![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1822345
¼¼°èÀÇ Æú¸®ÀÌ¹Ìµå ½ÃÀå : ¿¹Ãø - À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)Polyimides Market Forecasts to 2032 - Global Analysis By Type (Thermoplastic Polyimides, Thermosetting Polyimides, Polyether Imides (PEI) and Polyamide-Imides (PAI)), Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°èÀÇ Æú¸®ÀÌ¹Ìµå ½ÃÀåÀº 2025³â¿¡ 15¾ï 2,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 10.0%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 29¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
Æú¸®À̵̹å´Â Ź¿ùÇÑ ³»¿¼º, ±â°èÀû ³»±¸¼º, ÈÇÐÀû ¾ÈÁ¤¼ºÀ¸·Î Æò°¡µÇ´Â ÷´Ü Æú¸®¸Ó ±×·ìÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â °¡È¤ÇÑ Á¶°Ç¿¡¼µµ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö Àֱ⠶§¹®¿¡ Ç×°ø¿ìÁÖ, ÀÏ·ºÆ®·Î´Ð½º, ÀÚµ¿Â÷, »ê¾÷¿ë ÆÐŰ¡ µîÀÇ ºÐ¾ß¿¡¼ Æø³Ð°Ô ÀÀ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶Ù¾î³ Àý¿¬ Ư¼ºÀ¸·Î ÀÎÇØ À¯¿¬ÇÑ ÀüÀÚ Á¦Ç°, Çʸ§ ¹× ȸ·Î ±âÆÇ Á¦Á¶¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ °æ·®, °í°µµ, ³»½Ä¼ºÀº È¿À²¼º°ú ±ä ¼ö¸í¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Æú¸®À̵̹å´Â ¶ÇÇÑ ÄÚÆÃ, ¸âºê·¹ÀÎ, Á¢ÂøÁ¦¿¡ ´ëÇÑ ¿ëµµ¸¦ È®´ëÇϰí ÀÖÀ¸¸ç, ÀûÀÀ¼ºÀÌ ³ô½À´Ï´Ù. ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó Æú¸®À̵̹å´Â Â÷¼¼´ë Àç·á·Î¼ Áß¿äÇÑ ¿ªÇÒÀ» °è¼ÓÇϰí ÀÖ½À´Ï´Ù.
NASAÀÇ Àç·á °øÇÐ ºÎ¹®¿¡ µû¸£¸é, Æú¸®À̵̹å´Â Ź¿ùÇÑ ¿ ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ Ç×°ø¿ìÁÖ ¿ëµµ ºÐ¾ß¿¡ ³Î¸® »ç¿ëµÇ¸ç ÃÖ´ë 400¡ÆCÀÇ ¿Âµµ¸¦ °ßµô ¼ö ÀÖ½À´Ï´Ù. NASAÀÇ ±â¼ú º¸°í¼ µ¥ÀÌÅÍ´Â ¿ìÁÖ¼± ´Ü¿Àç, À¯¿¬ÇÑ ÀüÀÚ Á¦Ç° ¹× ÃßÁø ½Ã½ºÅÛ°ú °°Àº ±âÁ¸ Æú¸®¸Ó¿¡¼´Â »ç¿ëÇÒ ¼ö ¾ø¾ú´ø ºÐ¾ß¿¡¼ÀÇ »ç¿ëÀ» È®ÀÎÇÕ´Ï´Ù.
