![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1822354
¤·¼¼°èÀÇ ±âÅë ÈÞÁö ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2032³â) : ÄÄÆ÷³ÍÆ®, ÀÛµ¿ ¹æ¹ý, ¿¬·á À¯Çü, Â÷Á¾, ±âÅë¼ö, Áö¿ªº° ¼¼°è ºÐ¼®Cylinder Deactivation System Market Forecasts to 2032 - Global Analysis By Component, Actuation Method, Fuel Type, Vehicle Type, Number of Cylinders and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ±âÅë ÈÞÁö ½Ã½ºÅÛ ½ÃÀåÀº 2025³â¿¡ 50¾ï 4,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 7.8%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 85¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
±âÅë ÈÞÁö ½Ã½ºÅÛ(CDS)Àº ³»¿¬±â°üÀÇ ¼º´ÉÀ» ÃÖÀûÈÇÏ´Â ¿¬ºñ ¹× ¹è±â°¡½º Àú°¨ ¿£Áø ±â¼úÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº Á¤»ó ¼øÇ×À̳ª ¿£Áø °øÈ¸Àü°ú °°Àº Àú ¼ö¿ä ½Ã³ª¸®¿À¿¡¼ ƯÁ¤ ½Ç¸°´õ¸¦ ¼±ÅÃÀûÀ¸·Î ÈÞÁö½ÃŰ°í ´Ù¸¥ ½Ç¸°´õ´Â Á¤»ó ÀÛµ¿À» À¯ÁöÇÕ´Ï´Ù. ÀÌ ¼±ÅÃÀû ¼Ë´Ù¿îÀº ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í, ÀÌ»êÈź¼Ò ¹èÃâÀ» ÁÙÀ̸ç, Àüü ¿£ÁøÀÇ È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. ÁÖ·Î V6 ¹× V8 ¿£Áø¿¡ Àû¿ëµÇ´Â ÀÌ ±â¼úÀº Á¡Á¡ ´õ ¾ö°ÝÇÑ È¯°æ ±âÁذú ³ôÀº ¿¬ºñ ¿ä°ÇÀ» ÃæÁ·½Ã۱â À§ÇØ ÃֽŠÀÚµ¿Â÷¿¡ Á¡Á¡ ´õ ¸¹ÀÌ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö Àý¾à°ú ¼º´ÉÀÇ ½Ç¿ëÀûÀÎ ±ÕÇüÀ» ½ÇÇöÇÕ´Ï´Ù.
¹Ì±¹ ȯ°æº¸È£Ã»(EPA)ÀÇ µ¥ÀÌÅÍ¿¡ µû¸£¸é 2022³â ¹Ì±¹¿¡¼ ÆÇ¸ÅµÇ´Â ¼ÒÇü °¡¼Ö¸° Â÷·®ÀÇ 25% ÀÌ»ó¿¡ ½Ç¸°´õ ÈÞÁö±â°¡ äÅÃµÇ¾î ¿¬ºñ Çâ»ó°ú CO2 ¹èÃâ·® °¨¼Ò¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
ģȯ°æ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡
ģȯ°æÀûÀÌ°í ¿¬ºñ°¡ ÁÁÀº ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ±âÅë ÈÞÁö ½Ã½ºÅÛ ½ÃÀåÀ» °·ÂÇÏ°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ±¸¸ÅÀÚ´Â ÇöÀç ȯ°æ ¿µÇâ°ú ¿îÀü ºñ¿ëÀ» ÁÙÀ̱â À§ÇØ Àú°øÇØ, ¿¬ºñ°¡ ÁÁÀº ÀÚµ¿Â÷¸¦ ¼±È£Çϰí ÀÖ½À´Ï´Ù. CDS´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¿£Áø ¼º´ÉÀ̳ª ½Å·Ú¼ºÀ» ÀúÇϽÃŰÁö ¾ÊÀ¸¸é¼µµ ÀÌ·¯ÇÑ ¿ä±¸»çÇ×À» ÃæÁ·½Ãų ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ±âÈÄ º¯È¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ½Ç¸°´õ ÈÞÁö ±â´ÉÀ» žÀçÇÒ µ¿±â°¡ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ±× °á°ú, ¼ÒºñÀÚµéÀÇ ±â´ëÄ¡°¡ ³ô¾ÆÁö¸é¼ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ¿©·¯ Â÷·® ºÎ¹®¿¡ CDS¸¦ µµÀÔÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ½Ã½ºÅÛ ½ÃÀå ¹üÀ§¸¦ È®ÀåÇϰí, ÷´Ü ÆÄ¿öÆ®·¹ÀÎ ±â¼úÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇϸç, ¼¼°è ÀÚµ¿Â÷ ȯ°æ¿¡¼ CDSÀÇ Á߿伺À» °ÈÇϰí ÀÖ½À´Ï´Ù.
