![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1487709
<2024> ¸®Æ¬À̿ 2Â÷ÀüÁö À½±ØÀç ±â¼ú µ¿Çâ ¹× ½ÃÀå Àü¸Á (-2035)<2024> Technology Trends and Market Outlook of Lithium-ion Secondary Battery Anode Materials |
ÀÌÂ÷ÀüÁöÀÇ À½±ØÀç¿¡ °üÇÏ¿© Áö¼ÓÀûÀ¸·Î À̽´°¡ µÇ°í ÀÖ´Â »çÇ׿¡´Â ¾Æ·¡¿¡ ¼¼°¡Áö°¡ ÀÖ½À´Ï´Ù.
1) ±Þ¼ÓÃæÀü À̽´¿¡ µû¸¥ ½Ç¸®ÄÜ À½±ØÀçÀÇ È®´ë 2) IRA °ü·Ã Áß±¹»ê Èæ¿¬ À½±ØÀç¿¡ ´ëÇÑ º¸Á¶±Ý Àû¿ëºÒ°¡¿Í ÀÌ¿¡ ´ëÇÑ ´ëÃ¥À¸·Î Áß±¹ ¿Ü Èæ¿¬Sourcingó ¹ß±¼ 3) Â÷¼¼´ë ÀüÁö (SIB³ªÆ®·ýÀüÁö, ASBÀü°íü ÀüÁö) À½±ØÀç¿¡ ´ëÇÑ ¿¬±¸/°³¹ß
ù¹øÂ°·Î 1)½Ç¸®ÄÜ À½±ØÀç´Â ³ôÀº ºñ¿ë·®¿¡ µû¸¥ ¿¡³ÊÁö¹Ðµµ °³¼±°ú °í¼ÓÃæÀü¿¡ ´ëÇÑ Needs·Î ÀÎÇÏ¿© °ÇÏ°Ô drive°¡ °É¸®°í Àִµ¥, °¡Àå Å« Çö¾ÈÀº Áö¹èÀûÀÎ ½Ç¸®ÄÜ À½±ØÀç PlatformÀÌ ¾ÆÁ÷ µîÀåÇÏÁö ¾Ê¾Ò´Ù´Â Á¡ÀÔ´Ï´Ù.
ÇöÀç ½Ç¸®ÄÜ À½±ØÀçÀÇ ÁÖ·ùÀÎ SiOx³ª Si-CÀÇ °æ¿ì¿¡ ¾ÆÁ÷ »ó´çÇÑ °í°¡À̰í, ÇöÀç ¿¬±¸µÇ°Å³ª °³¹ßµÇ°í ÀÖ´Â »õ·Î¿î ±â¼ú°ú Á¦Ç°, ±×¸®°í Á¦Á¶¹æ½Ä¿¡ ºñÇÏ¿© ±â¼ú ¹× °¡°ÝÀûÀÎ ¿ì¼¼°¡ ¾ÆÁ÷ È®¸³µÇ¾ú´Ù°í º¸±â ¾î·Á¿î »óȲÀÔ´Ï´Ù. ÇöÀç Àü¼¼°èÀûÀ¸·Î 100°³°¡ ³Ñ´Â ÀüÁö±â¾÷, ¼ÒÀç¾÷ü, Áß°ß±â¾÷, Start-up ¶Ç´Â Çмú/¿¬±¸ ±â°ü µî¿¡¼ ½Ç¸®ÄÜ À½±ØÀç¿¡ ´ëÇÑ ´Ù¾çÇÑ ¿¬±¸°³¹ß ¹× Á¦Ç° Ãâ½Ã°¡ ÁøÇàÁßÀ̹ǷΠÇâÈÄ ±â¼úÀûÀ¸·Î Áøº¸µÈ Á¦Ç°°ú Á¦Á¶ ¹æ½ÄÀÌ µîÀåÇÒ °¡´É¼ºÀÌ ³ô´Ù°í º¸ÀÔ´Ï´Ù. º» º¸°í¼¿¡¼´Â ÀÌ·¯ÇÑ ½Ç¸®ÄÜ À½±ØÀç ¾÷ü¿¡ ´ëÇØ ÀÚ¼¼È÷ Á¶»çÇÏ¿´½À´Ï´Ù.
µÎ¹øÂ°·Î 2) Áß±¹ ¿Ü Èæ¿¬ À½±ØÀç Sourcingó ¹ß±¼ÀÔ´Ï´Ù. ÇöÀç LIB À½±ØÀçÀÇ 98%°¡ Èæ¿¬À̰í Èæ¿¬ SupplyÀÇ 90%ÀÌ»óÀ» Áß±¹¾÷ü°¡ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼ Á¦±âÇÑ IRA¹ý¾È¿¡ µû¶ó ´çÃÊ¿¡´Â, Áß±¹°ú °°Àº ÇØ¿Ü ¿ì·Á±¹°¡(FEOC)ÀÇ ¾÷ü¿¡¼ Á¦Á¶ÇÑ À½±ØÀç°¡ µé¾îÀÖ´Â ÀÚµ¿Â÷¿ë ÀüÁö¿¡ ´ëÇØ¼´Â 2025³â 1¿ùºÎÅÍ º¸Á¶±ÝÀ» Áö±ÞÇÏÁö ¾Ê±â·Î ÇÏ¿´À¸³ª, Çö½ÇÀûÀ¸·Î À̸¦ Àû¿ëÇϱ⠾î·Á¿ì¹Ç·Î ¿ÃÇØ(24³â) 5¿ù ÀÌ·¯ÇÑ Á¶°ÇÀÇ ¹ßµ¿À» 2³â À¯¿¹ÇÏ¿© 2027³â 1¿ùºÎÅÍ Àû¿ëÇϱâ·Î ÇÏ¿´½À´Ï´Ù.
2³âÀÇ ½Ã°£À» ¹ú¾úÁö¸¸ ´çÀå Áß±¹ÀÌ¿ÜÀÇ À½±ØÀç Èæ¿¬ Sourcingó¸¦ ¹ß±¼ÇØ¾ß ÇÕ´Ï´Ù. µû¶ó¼ ¹Ì±¹À̳ª À¯·´ µîÀÇ Èæ¿¬ ¾÷ü¸¦ ã¾Æ ³ª¼¾ß Çϴµ¥ ±â¼úÀûÀ¸·Î, ¶Ç ¹°·®ÀûÀ¸·Î ¸¶¶¥ÇÑ supplie¸¦ ã±â°¡ ½±Áö ¾Ê½À´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼´Â ÀÌ·¯ÇÑ Áß±¹ ÀÌ¿ÜÀÇ È£ÁÖ, À¯·´, ¹Ì±¹ µî ºñÁß±¹ Èæ¿¬ À½±ØÀç ¾÷ü ÇöȲ¿¡ ´ëÇØ¼µµ »ó¼¼È÷ Á¶»çÇÏ¿´½À´Ï´Ù.
¸¶Áö¸·À¸·Î 3) SIB³ª ASB À½±ØÀç¿¡ ´ëÇÑ ¿¬±¸°³¹ßÀε¥, ä±¼·®ÀÌ Á¦ÇÑÀûÀÎ Lithium(Li)À» ´ë½ÅÇÏ¿© ÀüÁö¿¡¼ À̵¿¹°Áú·Î Sodium(Na)À» äÅÃÇÏ¿© °ËÅäµÇ°í ÀÖ´Â ³ªÆ®·ýÀüÁö(SIB) À½±ØÀç·Î´Â ÁÖ·Î Hard CarbonÀÌ ¾²À̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀϺΠ½Ç¸®ÄÜ À½±ØÀç¿¡¼ ´Ù°ø¼º Hard CarbonÀÌ Nano SiliconÀÇ ÁöÁöü(support)·Î ¾²ÀÌ´Â °æ¿ì°¡ Àֱ⿡ Hard CarbonÀº Èæ¿¬°ú ½Ç¸®ÄÜÀ» Á¦¿ÜÇÑ ¼ÒÀçÁß¿¡ À½±ØÀç·Î ¾²ÀÏ ¼ö ÀÖ´Â Áß¿ä ¹°Áú·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù.
