![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1822333
¼¼°èÀÇ °øÀå µðÁöÅÐÈ¿Í ÀÚµ¿È ½ÃÀå ¿¹Ãø(-2032³â) : ÄÄÆ÷³ÍÆ®º°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®Factory Digitalization and Automation Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Technology, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ °øÀå µðÁöÅÐÈ¿Í ÀÚµ¿È ½ÃÀåÀº 2025³â¿¡ 2¾ï 3,734¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 7.6%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 3¾ï 9,633¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
°øÀåÀÇ µðÁöÅÐÈ¿Í ÀÚµ¿È´Â AI, IoT, ·Îº¿°øÇÐ, Ŭ¶ó¿ìµå Ç÷§Æû µîÀÇ ±â¼úÀ» »ý»ê ¿öÅ©Ç÷ο쿡 Á¢¸ñÇÏ¿© Á¦Á¶¾÷À» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» ÅëÇØ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ, ¿¹ÃøÀû À¯Áöº¸¼ö, µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤ÀÌ °¡´ÉÇØÁ® È¿À²¼º, »ý»ê·®, Á¦Ç° ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È¸¦ ÅëÇØ ¿î¿µ ºñ¿ë°ú ÀÎÀû ¿À·ù¸¦ ÁÙÀ̰í Á÷Àå ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. µðÁöÅÐ Æ®À©, ½º¸¶Æ® ¼¾¼, »óÈ£ ¿¬°áµÈ ±â°è¿Í °°Àº ±â¼úÀº »ý»ê ¶óÀÎ °£ÀÇ ¿øÈ°ÇÑ ¼ÒÅëÀ» °¡´ÉÇÏ°Ô Çϰí, Á¦Á¶¾÷ü°¡ ½ÃÀåÀÇ º¯È¿¡ ºü¸£°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
CHIPS and Science Act¿¡ µû¸£¸é ¹Ì±¹ Á¦Á¶¾÷°ú ¹ÝµµÃ¼ »ý»êÀ» µÇ»ì¸®±â À§ÇØ ¾à 530¾ï ´Þ·¯°¡ Ã¥Á¤µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Çö´ë½Ä °øÀå¿¡¼´Â ´ë±Ô¸ð ÀÚµ¿È°¡ ÇÊ¿äÇϸç, ·Îº¿ °øÇÐ ¹× µðÁöÅÐ ÆÑÅ丮 ±â¼ú¿¡ Å« ºñÁî´Ï½º ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù.
¾÷¹« È¿À²È¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
´õ ³ôÀº ¾÷¹« È¿À²À» Ãß±¸ÇÏ´Â °ÍÀº °øÀåÀÇ ÀÚµ¿È¿Í µðÁöÅÐȸ¦ ÃËÁøÇÏ´Â Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ±â¾÷Àº »ý»ê ¿öÅ©Ç÷ο츦 °³¼±Çϰí, »ý»ê Áֱ⸦ ´ÜÃàÇϰí, Àüü »ý»ê·®À» ´Ã·Á ¼ºÀåÇÏ´Â ½ÃÀå ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. AI, ·Îº¿ °øÇÐ, IoT ÀåÄ¡¿Í °°Àº ±â¼úÀº Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ, ¿¹Ãø ¼ºñ½º, ÃÖÀûÈµÈ ÇÁ·Î¼¼½º¸¦ °¡´ÉÇÏ°Ô Çϰí, ´Ù¿îŸÀÓ°ú ¿À·ù¸¦ ÁÙÀÔ´Ï´Ù. µðÁöÅÐ ½Ã½ºÅÛÀº °íǰÁú »ý»êÀ» À¯ÁöÇÏ¸é¼ ÀÚ¿ø ¼Òºñ¸¦ ÃÖ¼ÒÈÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. °æÀï ȯ°æÀº Á¦Á¶¾÷üµéÀÌ ÀüÅëÀûÀÎ Á¢±Ù ¹æ½Ä¿¡¼ ½º¸¶Æ® ±â¼ú Áß½ÉÀÇ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇϵµ·Ï ¾Ð¹ÚÇϰí ÀÖ½À´Ï´Ù. È¿À²¼ºÀ» ³ôÀÌ´Â °ÍÀº ºñ¿ëÀ» Àý°¨ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¼öÀͼº, ¿î¿µ ½Å·Ú¼º, °í°´ ¸¸Á·µµ¸¦ Çâ»ó½Ã۱⠶§¹®¿¡ ÀÚµ¿È´Â Çö´ë °øÀåÀÇ Àü·«ÀûÀÎ Çʼö ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë
°øÀåÀÇ µðÁöÅÐÈ ¹× ÀÚµ¿È¸¦ À§ÇÑ ³ôÀº Ãʱ⠺ñ¿ëÀº ½ÃÀå È®´ë¿¡ ½É°¢ÇÑ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÷´Ü ·Îº¿°øÇÐ, AI ¼Ö·ç¼Ç, IoT Áö¿ø ÀåÄ¡, ÅëÇÕ ¼ÒÇÁÆ®¿þ¾î µµÀÔ¿¡´Â ¸¹Àº ÀÚº»ÀÌ ÇÊ¿äÇϸç, Áß¼Ò±Ô¸ðÀÇ Á¦Á¶¾÷ü´Â µµÀÔÀÌ ¾î·Æ½À´Ï´Ù. ½Ã½ºÅÛ ¼³Ä¡, Á÷¿ø ±³À°, Áö¼ÓÀûÀÎ Á¤ºñ¿Í °ü·ÃµÈ ºñ¿ëÀº ÀçÁ¤Àû ºÎ´ãÀ» Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤Àû ¹®Á¦´Â ƯÈ÷ °æ¿µ ÀÚ¿øÀÌ ÇÑÁ¤µÈ Áö¿ª¿¡¼´Â ½º¸¶Æ® Á¦Á¶ ¼Ö·ç¼ÇÀÇ µµÀÔÀ» Áö¿¬½ÃŰ°Å³ª Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. Àå±âÀûÀÎ ÀÌÀÍ¿¡´Â »ý»ê¼º°ú ¿î¿µ È¿À²¼ºÀÌ Çâ»óµÇÁö¸¸, ¸¹Àº Ãʱâ ÁöÃâÀº ¿©ÀüÈ÷ Áß¿äÇÑ Á¦¾àÀ¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, ¸¹Àº ±â¾÷ÀÌ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ °ÉÃÄ µðÁöÅÐÈ ¹× ÀÚµ¿È °øÀå ¼Ö·ç¼ÇÀ» ºü¸£°Ô µµÀÔÇÏÁö ¸øÇϰí ÀÖ½À´Ï´Ù.
½º¸¶Æ® Á¦Á¶ ±â¼ú µµÀÔ
½º¸¶Æ® Á¦Á¶ ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °øÀå µðÁöÅÐÈ ¹× ÀÚµ¿È ½ÃÀå¿¡ Å« ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. AI, ·Îº¿ °øÇÐ, IoT ¼¾¼, µðÁöÅÐ Æ®À© ±â¼ú µîÀÇ ÅøÀ» ÅëÇØ Á¦Á¶¾÷ü´Â ÀÛ¾÷À» °£¼ÒÈÇϰí Á¦Ç° ǰÁúÀ» °³¼±ÇÏ¸ç ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ½Ã½ºÅÛ¿¡ ÅõÀÚÇÔÀ¸·Î½á ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹ÃøÀû À¯Áöº¸¼ö, µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤ÀÌ °¡´ÉÇØÁ® È¿À²¼º°ú ½ÃÀå °æÀï·ÂÀ» ¸ðµÎ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Àδõ½ºÆ®¸® 4.0ÀÇ Ãß¼¼´Â À¯¿¬Çϰí È®Àå °¡´ÉÇÑ ÀÚµ¿È ¼Ö·ç¼ÇÀÇ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® Á¦Á¶ ±â¼úÀ» µµÀÔÇÔÀ¸·Î½á °øÀåÀº º¯ÈÇÏ´Â ½ÃÀå ¼ö¿ä¿¡ ºü¸£°Ô ÀûÀÀÇϰí, ÀÚ¿ø ³¶ºñ¸¦ ÁÙÀ̰í, »ý»ê¼ºÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â µðÁöÅÐ ¹× ÀÚµ¿È °øÀå ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ´Â ±â¾÷¿¡°Ô À¯¸Á ¼ºÀå ¼ö´ÜÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠°úÁ¦
±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠¹®Á¦´Â °øÀåÀÇ µðÁöÅÐÈ ¹× ÀÚµ¿È µµÀÔ¿¡ ½É°¢ÇÑ À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ·Îº¿°øÇÐ, µðÁöÅÐ Ç÷§Æû, µ¥ÀÌÅÍ °Å¹ö³Í½º¿¡ ´ëÇÑ ±âÁØÀÌ ±¹°¡¸¶´Ù ´Ù¸£±â ¶§¹®¿¡ ¼¼°è ÁøÃâÀÌ º¹ÀâÇØÁö°í ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷ü´Â ¾ÈÀü, ³ëµ¿, ȯ°æ °ü·Ã ±ÔÁ¤À» ÁؼöÇØ¾ß Çϸç, ÀÚµ¿È ±â¼úÀ» µµÀÔÇÒ ¶§ ¶Ç ´Ù¸¥ °úÁ¦°¡ ¹ß»ýÇÕ´Ï´Ù. ÁؼöÇÏÁö ¾ÊÀ» °æ¿ì, ¹úÄ¢, »ý»ê Áß´Ü, dz¹® ÇÇÇØ µîÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ²÷ÀÓ¾øÀÌ ÁøÈÇÏ´Â ±ÔÁ¦, ƯÈ÷ µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã °ü·Ã ±ÔÁ¦´Â Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ°ú ÀûÀÀÀ» ¿ä±¸ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÒÈ®½Ç¼ºÀº ±â¾÷ÀÌ »õ·Î¿î µðÁöÅÐ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ³ª ±âÁ¸ ÀÚµ¿È ¿î¿µÀÇ È®ÀåÀ» ÁÖÀúÇÏ°Ô ¸¸µé°í, ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇϸç, Àü ¼¼°è¿¡¼ µðÁöÅÐÈµÈ °øÀå ¼Ö·ç¼ÇÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¹ß»ýÀº °øÀå µðÁöÅÐÈ ¹× ÀÚµ¿È ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °¡µ¿ Áß´Ü, ³ëµ¿·Â ºÎÁ·, °ø±Þ¸Á È¥¶õÀ¸·Î ÀÎÇØ Á¦Á¶¾÷üµéÀº ÀÚµ¿È ¹× µðÁöÅÐÈ ½Ã½ºÅÛÀ» ´õ »¡¸® µµÀÔÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ¾ú½À´Ï´Ù. ·Îº¿ °øÇÐ, IoT ÀåÄ¡, ¿ø°Ý ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó °øÀåÀº ÃÖ¼ÒÇÑÀÇ ÀηÂÀ¸·Î »ý»ê¼ºÀ» À¯ÁöÇÏ¸é¼ °øÀåÀ» ¿î¿µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹ÍÀº ¿¹±âÄ¡ ¸øÇÑ È¥¶õ¿¡µµ ÀÛµ¿ÇÒ ¼ö Àִ ź·Â¼º, ÀûÀÀ¼º, »óÈ£¿¬°á¼ºÀ» °®Ãá Á¦Á¶ ½Ã½ºÅÛÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ±× °á°ú, ½º¸¶Æ® ÆÑÅ丮 ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ±ÞÁõÇÏ¿© ¿¹Áöº¸Àü, ½Ç½Ã°£ ¼º´É ÃßÀû, ¾÷¹« È¿À²¼º °³¼±ÀÌ ÃËÁøµÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ÀΰøÁö´É(AI) ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÀΰøÁö´É(AI) ºÎ¹®Àº Çö´ë Á¦Á¶¾÷¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ¾î ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI´Â ¿¹Áöº¸Àü, ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ÀÚµ¿È ÇÁ·Î¼¼½º, µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤À» Áö¿øÇÏ¿© È¿À²¼ºÀ» ³ôÀÌ°í »ý»ê Áß´ÜÀ» ÃÖ¼ÒÈÇÕ´Ï´Ù. AI ±â¹Ý ºÐ¼®À» ÅëÇØ Á¦Á¶¾÷ü´Â ÇÁ·Î¼¼½ºÀÇ ºñÈ¿À²¼ºÀ» ÆÄ¾ÇÇϰí, Á¦Ç°ÀÇ Àϰü¼ºÀ» °³¼±Çϸç, ÀÚ¿ø »ç¿ëÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. IoT, Ŭ¶ó¿ìµå Ç÷§Æû, ·Îº¿ °øÇÐ µî ´Ù¸¥ ±â¼ú°ú °áÇÕÇÏ¿© AI´Â ½º¸¶Æ® ÆÑÅ丮ÀÇ ´É·ÂÀ» ÁõÆø½Ãŵ´Ï´Ù. »ý»ê °èȹ, ǰÁú º¸Áõ, °ø±Þ¸Á ÃÖÀûÈ µî ±× Àû¿ë ¹üÀ§°¡ °¡Àå ³Ð¾î »ê¾÷ ¿î¿µÀÇ µðÁöÅÐ ÀüȯÀÇ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÏ´Â ¼Ö·ç¼ÇÀÌ µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ÀüÀÚ ¹× ¹ÝµµÃ¼ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ÀüÀÚ ¹× ¹ÝµµÃ¼ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, Á¤¹Ð ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, »ý»ê °¡¼ÓÈ¿¡ ´ëÇÑ ¿ä±¸´Â Á¦Á¶¾÷üµéÀÌ Ã·´Ü ÀÚµ¿È ¹× µðÁöÅÐ ¼Ö·ç¼ÇÀ» äÅÃÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. AI, ·Îº¿°øÇÐ, IoT¸¦ Æ÷ÇÔÇÑ ½º¸¶Æ® ÆÑÅ丮 ±â¼úÀº °øÁ¤ È¿À²À» ³ôÀ̰í, ºÒ·®Ç°À» ÁÙÀ̸ç, Á¦Ç° ǰÁúÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ ºÐ¾ß´Â ¼ÒÇüÈ, °í¼º´ÉÈ, ºü¸¥ Çõ½ÅÀÌ °Á¶µÇ°í, ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú ¿¹Áöº¸ÀüÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀüÀÚ ¹× ¹ÝµµÃ¼ Á¦Á¶¾÷ü´Â Àδõ½ºÆ®¸® 4.0 ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÔÀ¸·Î½á °æÀï·Â, ¾÷¹« À¯¿¬¼º, º¯ÈÇÏ´Â ½ÃÀå ¿ä±¸»çÇ׿¡ ´ëÇÑ ´ëÀÀ·ÂÀ» °ÈÇϰí Áö¼ÓÀûÀÎ µðÁöÅÐ Çõ½Å°ú ¼ºÀåÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â ÷´Ü »ê¾÷ ÀÎÇÁ¶ó, Àδõ½ºÆ®¸® 4.0 ±â¼úÀÇ ±¤¹üÀ§ÇÑ È°¿ë, ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ ÁýÁßÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ÀÚµ¿Â÷, ÀüÀÚ, Ç×°ø¿ìÁÖ µîÀÇ ºÐ¾ß¿¡¼ AI, IoT, ·Îº¿, Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀÌ ³Î¸® µµÀԵǰí ÀÖ½À´Ï´Ù. °·ÂÇÑ R&D ÅõÀÚ¿Í µðÁöÅÐ Çõ½ÅÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ Àû±ØÀûÀÎ ³ë·Â. ºÏ¹Ì Á¦Á¶¾÷üµéÀº ¾÷¹« È¿À²¼º, ¿¹Áöº¸Àü, ½Ç½Ã°£ °øÁ¤ ¸ð´ÏÅ͸µ¿¡ ÁßÁ¡À» µÎ°í µðÁöÅÐ ¼Ö·ç¼ÇÀ» ÇÙ½É »ý»ê Ȱµ¿¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû ¼º¼÷µµ, Çõ½Å¿¡ ´ëÇÑ °ü½É, Á¤Ã¥Àû Áö¿øÀÇ Á¶ÇÕÀ¸·Î ºÏ¹Ì´Â Àü ¼¼°è¿¡¼ µðÁöÅÐ ¹× ÀÚµ¿È °øÀå ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â °¡Àå Áß¿äÇÑ Áö¿ªÀÌ µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷ È®Àå, Àδõ½ºÆ®¸® 4.0 ±â¼ú äÅà Áõ°¡, ½º¸¶Æ® ÆÑÅ丮 ¼Ö·ç¼Ç¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µî ÁÖ¿ä ±¹°¡¿¡¼´Â AI, IoT, ·Îº¸Æ½½º, Ŭ¶ó¿ìµå ±â¼ú µµÀÔÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç, È¿À²¼º Çâ»ó°ú »ý»ê ºñ¿ë Àý°¨À» À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, ÀüÀÚ, Á¦¾à »ê¾÷ Àü¹ÝÀÇ È°¹ßÇÑ ¼ö¿ä°¡ ¼ºÀåÀ» ´õ¿í °¡¼ÓÈÇÒ °ÍÀÔ´Ï´Ù. µðÁöÅÐ ÀüȯÀ» ÃßÁøÇÏ´Â Á¤ºÎ Á¤Ã¥Àº À¯¿¬Çϰí Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¹æ½Ä¿¡ ´ëÇÑ °Á¶¿Í ÇÔ²² ÀÚµ¿È µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀ» Á¾ÇÕÇÏ¸é ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è °øÀåÀÇ µðÁöÅÐÈ ¹× ÀÚµ¿È Àü¸Á¿¡¼ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀÔ´Ï´Ù.