³ôÀº Ãʱ⠺ñ¿ë
±âÅë ÈÞÁö ½Ã½ºÅÛ ½ÃÀåÀÇ ÁÖ¿ä ¾ïÁ¦¿äÀÎÀº ³ôÀº Ãʱ⠺ñ¿ëÀÔ´Ï´Ù. CDS¸¦ ÅëÇÕÇÏ·Á¸é °í±Þ ¿£Áø ºÎǰ, ECU, ¼¾¼, º¹ÀâÇÑ ¼ÒÇÁÆ®¿þ¾î°¡ ÇÊ¿äÇϸç, Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº ¿¹»êÀÌ ÀûÀº ºÎ¹®³ª ¼ÒºñÀÚ¸¦ Ÿ°ÙÀ¸·Î ÇÏ´Â ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ °æ¿ì äÅÃÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. CDS·Î ÀÎÇÑ Â÷·® °¡°Ý »ó½ÂÀº °¡°Ý¿¡ ¹Î°¨ÇÑ Áö¿ª¿¡¼ CDSÀÇ ¸Å·ÂÀ» ¶³¾î¶ß¸®°í ½ÃÀå ħÅõ¸¦ Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Ã½ºÅÛ À¯Áöº¸¼ö ¹× ¼ö¸®´Â Àå±âÀûÀÎ ºñ¿ë ÁöÃâÀÇ ÇÑ ¿äÀÎÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¿¬·á Àý°¨°ú ¹èÃâ°¡½º °¨¼Ò¶ó´Â Å« ÀåÁ¡¿¡µµ ºÒ±¸Çϰí CDS¿Í °ü·ÃµÈ ¸·´ëÇÑ Ãʱâ ÅõÀÚ´Â ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» ¹æÇØÇϰí, ƯÁ¤ ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ ½ÃÀå È®ÀåÀ» ¾ïÁ¦ÇÏ´Â ÀçÁ¤Àû °úÁ¦¸¦ Á¦½ÃÇÕ´Ï´Ù.
ÇÏÀ̺긮µå ¹× Àü±âÀÚµ¿Â÷¿ÍÀÇ ÅëÇÕ
ÇÏÀ̺긮µåÂ÷ ¹× Àü±âÀÚµ¿Â÷ÀÇ µîÀåÀº ±âÅë ÈÞÁö ½Ã½ºÅÛ ½ÃÀå¿¡ »õ·Î¿î ±æÀ» ¿¾ú½À´Ï´Ù. ÇÏÀ̺긮µå ¿£Áø¿¡¼´Â CDS°¡ Àü±â¸ðÅÍ¿Í ¿¬µ¿ÇÏ¿© ÀúºÎÇÏ ÁÖÇà½Ã ½Ç¸°´õ¸¦ Á¤Áö½ÃÄÑ ¿¬·á È¿À²À» ³ôÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã³ÊÁö È¿°ú´Â Àü¹ÝÀûÀÎ ¿¡³ÊÁö È¿À²À» Çâ»ó½Ã۰í, ¹è±â°¡½º ¹èÃâÀ» ÁÙÀ̸ç, ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÁؼöÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ Á¡Á¡ ´õ Àü±âȵǴ °¡¿îµ¥, CDS¸¦ ÇÏÀ̺긮µå ±â¼ú°ú ÅëÇÕÇÏ¸é ¿¬ºñ ¹× ¼º´É Çâ»ó°ú °°Àº ÀÌÁ¡À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» äÅÃÇÏ´Â ±â¾÷Àº ȯ°æ¿¡ ¹Î°¨ÇÑ ¼ÒºñÀÚ¸¦ ²ø¾îµé¿© °æÀï·ÂÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ±âÁ¸ ³»¿¬±â°üÂ÷ ¹× Àüµ¿È Â÷·® Ç÷§Æû ¸ðµÎ¿¡¼ CDS Àû¿ëÀ» Àü ¼¼°è¿¡¼ È®´ëÇÒ ¼ö ÀÖ´Â Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.
