공지 : 도쿄증권거래소 JASDAQ 스탠다드 시장 신규 상장 관련 안내

Global Information
회사소개 | 문의 | 비교리스트

인터밴드 캐스케이드 레이저(ICL) 및 양자 캐스케이드 레이저(QCL) : 기술, 시장 동향, 용도(2021년)

Interband & Quantum Cascade Lasers - Technologies, Market Trends and Applications (2021)

리서치사 TEMATYS - Exploration of Photonics Markets
발행일 2021년 10월 상품 코드 1028767
페이지 정보 영문 249 Slides
가격
US $ 5,938.10 ₩ 7,029,000 PDF (Multi User License)


인터밴드 캐스케이드 레이저(ICL) 및 양자 캐스케이드 레이저(QCL) : 기술, 시장 동향, 용도(2021년) Interband & Quantum Cascade Lasers - Technologies, Market Trends and Applications (2021)
발행일 : 2021년 10월 페이지 정보 : 영문 249 Slides

본 상품은 영문 자료로 한글과 영문목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

캐스케이드 레이저(Cascade Laser)의 현재 성숙도를 조사했으며, 경쟁적인 시장 환경에서 더욱 성장하기 위한 능력을 평가했습니다.

조사 대상 기업에 적절한 시장 상황을 묘사하기 위해 ICL/QCL 기술을 주요 경쟁 제품과 비교했습니다.

게재된 ICL/QCL 소스 제조업체

AdTech Optics, Alpes Lasers, Block Engineering, Daylight Solutions, Pendar Technologies, Hamamatsu Photonics, mirSense, Nanoplus GmbH, Pranalytica, IRGlare LLC, QuantaSpec, Thorlabs, Sumitomo Electric, Quantiox GmbH, Forward Photonics LLC, LD-PD INC, Intraband LLC, Sacher Lasertechnik, LongWave Photonics, Lytid, Akela Laser Corporation, VIGO System, Roithner Lasertechnik, U-Oplaz Technologies, Stratium Limited, IQE, Compound Semiconductor Technologies Global

게재된 ICL/QCL 기반 장비 업체

RedShiftBio, Gasera, Bruker, Thermo Fisher, Emerson, Airoptic, Neoplas control, Northrop Grumman, LSE Monitors, Aerodyne Research, Physical Sciences Inc, Picarro, Quantared Technologies, Toshiba, Horiba, IRsweep, Eralytics, AP2E, AVL Emission Test Systems GmbH, LaserMaxDefence, Neo Monitors, Kittiwake Procal, Wavelengths Electronics, Diehl Defence, Los Gatos, Cemtek KVB-Enertec, Boreal Laser, Emsys Maritime Ltd, DiaMonTech AG, KNESTEL GmbH, Healthy Photon, MIRO Analytical Technologies AG, Leonardo DRS 등

보고서의 주요 특징

  • ICL/QCL 시장의 수익 소스 레벨별 시스템 레벨별
  • 2026년까지 시장 예측
  • ICL/QCL 제품 개요와 용도 소스 레벨별 장비별(테라 헤르츠 영역은 제외)
  • ICL/QCL 기반 장치와 다른 경쟁 시스템과의 비교
  • 비즈니스 모델 분석
  • 대용량 용도에서 ICL/QCL을 널리 채택을위한 과제와 병목 현상의 특정
  • 최근 애플리케이션 동향 리뷰(가스 분광에 초점)
  • ICL/QCL의 매력적인 애플리케이션 리뷰
-->

목차

개요

제1장 서론

제2장 캐스케이드 레이저의 매력

  • 고유의 기능
  • 해마다 높아지는 큰 기대
  • 경쟁 시장 환경

제3장 유명한 기업의 안정적인 성장 시장

  • 시장 데이터
  • 예측
  • 닭이 먼저냐 달걀이 먼저냐의 문제를 해결

제4장 CL 기술에 대해

  • CL의 구조
  • QCL
  • ICL
  • QCL vs. ICL
  • 기술 경쟁
  • 시스템 구성요소

제5장 용도에 대해

  • 상황과 경쟁
  • 기술
  • 부문 설명
    • 업계
    • 보안/안전
    • 방위
    • 환경
    • 의료
    • 운송

제6장 결론

제7장 부록

제8장 TEMATYS에 대해

LSH 21.10.01

Enthusiastic forecasts for the broad adoption of Interband and Quantum Cascade Lasers have not fully materialized in the recent years. The following market study investigates the current maturity of Cascade Lasers and evaluate their capabilities for further growth in a competitive market environment.

Will Cascade Lasers finally cause a market disruption?

Interband and Quantum Cascade Lasers (ICLs and QCLs) offer coherent and high power radiation in the mid-infrared range, which is crucial for infrared countermeasures, high-resolution gas spectroscopy and chemical sensing.