According to Stratistics MRC, the Global Factory Digitalization and Automation Market is accounted for $237.34 million in 2025 and is expected to reach $396.33 million by 2032 growing at a CAGR of 7.6% during the forecast period. The digitalization and automation of factories are reshaping manufacturing by embedding technologies like AI, IoT, robotics, and cloud platforms into production workflows. This integration allows for continuous monitoring, predictive upkeep, and data-informed decisions, boosting efficiency, output, and product reliability. Automation lowers operational expenses and human errors while promoting workplace safety. Technologies such as digital twins, smart sensors, and interconnected machinery enable smooth communication across production lines, helping manufacturers adapt swiftly to market changes.
According to the CHIPS and Science Act, nearly $53 billion was appropriated to revive U.S. manufacturing and semiconductor production. These modern fabs require extensive automation, creating significant opportunities for robotics and digital factory technologies.
Rising demand for operational efficiency
The pursuit of higher operational efficiency is a key factor driving factory automation and digitalization. Businesses aim to improve production workflows, shorten manufacturing cycles, and increase overall output to fulfill growing market demands. Technologies like AI, robotics, and IoT devices allow continuous monitoring, predictive servicing, and optimized processes, reducing downtime and errors. Digital systems help minimize resource consumption and cut operational expenses while maintaining high-quality output. The competitive global landscape forces manufacturers to shift from conventional approaches toward smart, technology-driven solutions. Enhancing efficiency not only lowers costs but also improves profitability, operational reliability, and customer satisfaction, making automation a strategic necessity for modern factories.
High initial investment costs
High upfront costs for factory digitalization and automation are a critical barrier to market expansion. Deploying advanced robotics, AI solutions, IoT-enabled devices, and integrated software requires significant capital, making adoption difficult for small and mid-sized manufacturers. Costs related to system installation, workforce training, and ongoing maintenance add to the financial load. These financial challenges can slow down or restrict the implementation of smart manufacturing solutions, especially in regions with limited resources. Although long-term gains include improved productivity and operational efficiency, the substantial initial expenditure remains a key restraint, preventing many companies from rapidly embracing digital and automated factory solutions across diverse industrial sectors.
Adoption of smart manufacturing technologies
Increasing adoption of smart manufacturing technologies creates substantial opportunities in the factory digitalization and automation market. Tools like AI, robotics, IoT sensors, and digital twin technologies allow manufacturers to streamline operations, enhance product quality, and cut operational expenses. Investing in these advanced systems enables real-time monitoring, predictive upkeep, and data-informed decision-making, boosting both efficiency and market competitiveness. The Industry 4.0 trend encourages the use of flexible, scalable automated solutions. By deploying smart manufacturing technologies, factories can quickly adjust to shifting market demands, reduce resource waste, and optimize productivity. This creates promising growth avenues for companies leveraging digital and automated factory systems.
Regulatory and compliance challenges
Regulatory and compliance issues are significant threats to the adoption of factory digitalization and automation. Varying standards across countries for robotics, digital platforms, and data governance complicate global deployment and increase costs. Manufacturers must also adhere to safety, labor, and environmental regulations, creating additional challenges when implementing automation technologies. Failure to comply can result in penalties, production interruptions, and reputational harm. Constantly evolving regulations, especially regarding data security and privacy, demand ongoing monitoring and adaptation. Such uncertainties may deter companies from investing in new digital systems or expanding existing automated operations, restricting market growth and slowing the broader adoption of digitalized factory solutions worldwide.