´ëü ¿¬·á ±â¼ú°úÀÇ °æÀï
±âÅë ÈÞÁö ½Ã½ºÅÛ ½ÃÀåÀÇ °¡Àå Å« À§ÇùÀº ´ëü ¿¡³ÊÁö ÀÚµ¿Â÷¿ÍÀÇ °æÀï ½ÉÈÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷, ¼ö¼Ò¿¬·áÀüÁöÂ÷, ±âŸ ¹«°øÇØ ÃßÁø½Ã½ºÅÛÀÌ Á¡Á¡ ´õ ¼±È£µÇ¸é¼ ÀüÅëÀûÀÎ ³»¿¬±â°ü¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ Àü±âȵʿ¡ µû¶ó ÁÖ·Î ICE¿ëÀ¸·Î ¼³°èµÈ CDSÀÇ Á߿伺ÀÌ °¨¼ÒÇÏ¿© ¼ºÀå ÀáÀç·Â°ú R&D ÅõÀÚ°¡ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¬ºñ°¡ ¿ì¼öÇÑ ÇÏÀ̺긮µåÂ÷³ª Ç÷¯±×ÀÎ ÇÏÀ̺긮µåÂ÷ÀÇ ÀαⰡ ³ô¾ÆÁö¸é ±âÅë ÈÞÁö ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ °¨¼ÒÇÒ °¡´É¼ºµµ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå º¯È´Â ºü¸£°Ô ÁøÈÇÏ´Â ÀÚµ¿Â÷ »ê¾÷¿¡¼ ±âÅë ÈÞÁö ½Ã½ºÅÛÀÇ Àå±âÀûÀÎ È®ÀåÀ» Á¦¾àÇÏ´Â °æÀï °úÁ¦°¡ µÉ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¹ß»ýÀº ÀÚµ¿Â÷ »ý»ê, °ø±Þ¸Á, ¼ÒºñÀÚ ¼ö¿ä¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ ±âÅë ÈÞÁö ½Ã½ºÅÛ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °¡µ¿ Áߴܰú ³ëµ¿·Â Á¦ÇÑÀ¸·Î ÀÎÇØ CDS ±â¼úÀÌ Àû¿ëµÈ ÀÚµ¿Â÷ÀÇ »ý»êÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ¼¼°è °ø±Þ¸Á Áß´ÜÀº ECU, ¼¾¼, ¿£Áø ºÎǰ µî Çʼö ºÎǰÀÇ °¡¿ë¼º¿¡ ¿µÇâÀ» ¹ÌÃÄ »ý»êÀ» ´õ¿í Áö¿¬½ÃÄ×½À´Ï´Ù. °æÁ¦ÀÇ ºÒÈ®½Ç¼º°ú °³ÀÎ ¼Òºñ °¨¼Ò·Î ÀÎÇØ ÀÚµ¿Â÷ ÆÇ¸Å°¡ ÀϽÃÀûÀ¸·Î °¨¼ÒÇϰí, ½Ç¸°´õ ÈÞÁö±â¿Í °°Àº Àú¿¬ºñ ±â¼úÀÇ µµÀÔÀÌ Á¦ÇѵǾú½À´Ï´Ù. ÀÌ·¯ÇÑ µµÀü¿¡µµ ºÒ±¸Çϰí COVID-19 ÀÌÈÄ ÀÚµ¿Â÷ ºÎ¹®ÀÇ È¸º¹À¸·Î ¹èÃâ°¡½º Àú°¨, ¿¬ºñ È¿À², ÷´Ü ¿£Áø ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã±Ý ³ô¾ÆÁö¸é¼ ¼ºÀå ±âȸ°¡ ȸº¹µÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, CDS ½ÃÀåÀº ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ È¥¶õÀ» µó°í ´Ù½Ã Ȱ±â¸¦ µÇã±â ½ÃÀÛÇß½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¿£Áø Á¦¾î ÀåÄ¡(ECU) ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿£Áø Á¦¾î ÀåÄ¡(ECU) ºÎ¹®Àº ½Ç¸°´õ ÀÛµ¿À» Á¦¾îÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇϹǷΠ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ã½ºÅÛÀÇ µÎ³ú ¿ªÇÒÀ» ÇÏ´Â ECU´Â ¼Óµµ, ºÎÇÏ, ¿Âµµ, ¿îÀüÀÚ Çൿ µî ¿£Áø »óŸ¦ ¸ð´ÏÅ͸µÇÏ°í ½Ç¸°´õÀÇ Á¤È®ÇÑ ÀÛµ¿°ú Á¤Áö¸¦ °ü¸®ÇÕ´Ï´Ù. ¹ëºê ŸÀ̹Ö, ¿¬·á °ø±Þ, Á¡È¸¦ Á¶Á¤ÇÏ°í ¿øÈ°ÇÑ ÀüȯÀ» ÅëÇØ ¼º´É Ç¥ÁØÀ» À¯ÁöÇÕ´Ï´Ù. ¸ðµç ¼¾¼, ¾×Ãß¿¡ÀÌÅÍ, ¿£Áø ÄÄÆ÷³ÍÆ®¸¦ ÅëÇÕÇÏ´Â ÇÙ½É ±â´ÉÀ» °¡Áø ECU´Â ½Ã½ºÅÛÀÇ È¿À²¼ºÀ» ³ôÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ±× °á°ú, ECU ºÎ¹®Àº ½ÃÀå¿¡¼ °¡Àå ³ôÀº Á¸Àç°¨À» º¸À̸ç Àü ¼¼°è¿¡¼ Çö´ëÀÇ V6 ¹× V8 ¿£Áø¿¡ ±¤¹üÀ§ÇÏ°Ô ±¸ÇöµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß °¡¼Ö¸° ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß Àú¿¬ºñ Â÷·®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡¼Ö¸° ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °¡¼Ö¸° ¿£Áø, ƯÈ÷ V6¿Í V8 À¯ÇüÀº ½Â¿ëÂ÷, SUV, ¼ÒÇü »ó¿ëÂ÷¿¡¼ ÈçÈ÷ º¼ ¼ö ÀÖÀ¸¸ç CDS ±â¼ú¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¿¬ºñ Çâ»ó, ¹è±â°¡½º Àú°¨, ¾ö°ÝÇÑ È¯°æ ±âÁØ Áؼö¸¦ À§ÇØ °¡¼Ö¸° ¿£Áø¿¡ ½Ç¸°´õ ÈÞÁö±â¸¦ µµÀÔÇÏ´Â »ç·Ê°¡ ´Ã°í ÀÖ½À´Ï´Ù. ¿¬ºñ Çâ»ó°ú ¿îÀü ºñ¿ë Àý°¨À» ½ÇÇöÇÏ´Â ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£´Â ½ÃÀå È®´ë¸¦ ´õ¿í ºÎÃß±â°í ÀÖ½À´Ï´Ù. ¿£Áø ÀüÀÚ ¹× °ü¸® ½Ã½ºÅÛÀÇ ¹ßÀüÀº CDSÀÇ ÅëÇÕÀ» ¿ëÀÌÇÏ°Ô Çϰí, äÅ÷üÀ» ³ôÀ̸ç, °¡¼Ö¸° ºÎ¹®ÀÇ ³ôÀº ½ÃÀå CAGR¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, À̴ ÷´Ü ÀÚµ¿Â÷ ±â¼úÀÇ º¸±Þ°ú ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¿¡ ±âÀÎÇÕ´Ï´Ù. V6 ¹× V8 ¿£ÁøÀ» »ý»êÇÏ´Â ´ëÇü ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ Á¸ÀçÇϹǷΠCDS¸¦ µµÀÔÇϱ⿡ ÀÌ»óÀûÀÎ Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. Àú¿¬ºñ, ģȯ°æ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Áö¿ø, ±×¸° Å×Å©³î·¯Áö Àå·Á±Ý, ¿¬±¸°³¹ß¿¡ ´ëÇÑ °·ÂÇÑ ÅõÀÚ´Â ±âÅë ÈÞÁö ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. Àß Á¤ºñµÈ ÀÚµ¿Â÷ ÀÎÇÁ¶ó¿Í ¼º¼÷ÇÑ ÀÚµ¿Â÷ ½ÃÀå°ú ÇÔ²² ºÏ¹Ì´Â ¿£Áø È¿À²È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä¿Í ±â¼ú ¹ßÀüÀ» ¹Ý¿µÇÏ¿© ¼¼°è CDS ½ÃÀåÀÇ ÁÖ¿ä Áö¿ªÀ¸·Î ºÎ»óÇß½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÚµ¿Â÷ »ý»ê È®´ë¿Í Àú¿¬ºñ Â÷·®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹À̳ª Àεµ¿Í °°Àº ±¹°¡¿¡¼´Â µµ½ÃÈÀÇ ÁøÀü, Áß»êÃþ Áõ°¡, °¡Ã³ºÐ ¼Òµæ Áõ°¡°¡ ÀÚµ¿Â÷ ÆÇ¸Å¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¬ºñ¸¦ °³¼±ÇÏ°í ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¿¡ ´ëÀÀÇϱâ À§ÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº V6 ¹× V8 ¿£Áø¿¡ CDS ±â¼úÀ» ¼øÂ÷ÀûÀ¸·Î Àû¿ëÇϰí ÀÖ½À´Ï´Ù. ģȯ°æ ÀÚµ¿Â÷¸¦ Àå·ÁÇÏ´Â Á¤ºÎ Á¤Ã¥°ú ¿¬±¸ ¹× ±â¼ú Çõ½Å¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ¸Â¹°·Á ģȯ°æ ÀÚµ¿Â÷ÀÇ Ã¤ÅÃÀÌ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ±× °á°ú, ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÁÖ¿ä ¼ºÀå °ÅÁ¡À¸·Î ºÎ»óÇÏ¿© ±âÅë ÈÞÁö ½Ã½ºÅÛ ½ÃÀåÀÇ ¼¼°è È®Àå¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Cylinder Deactivation System Market is accounted for $5.04 billion in 2025 and is expected to reach $8.53 billion by 2032 growing at a CAGR of 7.8% during the forecast period. Cylinder Deactivation System (CDS) is a fuel-saving and emission-reducing engine technology that optimizes performance in internal combustion engines. The system selectively deactivates certain cylinders during low-demand scenarios, such as steady cruising or engine idling, while other cylinders maintain normal operation. This selective shutdown reduces fuel consumption, cuts carbon emissions, and improves overall engine efficiency, yet allows full power when acceleration or heavy load is required. Predominantly applied in V6 and V8 engines, the technology is increasingly adopted in modern vehicles to meet stricter environmental norms and higher fuel efficiency requirements. It offers a practical balance between energy conservation and performance.
According to data from the U.S. Environmental Protection Agency (EPA), cylinder deactivation was used in over 25% of new light-duty gasoline vehicles sold in the U.S. in 2022, contributing to improved fuel economy and reduced CO2 emissions.
Rising consumer demand for eco-friendly vehicles
