöÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, ¿ø°ÝÁö¿¡¼­ÀÇ Á¢±ÙÀº ƯÈ÷ ÆÒµ¥¹Í ÀÌÈÄ ºÐ»êÇü ÀηÂÀÇ Áõ°¡ Ãß¼¼¿¡ ºÎÇÕÇÕ´Ï´Ù. ±ÝÀ¶±â°üµéÀº ¹Îø¼º, ÃѼÒÀ¯ºñ¿ë Àý°¨, µ¥ÀÌÅÍ ¹é¾÷ ¹× ÀçÇØ º¹±¸ °­È­¶ó´Â Ãø¸é¿¡¼­ Ŭ¶ó¿ìµå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ȯ°æÀº °í±Þ AI ±â¹Ý ÄÄÇöóÀ̾𽺠¸ð´ÏÅ͸µ Åø°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» ¿ëÀÌÇÏ°Ô Çϰí, ½Ç½Ã°£ À§Çè Æò°¡ ´É·ÂÀ» °­È­ÇÕ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ¼º¼÷ÇÑ ±ÝÀ¶ ¼­ºñ½º »ê¾÷, ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, µðÁöÅÐ ±â¼úÀÇ Á¶±â µµÀÔÀº ÀÌ ½ÃÀåÀÇ ¿ìÀ§¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì±¹¿¡´Â ÁÖ¿ä RPA ¼Ö·ç¼Ç Á¦°ø¾÷üµéÀÌ Á¸ÀçÇϸç, Áö¼ÓÀûÀÎ Çõ½Å°ú ¼­ºñ½º Á¦°øÀ» ÅëÇØ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, SEC ¹× FINRA¿Í °°Àº ±ÔÁ¦ ±â°üÀº ¾ö°ÝÇÑ ÄÄÇöóÀ̾𽺠¿ä°ÇÀ» ºÎ°úÇϰí ÀÖÀ¸¸ç, ±ÝÀ¶±â°üÀº ÀÚµ¿È­ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù. ¼÷·ÃµÈ IT Àü¹®°¡¿Í ÷´Ü IT ÀÎÇÁ¶ó¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ´Ù´Â Á¡µµ ä¿ëÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±ÝÀ¶¼­ºñ½ºÀÇ ±Þ¼ÓÇÑ µðÁöÅÐÈ­´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ È®´ë¿Í ÇÔ²² Àεµ, Áß±¹, ÀϺ»°ú °°Àº ½ÅÈï ½ÃÀå¿¡¼­ RPA µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¹°æÀ» ³Ñ³ªµå´Â ±ÝÀ¶ Ȱµ¿ÀÇ Áõ°¡·Î ÀÎÇØ ¾ö°ÝÇÑ ÄÄÇöóÀ̾𽺠´ëÃ¥ÀÌ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ÀÚµ¿È­¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ºñ¿ë¿¡ ¹Î°¨ÇÑ Á¶Á÷µéÀº ÀÚº» ÁöÃâÀ» ÁÙÀÌ°í µµÀÔÀ» °¡¼ÓÈ­Çϱâ À§ÇØ Å¬¶ó¿ìµå ±â¹Ý RPA ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â µðÁöÅÐ ÀüȯÀ» Àû±Ø Áö¿øÇϰí ÀÖÀ¸¸ç, RPAÀÇ ¼ºÀå¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÉÅ×Å© ½ºÅ¸Æ®¾÷ »ýŰèÀÇ ¼ºÀåÀº Çõ½Å°ú ÇöÁöÈ­ µÈ ¼Ö·ç¼Ç °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ±â¾÷ ¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ±ÝÀ¶ ÄÄÇöóÀÌ¾ð½º¿ë ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ±ÝÀ¶ ÄÄÇöóÀÌ¾ð½º¿ë ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : Àü°³ ¸ðµ¨º°

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå ±â¹Ý

Á¦7Àå ¼¼°è ±ÝÀ¶ ÄÄÇöóÀÌ¾ð½º¿ë ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­(RPA) ½ÃÀå : ±â¾÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦8Àå ±ÝÀ¶ ÄÄÇöóÀÌ¾ð½º¿ë ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : ¿ëµµº°

  • Àڱݼ¼Å¹¹æÁö(AML)¡¤°í°´ È®ÀÎ(KYC)
  • ±ÔÁ¦ º¸°í
  • °Å·¡ ¸ð´ÏÅ͸µ¡¤ºÎÁ¤ °ËÃâ
  • °¨»ç¡¤³»ºÎ ÅëÁ¦
  • ÄÄÇöóÀ̾𽺠º¸°í¡¤¹®¼­È­

Á¦9Àå ±ÝÀ¶ ÄÄÇöóÀÌ¾ð½º¿ë ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀºÇà ¾÷¹«
  • ±ÝÀ¶ ¼­ºñ½º
    • ÀÚº» ½ÃÀå
    • ÅõÀÚ ÀºÇà
  • º¸Çè
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ ±ÝÀ¶ ÄÄÇöóÀÌ¾ð½º¿ë ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • UiPath
  • Automation Anywhere
  • Blue Prism
  • Microsoft
  • Pegasystems
  • NICE
  • IBM
  • SAP
  • Appian
  • Alteryx
  • WorkFusion
  • Tungsten Automation
  • Datamatics
  • Nividous
  • Redwood
  • Pega
  • AutomationEdge
  • Verint
KSM 25.10.02

According to Stratistics MRC, the Global Robotic Process Automation (RPA) for Financial Compliance Market is accounted for $3.81 billion in 2025 and is expected to reach $13.76 billion by 2032 growing at a CAGR of 20.1% during the forecast period. Robotic Process Automation (RPA) for financial compliance involves using software robots to automate repetitive, rule-based tasks in regulatory and compliance workflows. This includes activities such as transaction monitoring, risk assessments, regulatory reporting, and audit trails. RPA improves efficiency, reduces human error, and ensures faster processing of compliance tasks in financial institutions. It helps maintain adherence to evolving regulations while lowering operational costs, enhancing data accuracy, and supporting real-time regulatory monitoring in a highly dynamic financial environment.

Market Dynamics:

Driver:

Rising regulatory compliance complexity

As regulations become increasingly stringent, firms face growing challenges in manually managing compliance requirements, leading to higher operational costs and the risk of non-compliance penalties. RPA enables automation of repetitive compliance tasks such as transaction monitoring, regulatory reporting, and audit trail maintenance, reducing human error and improving efficiency. Additionally, it ensures real-time compliance updates in response to regulatory changes, thus enhancing adaptability. Moreover, automation enables scalability in managing compliance workloads, especially in large financial institutions, driving market expansion.

Restraint:

Integration challenges with legacy systems

Many financial institutions operate on outdated IT infrastructure, lacking the flexibility needed to seamlessly adopt modern automation tools. These legacy systems often have poor interoperability, limited APIs, and outdated data structures, making integration cumbersome and costly. Moreover, the potential for system downtime during integration poses operational risks, which hinders adoption. Additionally, skilled personnel capable of managing integration projects are in short supply, increasing implementation time and expenses.

Opportunity:

Advanced AI-driven compliance monitoring

Unlike traditional rule-based systems, AI-powered platforms can analyze vast datasets to detect complex patterns indicative of compliance violations, enabling predictive risk management. Additionally, these solutions continuously learn from evolving regulations and transactional data, enhancing decision-making accuracy over time. Moreover, integrating natural language processing (NLP) enables automated review of unstructured data such as legal documents and customer communications, further reducing manual workload. As regulatory demands grow, financial institutions increasingly adopt AI-driven RPA solutions to ensure comprehensive compliance, minimize penalties, and maintain operational efficiency, thus boosting market expansion.

Threat:

Cybersecurity risks

As RPA systems automate sensitive financial compliance tasks and access vast amounts of confidential data, they become prime targets for cyberattacks. A breach could result in unauthorized data access, regulatory fines, and reputational damage. Additionally, the increased attack surface introduced by integrating multiple systems amplifies vulnerability. Moreover, insufficient security measures during RPA implementation, such as inadequate encryption and weak authentication protocols, further exacerbate the threat.

Covid-19 Impact:

The COVID-19 pandemic significantly accelerated the adoption of Robotic Process Automation (RPA) in financial compliance as organizations shifted to remote operations. Social distancing measures and workforce reductions intensified the need for automated solutions to maintain compliance without relying on manual processes. Additionally, the surge in digital transactions during the pandemic heightened regulatory scrutiny, prompting firms to seek automated, real-time compliance monitoring. However, the initial phases of the pandemic posed implementation challenges due to disrupted supply chains and IT resource limitations. Moreover, economic uncertainties led some institutions to defer digital transformation investments. Ultimately, the pandemic underscored RPA's value in ensuring operational resilience.

The services segment is expected to be the largest during the forecast period

The services segment is expected to account for the largest market share during the forecast period. This dominance is attributed to the growing demand for consulting, system integration, and maintenance services, as financial institutions require expert guidance for implementing complex RPA solutions. Services such as compliance monitoring as a service, system upgrades, and ongoing technical support help organizations navigate regulatory challenges efficiently. Additionally, many financial firms prefer managed services models to reduce the burden of in-house expertise and upfront capital expenditure. Moreover, service providers offer customized solutions tailored to specific regulatory environments, further driving adoption.