The COVID-19 outbreak significantly influenced the factory digitalization and automation market. Lockdowns, workforce shortages, and disrupted supply chains compelled manufacturers to adopt automated and digital systems more rapidly. Increased reliance on robotics, IoT devices and remote monitoring enabled factories to operate with minimal human involvement while maintaining productivity. The pandemic underscored the importance of resilient, adaptable, and interconnected manufacturing systems capable of functioning during unforeseen disruptions. Consequently, investments in smart factory technologies surged, facilitating predictive maintenance, real-time performance tracking, and improved operational efficiency.
The artificial intelligence (AI) segment is expected to be the largest during the forecast period
The artificial intelligence (AI) segment is expected to account for the largest market share during the forecast period due to its broad range of applications in modern manufacturing. AI supports predictive maintenance, real-time monitoring, automated processes, and data-driven decision-making, boosting efficiency and minimizing production interruptions. By using AI-based analytics, manufacturers can identify process inefficiencies, improve product consistency, and optimize the use of resources. When combined with other technologies like IoT, cloud platforms, and robotics, AI amplifies the capabilities of smart factories. Its applicability across production planning, quality assurance, and supply chain optimization makes it the most widely implemented solution, serving as a central component in the ongoing digital transformation of industrial operations.
The electronics & semiconductors segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the electronics & semiconductors segment is predicted to witness the highest growth rate. Continuous technological innovation, rising demand for precision components, and the requirement for accelerated production have encouraged manufacturers to adopt advanced automation and digital solutions. Smart factory technologies, including AI, robotics, and IoT, enhance process efficiency, reduce defects, and improve product quality. The sector's emphasis on miniaturization, high performance, and rapid innovation drives the need for real-time monitoring and predictive maintenance. By investing in Industry 4.0 solutions, electronics and semiconductor manufacturers enhance competitiveness, operational flexibility, and responsiveness to changing market requirements, supporting sustained digital transformation and growth.
During the forecast period, the North America region is expected to hold the largest market share, owing to its advanced industrial infrastructure, extensive use of Industry 4.0 technologies, and concentration of leading market players. The region has witnessed widespread deployment of AI, IoT, robotics, and cloud solutions across sectors such as automotive, electronics, and aerospace. Strong R&D investment along with supportive government initiatives encouraging digital transformation. Manufacturers in North America emphasize operational efficiency, predictive maintenance, and real-time process monitoring, integrating digital solutions into core production activities. This combination of technological maturity, innovation focus, and policy support positions North America as the foremost region driving the adoption of digital and automated factory solutions globally.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by swift industrial expansion, rising adoption of Industry 4.0 technologies, and substantial investment in smart factory solutions. Key economies like China, India, and Japan are increasingly implementing AI, IoT, robotics, and cloud technologies to enhance efficiency and lower production costs. Strong demand across automotive, electronics, and pharmaceutical industries further accelerates growth. Government policies promoting digital transformation, along with the emphasis on flexible and sustainable manufacturing practices, encourage automation adoption. Collectively, these factors make Asia-Pacific the fastest-growing region in the global factory digitalization and automation landscape.
Key players in the market
Some of the key players in Factory Digitalization and Automation Market include ABB, Siemens, Honeywell International, Rockwell Automation, Emerson Electric, Mitsubishi Electric, Schneider Electric, Yokogawa Electric, FANUC, Omron, AVEVA, General Electric (GE), Dassault Systemes, Bosch and SAP.
In September 2025, ABB and Codelco have announced their latest collaboration to optimise the Chilean state-owned copper mining company's maintenance program. With Chile currently the world's largest copper producer, this latest long-term service agreement (LTSA) encompasses maintenance, remote diagnostics and skills training to enhance the performance of its gearless mill drive (GMD) systems.
In June 2025, Siemens Energy and New Zealand-based EnPot Ltd inked an agreement to cooperate at an official ceremony with New Zealand's Prime Minister Christopher Luxon in Shanghai today. The deal signals the companies' joint drive to accelerate the decarbonisation of China's energy-intensive primary aluminium industry.
In April 2025, Honeywell has signed a new 10-year global distribution agreement with Milestone Systems, a provider of video management systems (VMS). This agreement marks a significant expansion of a partnership that began with Honeywell's LenelS2 brand in 2017, when Honeywell first became a distributor for Milestone in North America, growing into a global distributor role by 2020.