ÀüÀÚ »ê¾÷¿¡¼ ¼ö¿ä Áõ°¡
ÀüÀÚ ºÐ¾ß´Â Æú¸®ÀÌ¹Ìµå ½ÃÀåÀ» ÃßÁøÇÏ´Â Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ¶Ù¾î³ ³»¿¼º°ú À¯Àü ¼º´ÉÀ¸·Î ¾Ë·ÁÁø Æú¸®À̵̹å´Â ¹ÝµµÃ¼, Ç÷º¼ºí ȸ·Î, Àý¿¬ Çʸ§¿¡ ºü¶ß¸± ¼ö ¾ø½À´Ï´Ù. ½º¸¶Æ®Æù, ¿þ¾î·¯ºí ´Ü¸», ÅÂºí¸´ ´Ü¸» µî °¡Á¤¿ë °¡ÀüÁ¦Ç°ÀÇ º¸±ÞÀÌ ¼ö¿ä¸¦ Å©°Ô ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü±âÀÚµ¿Â÷³ª ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼ ÷´Ü ÀüÀÚºÎǰÀÇ ±ÞÁõµµ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. °¡È¤ÇÑ È¯°æÀ» °ßµð´Â Æú¸®À̵̹åÀÇ ´É·ÂÀº ÷´Ü ÀüÀÚ°øÇп¡¼ Æú¸®À̵̹åÀÇ Á߿伺À» Áõ°¡½Ãŵ´Ï´Ù. ±× °á°ú, Æú¸®À̵̹åÀÇ ¹ü¿ë¼º°ú ½Å·Ú¼ºÀÌ °è¼ÓÇØ¼ ¼¼°è ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» °ßÀÎÇØ, ÀÏ·ºÆ®·Î´Ð½º°¡ Æú¸®ÀÌ¹Ìµå ¼ö¿äÀÇ ±ØÈ÷ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
Á¦ÇÑµÈ ¿ø·áÀÇ °¡¿ë¼º
Æú¸®ÀÌ¹Ìµå ½ÃÀåÀº °íǰÁúÀÇ ¿ø·á¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦ÇѵǾî Àֱ⠶§¹®¿¡ Å« °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. Æú¸®À̵̹åÀÇ Á¦Á¶´Â ƯÁ¤ ´Ü·®Ã¼ ¹× ÈÇй°Áú¿¡ ÀÇÁ¸Çϸç, °ø±Þ Áß´Ü ¹× ºÎÁ·¿¡ Ã³ÇØÁú ¼ö ÀÖ½À´Ï´Ù. ƯÁ¤ Áö¿ª¿¡ ´ëÇÑ ÀÇÁ¸¼º°ú ¹°·ù»óÀÇ Àå¾Ö¹°Àº Á¶´ÞÀ» ´õ¿í º¹ÀâÇÏ°Ô ÇÏ°í »ý»ê ÀÏÁ¤¿¡ ¿µÇâÀ» ÁÖ¸ç ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ¿øÀç·áÀÇ °¡°Ý º¯µ¿Àº Á¦Á¶¾÷üÀÇ ¼öÀͼºÀ» ÀúÇϽÃų ¼ö ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ¹× ÀüÀÚ°øÇÐÀ» Æ÷ÇÔÇÑ ´ë±Ô¸ð »ê¾÷¿¡¼´Â ÀÌ·¯ÇÑ °ø±Þ Á¦¾àÀ¸·Î ÀÎÇØ »ý»ê º´¸ñ Çö»óÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÈÁ¤ÀûÀÎ Á¦Á¶¸¦ À¯ÁöÇÏ°í ½ÃÀå ¼ºÀåÀ» º¸ÀåÇϱâ À§Çؼ´Â ¿ø·á ºÎÁ·À» ±Øº¹ÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ½Å·ÚÇÒ ¼ö ÀÖ´Â °ø±ÞÀÌ ¾øÀ¸¸é Æú¸®À̵̹åÀÇ »ý»ê°ú ä¿ëÀº Á¦ÇÑµÈ Ã¤·Î µÇ¾î ¼¼°è ½ÃÀåÀÇ È®´ë´Â µÐȵ˴ϴÙ.