The cloud-based segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the cloud-based segment is predicted to witness the highest growth rate. Cloud deployment enables scalable, cost-effective RPA solutions, eliminating the need for extensive on-premises infrastructure. Additionally, cloud-based models offer faster deployment and real-time updates, ensuring compliance with evolving regulations. Moreover, remote accessibility aligns with the growing trend of distributed workforces, especially post-pandemic. Financial institutions increasingly favor cloud solutions for their agility, lower total cost of ownership, and enhanced data backup and disaster recovery options. Furthermore, cloud environments facilitate seamless integration with advanced AI-driven compliance monitoring tools, strengthening real-time risk assessment capabilities.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. The region's mature financial services industry, stringent regulatory frameworks, and early adoption of digital technologies drive this market dominance. Additionally, the presence of major RPA solution providers in the U.S. enhances market growth through continuous innovation and service offerings. Moreover, regulatory bodies like the SEC and FINRA impose rigorous compliance requirements, compelling financial institutions to invest in automation solutions. The availability of skilled IT professionals and advanced IT infrastructure further accelerates adoption.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid digitalization in financial services, coupled with expanding regulatory frameworks, drives RPA adoption across emerging markets such as India, China, and Japan. Additionally, increasing cross-border financial activities demand stringent compliance measures, further encouraging automation. Moreover, cost-sensitive organizations in the region adopt cloud-based RPA solutions to reduce capital expenditure and accelerate implementation. Governments actively support digital transformation initiatives, creating a favorable environment for RPA growth. Furthermore, the growing startup ecosystem in fintech drives innovation and localized solution development.

Key players in the market

Some of the key players in Robotic Process Automation (RPA) for Financial Compliance Market include UiPath, Automation Anywhere, Blue Prism, Microsoft, Pegasystems, NICE, IBM, SAP, Appian, Alteryx, WorkFusion, Tungsten Automation, Datamatics, Nividous, Redwood, Pega, AutomationEdge and Verint.

Key Developments:

In September 2025, Microsoft introduced AI agents specifically for financial operations, focusing on compliance and risk management. Their solution addresses journal entry automation, financial close processes, and regulatory compliance through IBM(R) watsonx Orchestrate(TM) integration. The Jobotx initiative demonstrated projected cycle time reductions of over 90% for financial close and reconciliation processes, with potential annual cost savings of approximately $600,000.

In September 2025, Pegasystems announced industry-first robotic automation capabilities for Pega Client Lifecycle Management (CLM) and Pega Know Your Customer (KYC) applications. The solution enables banks to leverage robotic automation to speed client onboarding processes, reduce operational costs, and accelerate time to market while ensuring compliance with KYC regulatory requirements across different global jurisdictions.

In October 2024, UiPath announced a significant partnership where the UiPath Platform will be integrated with SAP Build Process Automation and sold as one of the SAP Solution Extensions. This integration helps customers accelerate business transformation, migrate critical systems to SAP S/4HANA Cloud, and streamline business processes across enterprise systems. The solution is designed to simplify and accelerate migration to SAP S/4HANA Cloud while enhancing rapid, sustained innovation for compliance-driven processes.

Components:

  • Software
  • Services

Deployment Models Covered:

  • On-Premise
  • Cloud-Based

Enterprise Sizes Covered:

  • Large Enterprises
  • Small and Medium Enterprises (SMEs)

Applications Covered:

  • Anti-Money Laundering (AML) and Know Your Customer (KYC)
  • Regulatory Reporting
  • Transaction Monitoring and Fraud Detection
  • Audit and Internal Controls
  • Compliance Reporting and Documentation

End Users Covered:

  • Banking
  • Financial Services
  • Insurance
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Robotic Process Automation (RPA) for Financial Compliance Market, By Component

  • 5.1 Introduction
  • 5.2 Software
  • 5.3 Services

6 Global Robotic Process Automation (RPA) for Financial Compliance Market, By Deployment Model

  • 6.1 Introduction
  • 6.2 On-Premise
  • 6.3 Cloud-Based

7 Global Robotic Process Automation (RPA) for Financial Compliance Market, By Enterprise Size

  • 7.1 Introduction
  • 7.2 Large Enterprises
  • 7.3 Small and Medium Enterprises (SMEs)

8 Global Robotic Process Automation (RPA) for Financial Compliance Market, By Application

  • 8.1 Introduction
  • 8.2 Anti-Money Laundering (AML) and Know Your Customer (KYC)
  • 8.3 Regulatory Reporting
  • 8.4 Transaction Monitoring and Fraud Detection
  • 8.5 Audit and Internal Controls
  • 8.6 Compliance Reporting and Documentation

9 Global Robotic Process Automation (RPA) for Financial Compliance Market, By End User

  • 9.1 Introduction
  • 9.2 Banking
  • 9.3 Financial Services
    • 9.3.1 Capital Markets
    • 9.3.2 Investment Banking
  • 9.4 Insurance
  • 9.5 Other End Users

10 Global Robotic Process Automation (RPA) for Financial Compliance Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 UiPath
  • 12.2 Automation Anywhere
  • 12.3 Blue Prism
  • 12.4 Microsoft
  • 12.5 Pegasystems
  • 12.6 NICE
  • 12.7 IBM
  • 12.8 SAP
  • 12.9 Appian
  • 12.10 Alteryx
  • 12.11 WorkFusion
  • 12.12 Tungsten Automation
  • 12.13 Datamatics
  • 12.14 Nividous
  • 12.15 Redwood
  • 12.16 Pega
  • 12.17 AutomationEdge
  • 12.18 Verint
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