Àü°íü ÀüÁö(ASB) À½±ØÀç·Î´Â ź¼Ò°è ¹°Áú(Èæ¿¬, Hard Carbon)À̳ª ½Ç¸®ÄÜÀÌ »ç¿ëµÇ´Â °æ¿ìµµ ÀÖÁö¸¸ ÀÌ¿Í ÇÔ²² Li-metalÀÌ °è¼ÓÀûÀ¸·Î °ËÅäµÇ°í ÀÖÀ¸¹Ç·Î Li metalÀÌ »ç¿ëµÈ´Ù¸é ÀÌÂ÷ÀüÁö À½±ØÀçÀÇ ¿µ¿ªÀ» ÇÑÃþ ´õ ³ÐÇô ÁÖ¸®¶ó ±â´ëÇϰí ÀÖ½À´Ï´Ù. ºñ°áÁ¤¼º ź¼Ò¹°ÁúÀÎ Hard CarbonÀ̳ª ¿ÏÀü MetalÀÎ Lithium À½±ØÀçÀÇ Çâ¹è¿¡ °ü½ÉÀ» °¡Á®¾ß ÇÒ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¿¡ ¸ÂÃç ¿¬±¸/°³¹ß ¶Ç´Â ÀϺΠÀû¿ëµÇ°í ÀÖ´Â ´ëÇ¥ÀûÀÎ ½Å±Ô À½±ØÀç Èĺ¸¿¡´Â Silicon°è¿Í Li metalÀÌ ÀÖ°í ±âÁ¸ ź¼Ò°è À½±ØÀç¿¡ ´ëÇÑ °³¼±µµ º´ÇàÇÏ¿© ÁøÇàµÇ°í ÀÖÀ¸¸ç, Anode-free ¹× ±Þ¼ÓÃæÀü ±â¼ú¿¡ ´ëÇÑ ¿¬±¸°¡ Ȱ¹ßÈ÷ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼´Â ÀÌ·¯ÇÑ ÃÖ±ÙÀÇ Trends¿Í ¿¬±¸ °³¹ß »óȲÀ» Ãæ½ÇÈ÷ ¹Ý¿µÇÏ¿´½À´Ï´Ù.
ƯÈ÷ Silicon°è¿Í Li metalÀ» Áß½ÉÀ¸·Î ÇÑ Ãֽбâ¼úµ¿ÇâÀ» ½Éµµ ÀÖ°Ô ³íÇÏ¿´À¸¸ç ±âÁ¸ Àç·á¿Í ½Å±Ô ¹°ÁúÀÇ ¼º´É °³¼±°ú hybrid Á¦Ç°ÀÇ ¿¬±¸ °³¹ß ÇöȲµµ »ìÆì º¸¾Ò½À´Ï´Ù. ¿©±â¿¡ ±Þ¼Ó ÃæÀü ±â¼ú ¼³°è¿Í Anode-free ±â¼ú¿¡ ´ëÇÑ ¾÷°è µ¿Çâµµ »ìÆìº¸¾Ò½À´Ï´Ù.
¶ÇÇÑ ÁÖ¿ä ¸ÞÀÌÀú ¹èÅ͸® ¾÷üµéÀÇ ÃÖ±Ù 3°³³â µ¿¾ÈÀÇ À½±ØÀç »ç¿ëÇöȲ ¹× SCM¿¡ ´ëÇÑ »ó¼¼ ºÐ¼®À» ´Ù·ç¾úÀ¸¸ç, õ¿¬È濬, ÀÎÁ¶È濬, ½Ç¸®ÄÜ°è °¢ ŸÀÔº° »ó¼¼ÇÑ Supply Chain ¾÷üµé¿¡ ´ëÇÏ¿© Tier1, Tier2, ±¹°¡ ±×·ìº°·Î 100¿©°³ ÀÌ»óµÇ´Â ¾÷üµéÀÇ »ó¼¼ ºÐ¼®À» ÇÏ¿´½À´Ï´Ù.