ÄÚÆÃ ¹× ¸âºê·¹ÀÎ Çõ½Å
Æú¸®À̵̹带 ±â¹ÝÀ¸·Î ÇÏ´Â ÄÚÆÃ ¹× ¸âºê·¹ÀÎÀÇ °³¹ßÀº »ê¾÷ Àü¹Ý¿¡ Å« ¼ºÀåÀÇ ÀáÀç·ÂÀ» °¡Á®¿Ô½À´Ï´Ù. Æú¸®À̵̹åÀÇ ¿ì¼öÇÑ ¿Àû, ±â°èÀû, ÈÇÐÀû Ư¼ºÀº º¸È£¸·, ¿©°ú¸·, Á¢ÂøÁ¦¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. Àç·á °úÇÐÀÇ ¹ßÀüÀ¸·Î ÀüÀÚ, »ê¾÷ ¹× ÈÇÐ ¿ëµµ ºÐ¾ß¸¦ À§ÇÑ ¸ÂÃãÇü Æú¸®ÀÌ¹Ìµå ¼Ö·ç¼ÇÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ȯ°æ ±âÁØÀÇ °íÁ¶ ¹× ³»±¸¼ºÀÌ ÀÖ´Â °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡, Æú¸®À̵̹åÀÇ Ã¤¿ëÀ» ÇÑÃþ ´õ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¼öó¸®, ¿¡³ÊÁö ÀúÀå, Ç×°ø¿ìÁÖ ÄÚÆÃÀÇ »õ·Î¿î ¿ëµµ°¡ ½ÃÀå ±âȸ¸¦ È®´ëÇÕ´Ï´Ù. ±â´É¼º°ú ºñ¿ë È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â Áö¼ÓÀûÀÎ ¿¬±¸¸¦ ÅëÇØ Æú¸®À̵̹å ÄÚÆÃ ¹× ¸âºê·¹ÀÎÀº Á¦Á¶¾÷üÀÇ ¼öÀͼºÀÌ ³ôÀº ¼ö´ÜÀÌ µÇ¾î ½ÃÀå ´Ù¾çȸ¦ Áö¿øÇϰí ÇâÈÄ ¼ö³â°£ ¼¼°è ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.
´ëü ¼ÒÀç¿ÍÀÇ Ä¡¿ÇÑ °æÀï
Æú¸®ÀÌ¹Ìµå ½ÃÀåÀº PEEK, PTFE, ƯÁ¤ Æú¸®¿¡½ºÅ׸£¿Í °°Àº ´Ù¸¥ °í¼º´É Æú¸®¸Ó¿ÍÀÇ Ä¡¿ÇÑ °æÀï¿¡ À§ÇùÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëü Àç·á´Â Á¾Á¾ µ¿µîÇÑ ¿Àû ¹× ±â°èÀû Ư¼ºÀ» ³·Àº Á¦Á¶ ºñ¿ëÀ¸·Î Á¦°øÇϸç ÀüÀÚ, Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ ¸Å·ÂÀûÀÎ Àç·áÀÔ´Ï´Ù. Á¦Á¶¾÷ü´Â ºñ¿ë Àý°¨°ú »ý»ê °£¼Òȸ¦ À§ÇØ ´ëüǰÀ» ¼±È£ÇÒ ¼ö ÀÖÀ¸¸ç Æú¸®ÀÌ¹Ìµå ¼Òºñ·®À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶óÀ̹úÀÌ µÇ´Â Æú¸®¸ÓÀÇ ²÷ÀÓ¾ø´Â Áøº¸·Î ¿ì¼öÇÑ Àç·á°¡ »ý°Ü Æú¸®À̵̹åÀÇ ¿ìÀ§¼ºÀÌ À§ÇùµÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ƯÈ÷ ½ÅÈï ½ÃÀå¿¡¼´Â ´ëüǰÀÌ ÀÔ¼öÇϱ⠽¬¿öÁö±â ¶§¹®¿¡ ÀÌ·¯ÇÑ À§ÇùÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ´Ù¸¥ ÷´Ü Æú¸®¸Ó¿ÍÀÇ °æÀïÀº Å« °úÁ¦À̸ç, Æú¸®À̵̹åÀÇ Ã¤¿ëÀ» Á¦ÇÑÇÏ°í ½ÃÀåÀÇ ¼¼°è ¼ºÀå ±Ëµµ¸¦ °¨¼Ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
Æú¸®ÀÌ¹Ìµå ½ÃÀåÀº COVID-19ÀÇ ´ëÀ¯Çà¿¡ ÀÇÇØ ÇöÀúÇÑ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. ¿î¿µ Áß´Ü, °ø±Þ¸Á Áß´Ü, »ê¾÷ Ȱµ¿ ÀúÇÏ·Î ÀÎÇØ ƯÈ÷ ÀüÀÚ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ ºÐ¾ß ¼ö¿ä°¡ ÀϽÃÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. °øÀåÀº ÀÎÀû ºÎÁ·°ú ¹°·ùÀÇ Á¦¾àÀ¸·Î °íÅëÀ» °Þ¾ú°í, »ý»ê°ú ÃâÇϰ¡ Áö¿¬µÇ¾î »ý»êÀÌ ÁߴܵǾú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í