Increasing consumer interest in green and fuel-efficient vehicles strongly drives the Cylinder Deactivation System market. Buyers now prioritize cars with lower emissions and improved fuel economy to reduce environmental impact and operating expenses. CDS allows automakers to address these demands without compromising engine performance or reliability. Heightened awareness of climate change and sustainability further motivates manufacturers to equip vehicles with cylinder deactivation features. Consequently, growing consumer expectations are pushing automotive companies to implement CDS across multiple vehicle segments. This trend is expanding the system's market reach and accelerating the adoption of advanced powertrain technologies, reinforcing its importance in the global automotive landscape.
High initial cost
A key restraint for the Cylinder Deactivation System market is its elevated upfront cost. Integrating CDS involves advanced engine components, ECUs, sensors, and complex software, which raise manufacturing expenses. For automakers targeting budget-conscious segments and consumers, these costs can limit adoption. Higher vehicle prices due to CDS may reduce its appeal in price-sensitive regions, slowing market penetration. Additionally, maintenance and repair of the system can contribute to long-term expenses. Despite offering significant benefits in fuel savings and emission reduction, the substantial initial investment associated with CDS presents a financial challenge that hinders broader adoption and restrains market expansion across certain automotive segments globally.
Integration with hybrid and electric vehicles
The rise of hybrid and electric vehicles opens new avenues for the Cylinder Deactivation System market. In hybrid engines, CDS enhances fuel efficiency by shutting down cylinders during low-load driving, working in tandem with electric motors. This synergy improves overall energy efficiency, reduces emissions, and helps automakers comply with strict regulatory requirements. As the automotive industry increasingly shifts toward electrification, integrating CDS with hybrid technology offers advantages such as better fuel economy and performance. Companies adopting this approach can attract environmentally conscious consumers and establish a competitive edge. This trend presents significant opportunities for expanding CDS applications in both traditional internal combustion and electrified vehicle platforms globally.
Competition from alternative fuel technologies
A significant threat to the Cylinder Deactivation System market is growing competition from alternative energy vehicles. Electric cars, hydrogen fuel cell vehicles, and other zero-emission propulsion systems are increasingly preferred, lowering the demand for conventional internal combustion engines. As the automotive industry moves toward electrification, the importance of CDS-which is primarily designed for ICEs-may diminish, limiting growth potential and R&D investments. Furthermore, the rising popularity of hybrid and plug-in hybrid vehicles, which provide superior fuel efficiency, can reduce the need for cylinder deactivation systems. These market shifts pose a competitive challenge and may constrain the long-term expansion of CDS in a rapidly evolving automotive landscape.