º» º¸°í¼°¡ ±Û·Î¹ú ÀÌÂ÷ÀüÁö ½ÃÀå ¹× À½±ØÀç ½ÃÀå ºÐ¼® ¹× »ç¾÷ Àü·«¿¡ µµ¿òÀÌ µÇ±æ ¹Ù¶ø´Ï´Ù..
There are three issues below that continue to be issued regarding anode materials for secondary batteries.
First, 1) Silicon anode materials are being driven strongly due to the need for improved energy density and fast charging due to high specific capacity, but the biggest issue is that a dominant silicon anode material platform has not yet emerged.
SiOx and Si-C, which are currently the mainstream silicon anode materials, are still quite expensive, and it is difficult to say that technological and price superiority has yet been established compared to new technologies, products, and manufacturing methods currently being researched or developed. Currently, more than 100 battery companies, material companies, mid-sized companies, start-ups, or academic/research institutes around the world are conducting various research and development and product launches on silicon anode materials, so technologically advanced products and manufacturing methods will emerge in the future. In this report, we investigated these silicon anode material companies in detail.
Second, 2) discovering sourcing sources for graphite anode materials outside of China. Currently, 98% of LIB anode materials are graphite, and Chinese companies account for more than 90% of graphite supply. In accordance with the IRA bill proposed by US, it was initially decided not to provide subsidies for xEV batteries containing anode materials manufactured by companies in foreign countries of concern (FEOC) such as China from January 2025, but it was difficult to apply this in reality. Therefore, in May 2024, they decided to postpone the triggering of these conditions for two years and apply them from January 2027.
Although we have gained two years of time, we must immediately discover sources for graphite anode materials outside of China. Therefore, we need to look for graphite companies in the US or Europe, but it is not easy to find a suitable supplier in terms of technology and quantity. In this report, we also investigated the status of non-Chinese graphite anode material companies in detail, such as in Australia, Europe, and the United States.
Lastly, 3) R&D on SIB or ASB anode materials. Hard carbon is mainly used as the anode material for sodium-ion batteries, which adopted sodium (Na) as a transport material in batteries instead of lithium (Li), which has a limited amount of mining. In addition, in some silicon anode materials, porous hard carbon is used as a support for nano silicon, so hard carbon is considered an important material that can be used as the anode material among materials other than graphite and silicon.
In some cases, carbon-based materials (graphite, hard carbon) or silicon are used as anode materials for all-solid-state batteries (ASSB), but Li-metal is also being continuously reviewed, so if Li-metal is used, the scope of secondary battery anode materials is expected to be expanded. We should be interested in the trend of hard carbon, which is an amorphous carbon material, or lithium anode material, a complete metal. Representative new anode material candidates that are being researched/developed or partially applied in line with this trend include silicon-based and Li metal, and improvements to existing carbon-based anode materials are also being carried out in parallel, and research on anode-free and fast charging technology is actively underway. This report reflects these recent trends and R&D status.
In particular, the latest technological trends centered on silicon-based materials and Li metal were discussed in depth, and the performance improvement of existing and new materials and the R&D status of hybrid products were also examined. This report also looked at industry trends in fast charging technology design and anode-free technology.
In addition, this report analyzed the use of anode materials and SCM of major battery companies in detail for the past three years. Each type (natural graphite, artificial graphite, silicon-based) of supply-chain companies were divided into Tier1, Tier2, and countries, and more than 100 companies were analyzed in detail.
We hope this report will be helpful in analyzing the global secondary battery market, anode material market and in business strategy.