ÈÄ¿¡ »ê¾÷ÀÌ È¸º¹µÇ±â ½ÃÀÛÇϸé¼, Æú¸®ÀÌ¹Ìµå ¼ö¿ä´Â ȸº¹µÇ¾ú½À´Ï´Ù. µðÁöÅÐÈ, ÷´Ü ÀüÀÚ, Ç×°ø¿ìÁÖ ±â¼úÀÇ ¼ºÀåÀº ½ÃÀå Àü¸ÁÀ» ´õ¿í °ÈÇß½À´Ï´Ù. ÆÒµ¥¹ÍÀº ÀϽÃÀûÀ¸·Î ¼ºÀåÀ» µÐȽÃÄ×Áö¸¸, Æú¸®ÀÌ¹Ìµå ½ÃÀåÀº ÇöÀç ¾ÈÁ¤µÇ°í ÀÖÀ¸¸ç, ±â¼ú Çõ½Å°ú ÁÖ¿ä »ê¾÷ ºÐ¾ß¿¡¼ÀÇ Ã¤¿ë È®´ë°¡ Àå±âÀûÀÎ °¡´É¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿°æÈ¼º Æú¸®ÀÌ¹Ìµå ºÎ¹®ÀÌ ÃÖ´ë鵃 Àü¸Á
¿°æÈ¼º Æú¸®ÀÌ¹Ìµå ºÎ¹®Àº Ź¿ùÇÑ ³»ÈÇмº, ¿¾ÈÁ¤¼º ¹× ±¤¹üÀ§ÇÑ »ê¾÷¿ëÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â °¡È¤ÇÑ Á¶°Ç¿¡¼ ³»±¸¼ºÀÌ ÇʼöÀûÀÎ °í¼º´É ¿ëµµ ºÐ¾ß·Î¼ ÀüÀÚ, Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ ¼±È£µË´Ï´Ù. °í¿Â¿¡¼µµ ±â°èÀû ¹× Àü±âÀû ¹«°á¼ºÀ» À¯ÁöÇϱâ À§ÇØ À¯¿¬ÇÑ È¸·Î ±âÆÇ, Àý¿¬ Çʸ§, ³»¿ Á¢ÂøÁ¦¿¡ ÀûÇÕÇÕ´Ï´Ù. ÷´Ü ÀüÀÚ±â±â³ª ¹æÀ§ ¿ëµµ¿¡ÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ, ½ÃÀå¿¡¼ÀÇ ¿ìÀ§¼ºÀ» ÇÑÃþ ´õ °ÈÇϰí ÀÖ½À´Ï´Ù. ¹ü¿ë¼º, ½Å·Ú¼º, ¶Ù¾î³ ¼º´ÉÀ¸·Î ¿°æÈ¼º Æú¸®À̵̹å´Â ÃÖ´ë ºÎ¹®ÀÌ µÇ¾î ¼¼°èÀÇ Æú¸®ÀÌ¹Ìµå ½ÃÀå¿¡¼ Å« Á¡À¯À²À» À¯ÁöÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â À¯¿¬ÇÑ Àμâ ȸ·Î ºÐ¾ß
¿¹Ãø ±â°£ µ¿¾È Ç÷º¼ºí ÇÁ¸°Æ® ȸ·Î ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ±Þ¼ºÀå ¹è°æÀº ½º¸¶Æ®Æù, ¿þ¾î·¯ºí ±â±â, °í±Þ ÀÇ·á±â±â µî ¼ÒÇü °í¼º´É ÀüÀÚ ±â±â¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °æ·® ±¸Á¶, Ź¿ùÇÑ ³»¿¼º, À¯¿¬¼ºÀ¸·Î ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ¼ÒºñÀÚ¿ë ÀüÀÚ ±â±â ºÐ¾ß¿¡¼ÀÇ »ç¿ë¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. À¯¿¬ÇÑ È¸·Î ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ÃֽŠÀüÀÚ Á¦Á¶¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó äÅÃÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇյǾî Ç÷º¼ºí ÇÁ¸°Æ® ȸ·ÎÀÇ ±Þ¼ÓÇÑ È®´ë°¡ ÃËÁøµÇ¾î, ÀÌ ºÐ¾ß°¡ Æú¸®ÀÌ¹Ìµå ½ÃÀåÀÇ ¼ºÀå¿¡ Å©°Ô °øÇåÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â ÁÖ·Î »ê¾÷ÀÇ ±Þ¼ºÀå°ú ÀüÀÚ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ »ê¾÷ÀÇ ¹ø¿µ ¶§¹®ÀÔ´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀÌ Æú¸®ÀÌ¹Ìµå »ç¿ëÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, °·ÂÇÑ Á¦Á¶ ÀÎÇÁ¶ó¿Í °í¼º´É Àç·á¿¡ ´ëÇÑ ÁÖ·ÂÀ¸·ÎºÎÅÍ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. À¯¿¬ÇÑ ÀüÀÚ, Àü±âÀÚµ¿Â÷ ¹× ³»¿ ºÎǰ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼ö¿ä°¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¤¹üÀ§ÇÑ ¿¬±¸°³¹ß Ȱµ¿°ú ÷´Ü Àç·á¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀÌ ÀÌ Áö¿ª ½ÃÀå ¸®´õ½ÊÀ» °ÈÇϰí ÀÖ½À´Ï´Ù. °ßÁ¶ÇÑ »ý»ê´É·Â, ±â¼úÁøº¸, ÃÖÁ¾ »ç¿ëÀÚ ºÐ¾ß È®´ë µîÀÇ ½Ã³ÊÁö È¿°ú·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¼¼°èÀÇ Æú¸®ÀÌ¹Ìµå ½ÃÀå Á¡À¯À²¿¡ °¡Àå ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ê¾÷ °³¹ß °¡¼ÓÈ, µµ½Ã È®´ë, ÀüÀÚ ¹× ÷´Ü Á¦Á¶¾÷¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀÏ·ºÆ®·Î´Ð½ºÀÇ °¢ ºÐ¾ß¿¡ ÀÖ¾î¼ °í¼º´É Àç·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ Æú¸®À̵̹åÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ±â¼ú Áøº¸¿Í ÀÎÇÁ¶ó Á¤ºñ¸¦ ÃËÁøÇÏ´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê´Â ½ÃÀå È®´ë¸¦ ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ½ÅÈï»ê¾÷ÀÇ ´ëµÎ, °æ·® ¹× ³»¿ Àç·á Áß½Ã, ÇØ¿Ü·ÎºÎÅÍÀÇ ÅõÀÚ °È°¡ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÇÕ ¿äÀÎÀ¸·Î Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«´Â ¼¼°èÀÇ Æú¸®ÀÌ¹Ìµå ½ÃÀå¿¡¼ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇϰí ÀÖ´Â Áö¿ªÀÌ µÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Polyimides Market is accounted for $1.52 billion in 2025 and is expected to reach $2.96 billion by 2032 growing at a CAGR of 10.0% during the forecast period. Polyimides represent a group of advanced polymers valued for their outstanding heat resistance, mechanical durability, and chemical stability. These materials are extensively applied across sectors such as aerospace, electronics, automotive, and industrial packaging because of their ability to perform under harsh conditions. Their superior insulating properties make them vital in flexible electronics, films, and circuit board production. In addition, their light weight, strength, and corrosion resistance contribute to efficiency and long service life. Polyimides also find growing applications in coatings, membranes, and adhesives, underscoring their adaptability. As technological advancements progress, polyimides continue to play a crucial role in next-generation materials.