The COVID-19 outbreak considerably affected the Cylinder Deactivation System market by disrupting automotive production, supply chains, and consumer demand. Lockdowns and limited workforce availability caused delays in manufacturing vehicles with CDS technology. Interruptions in global supply chains impacted the availability of essential components, including ECUs, sensors, and engine parts, slowing production further. Economic uncertainties and lower consumer spending temporarily reduced vehicle sales, restricting the uptake of fuel-efficient technologies like cylinder deactivation. Despite these challenges, post-pandemic recovery in the automotive sector refocused attention on emission reduction, fuel efficiency, and advanced engine systems, which helped restore growth opportunities. As a result, the CDS market began regaining momentum following the pandemic's peak disruptions.
The engine control unit (ECU) segment is expected to be the largest during the forecast period
The engine control unit (ECU) segment is expected to account for the largest market share during the forecast period due to its pivotal role in controlling cylinder operation. Acting as the system's brain, the ECU monitors engine conditions such as speed, load, temperature, and driver behavior to manage precise activation and deactivation of cylinders. It coordinates valve timing, fuel delivery, and ignition to ensure seamless transitions and maintain performance standards. Its central function in integrating all sensors, actuators, and engine components makes it essential for the system's efficiency. As a result, the ECU segment has the highest market presence and is widely implemented in contemporary V6 and V8 engines globally.
The gasoline segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the gasoline segment is predicted to witness the highest growth rate, driven by rising demand for fuel-efficient vehicles. Gasoline-powered engines, especially V6 and V8 types, are common in passenger cars, SUVs, and light commercial vehicles, making them suitable for CDS technology. Automakers are increasingly implementing cylinder deactivation in gasoline engines to enhance fuel efficiency, lower emissions, and comply with stringent environmental standards. Consumer preference for vehicles that offer improved mileage and reduced operating costs further supports market expansion. Advances in engine electronics and management systems also facilitate CDS integration, boosting adoption rates and contributing to the high CAGR of the gasoline segment in the market.
During the forecast period, the North America region is expected to hold the largest market share, owing to widespread adoption of advanced automotive technologies and strict emission standards. The presence of major automakers producing V6 and V8 engines provides an ideal platform for implementing CDS. Rising consumer preference for fuel-efficient and environmentally friendly vehicles drives further growth. Government support, incentives for green technologies, and strong investments in research and development enhance the adoption of cylinder deactivation systems. Combined with well-developed automotive infrastructure and a mature vehicle market, these factors position North America as a leading region in the global CDS market, reflecting both high demand and technological advancement in engine efficiency solutions.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by expanding automotive production and rising demand for fuel-efficient vehicles. Increasing urbanization, growing middle-class populations, and higher disposable incomes in countries like China and India are boosting vehicle sales. To improve fuel efficiency and meet stricter emission regulations, automakers are progressively incorporating CDS technology into V6 and V8 engines. Government policies encouraging environmentally friendly vehicles, combined with significant investments in research and innovation, further accelerate adoption. Consequently, the Asia-Pacific region is set to emerge as a major growth hub, playing a crucial role in the global expansion of the Cylinder Deactivation System market.
Key players in the market
Some of the key players in Cylinder Deactivation System Market include Eaton, Delphi Technologies, Schaeffler Technologies, Robert Bosch GmbH, BorgWarner, Magna International, Daimler, Ford Motor Company, General Motors (GM), Honda Motor Co., Volkswagen AG, Chrysler Group, Mahle GmbH, Valeo SA and Tula Technology.
In July 2025, Eaton announced it has signed an agreement to acquire Resilient Power Systems Inc., a leading North American developer and manufacturer of innovative energy solutions, including solid-state transformer-based technology.
In November 2024, Bosch Corporation concludes a comprehensive partnership agreement to invigorate the Local Community with Tsuzuki Ward, Yokohama. Through the partnership agreement, Bosch and Tsuzuki Ward, Yokohama, will strengthen their collaboration to further invigorate the local community.
In September 2024, Schaeffler and Alstom sign strategic partnership agreement for further development in area of rail transport. Through the partnership, the two companies hope to further expand their business, develop new technologies, and spur their growth over the long term.