According to NASA's Materials Engineering Division, polyimides are widely used in aerospace applications due to their exceptional thermal stability, withstanding temperatures up to 400°C. Data from NASA's technical reports confirm their use in spacecraft insulation, flexible electronics, and propulsion systems, where conventional polymers fail.
Increasing demand from electronics industry
The electronics sector is a key factor propelling the polyimides market. Known for superior thermal resistance and dielectric performance, polyimides are essential in semiconductors, flexible circuits, and insulating films. Growing consumer electronics adoption, including smartphones, wearables, and tablets, significantly boost demand. The surge in electric vehicles and sophisticated electronic components in automotive and aerospace industries also fuels market expansion. Polyimides' capability to endure harsh environments enhances their importance in advanced electronics. Consequently, the material's versatility and reliability continue to drive sustained global market growth, highlighting electronics as a pivotal driver of polyimides demand.
Limited raw material availability
The polyimides market faces significant challenges due to limited access to high-quality raw materials. Manufacturing polyimides depends on specific monomers and chemicals, which may encounter supply disruptions or scarcity. Dependence on certain regions and logistical hurdles further complicates sourcing, affecting production timelines and increasing costs. Price volatility of raw materials can reduce profitability for manufacturers. Large-scale industries, including aerospace and electronics, may experience production bottlenecks because of these supply constraints. Overcoming raw material shortages is crucial to maintain consistent manufacturing and ensure market growth. Without a reliable supply, polyimide production and adoption remain restricted, slowing the global market expansion.
Innovations in coatings and membranes
The development of polyimide-based coatings and membranes creates significant growth prospects across industries. Their superior thermal, mechanical, and chemical properties make them ideal for protective coatings, filtration membranes, and adhesives. Advances in material science enable customized polyimide solutions for electronics, industrial, and chemical applications. Rising environmental standards and demand for durable, high-performance materials further drive adoption. Emerging uses in water treatment, energy storage, and aerospace coatings expand market opportunities. Continued research improving functionality and cost-efficiency makes polyimide coatings and membranes a profitable avenue for manufacturers, supporting diversification and fostering sustained global market growth in the coming years.
Intense competition from alternative materials
The polyimides market is threatened by strong competition from other high-performance polymers like PEEK, PTFE, and certain polyesters. These substitutes often provide comparable thermal and mechanical characteristics at lower production costs, making them appealing in electronics, aerospace, and automotive sectors. Manufacturers may prefer alternatives to cut costs or simplify production, potentially reducing polyimide consumption. Continuous advancements in rival polymers may yield superior materials, challenging polyimides' dominance. Increased availability of alternatives, especially in emerging markets, amplifies this threat. Overall, the competition from other advanced polymers poses a significant challenge, potentially restricting polyimides' adoption and slowing the market's global growth trajectory.
The polyimides market experienced notable effects due to the COVID-19 pandemic. Lockdowns, supply chain interruptions, and decreased industrial operations caused a temporary reduction in demand, particularly in electronics, automotive, and aerospace sectors. Production was disrupted as facilities struggled with workforce shortages and logistical constraints, delaying manufacturing and shipments. Nevertheless, as industries began recovering post-pandemic, the demand for polyimides rebounded. Growth in digitalization, advanced electronics, and aerospace technologies has further reinforced market prospects. While the pandemic temporarily slowed growth, the polyimides market is now stabilizing, with strong long-term potential driven by technological innovation and increasing adoption across key industrial segments.
The thermosetting polyimides segment is expected to be the largest during the forecast period
The thermosetting polyimides segment is expected to account for the largest market share during the forecast period, owing to their exceptional chemical resistance, thermal stability, and broad industrial applications. These materials are favored in electronics, aerospace, and automotive sectors for high-performance uses where durability under harsh conditions is essential. They retain mechanical and electrical integrity at high temperatures, making them suitable for flexible circuit boards, insulation films, and heat-resistant adhesives. Increasing implementation in advanced electronic devices and defense applications further reinforces their market leadership. Their versatility, reliability, and superior performance make thermosetting polyimides the largest segment, maintaining a significant share in the global polyimides market landscape.
The flexible printed circuits segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the flexible printed circuits segment is predicted to witness the highest growth rate. This surge is fueled by the rising requirement for compact and high-performance electronic devices, including smart phones, wearable's, and sophisticated medical equipment. Their lightweight construction, exceptional thermal resistance, and flexibility make them ideal for applications in automotive, aerospace, and consumer electronics sectors. Continuous advancements in flexible circuit technology, along with increasing investments in modern electronics manufacturing, are amplifying their adoption. These factors collectively are driving the swift expansion of flexible printed circuits, establishing this segment as the leading contributor to growth in the polyimides market.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, largely due to fast-paced industrial growth and the thriving electronics, automotive, and aerospace industries. Nations such as China, Japan, and South Korea are at the forefront of polyimide usage, benefiting from their strong manufacturing infrastructure and focus on high-performance materials. Rising requirements for flexible electronics, electric vehicles, and heat-resistant components are accelerating demand. Moreover, extensive research and development activities, combined with government support for advanced materials, reinforce the region's market leadership. The synergy of robust production capacity, technological progress, and expanding end-user sectors ensures that Asia-Pacific remains the foremost contributor to the global polyimides market share.
Over the forecast period, the Middle East and Africa region is anticipated to exhibit the highest CAGR. Accelerated industrial development, urban expansion, and rising investments in electronics and advanced manufacturing are key drivers of this growth. Increasing demand for high-performance materials across automotive, aerospace, and electronics sectors is boosting polyimide adoption. Government initiatives promoting technological advancement and infrastructure development further support market expansion. Additionally, the rise of emerging industries, emphasis on lightweight and heat-resistant materials, and enhanced foreign investments are fueling growth. These combined factors establish the Middle East and Africa as the region experiencing the highest compound annual growth rate in the global polyimides market.
Key players in the market
Some of the key players in Polyimides Market include DuPont de Nemours, Inc., Kaneka Corporation, Ube Industries, Ltd., Showa Denko K.K., Kolon Industries, Inc., JSR Corporation, Mitsui Chemicals, Inc., SKC Kolon PI Inc., Sumitomo Chemical Co., Ltd., Toray Industries, Inc., Evonik Industries AG, BASF SE, 3M Company, Saint-Gobain and SABIC.
In September 2025, DuPont de Nemours, Inc. DD has entered into a definitive agreement with Arclin to sell off its Aramids business, including Kevlar and Nomex brands, for approximately $1.8 billion. The transaction is expected to close in the first quarter of 2026, upon which DuPont will receive $1.2 billion (pre-tax) in cash, subject to adjustments, $300 million in note receivable and a non-controlling equity stake valued at $325 million, representing around 17.5% ownership in the new Arclin entity.
In July 2025, BASF and Equinor have signed a long-term strategic agreement for the annual delivery of up to 23 terawatt hours of natural gas over a ten-year period. The contract secures a substantial share of BASF's natural gas needs in Europe. This agreement further strengthens our partnership with BASF. Natural gas not only provides energy security to Europe but also critical feedstock to European industries.
In January 2025, Kaneka Corporation acquired 96.8% of shares of EndoStream Medical Ltd., an Israeli medical equipment company. By combining Kaneka's manufacturing and ESM's technology, we will jointly develop new medical devices, mainly for cerebrovascular treatment, in addition to the Nautilus(TM) device for aneurysm treatment currently under development.