Due to many advantages, Cascade Lasers were expected to mature quickly and to settle in large volume applications. Especially the semiconductor nature of ICLs and QCLs gave hope to make this technology largely scalable and cheap, as it happened with LEDs and VCSELs in the past.

Dynamic growth have not fully materialized in the last years. The price of lasers still remains high (around few thousand dollars per piece), and the potentially "killer" applications have not come yet. Cascade Lasers can be mainly found in niche applications.

The reason for that lies both in the technical bottlenecks, but also in the market which has not been ready to implement CL technology. The customers were very conservative and there were many other competitive techniques to choose from. Now the perspectives for adoption are brighter.

All bottlenecks preventing the wider use of Cascade Laser technologies are deeply discussed in this Report. The study provides market forecasts from 2020 to 2026 and also describes all main players to answer the question if the market disruption can finally occur.

The need for "killer application"

Most of the ICL and QCL manufacturers interviewed for the purpose of this Report claim that the main bottleneck limiting a large Cascade Lasers market opening is lack of "killer application". In their shared opinion the technological constraints are not as meaningful as the lack of big player that could incorporate Cascade Lasers in high volume sensors.

So far, ICLs and QCLs have been used in the following cases:

  • When time of the measurement is crucial - then remote measurement of gas/ liquids (or plasma) in the process line is applied, aiming at monitoring few species at once (combustion processes, power plant emission...).
  • When there is no other way to measure gases or substances using competitive equipment (lack of absorption lines in NIR/SWIR for NOx or too weak for SOx, toxic gases in pharmaceutics production...)
  • In defense (infrared countermeasures, beacons...).

However, it has been reported that the ICLs and QCLs stand out from other photonic sources by their unique competitive advantages:

  • Broadband lasing and good tunability allow to investigate different species using only one technology.
  • Narrow linewidth provides high resolution.
  • Fast switching as well as short pulse duration enable on-stack and on-line monitoring.
  • Label-free measurement offers in-situ, maintenance-free and 24/7 operation.
  • High optical power results in significant signal-to-noise ratio.

This report not only details why these features have not translated into large market success but also analyzes all promising applications that could finally make Cascade Laser technology widely used in the next years.

Many aspects have been studied to find these sectors: business and financial information of ICL- and QCL-related companies, overview of recent mergers and acquisitions on the laser and sensing market, examination of currently funded projects by the EU and US government in the field of Cascade Lasers and lasers, and revision of recently acknowledged patents. This allowed to draw a clear conclusions for the future of Cascade Lasers market.

Cost and size reduction

Cascade Lasers has been very well adopted in Industrial and Environment applications where they can offer fast in-line and on-line monitoring of main process control and pollution gases: CO, CO2, CH4, H2O, SOx, NOx etc. They are also vital in Defense use serving for modern countermeasure systems. However, the adoption in other analyzers is not as wide.

The report shows that the main issue behind that was related to cost and size. Footprint and weight of CL instruments has not been really reduced in the past years. In 2020 the average volume was still about 75 000 cm3 and the weight around 30-40 kg. That is why miniaturization of CL instruments is likely to be an inherent part of the broader adoption of CL systems.

Thread posed by growing competition

Until Cascade Lasers were developed, the mainstream mid-IR solution for spectroscopic applications was either FT-IR, which utilizes an interferometer plus white light derived from ceramics/ tungsten, or dispersive infrared spectroscopy, in which a diffraction grating is used. Recently, an IR-based photoacoustic detection is getting more and more was popularity.

However, there are also other non-photonic analyzers that grow and pose new thread for CL-based solutions. These are: NIR TDLAS, NIR CRDS, NDIR, Raman, ChemFET, MOS, chromatography, mass spectroscopy, PID/FID, Paramagnetic Detectors (PMD), Chemiluminescence, Pellistor, and Electrochemical sensing. There are also methods using 2D imaging instead of single point detection, the most common being hyperspectral imaging.

This Report compares ICL and QCL technologies with main competition in order to draw a proper market landscape for all recipients of the study.

ICL and QCL sources manufacturers mentioned in the report:

AdTech Optics, Alpes Lasers, Block Engineering, Daylight Solutions, Pendar Technologies, Hamamatsu Photonics, mirSense, Nanoplus GmbH, Pranalytica, IRGlare LLC, QuantaSpec, Thorlabs, Sumitomo Electric, Quantiox GmbH, Forward Photonics LLC, LD-PD INC, Intraband LLC, Sacher Lasertechnik, LongWave Photonics, Lytid, Akela Laser Corporation, VIGO System, Roithner Lasertechnik, U-Oplaz Technologies, Stratium Limited, IQE, Compound Semiconductor Technologies Global.

Providers of ICL and QCL-based equipment mentioned in the report:

RedShiftBio, Gasera, Bruker, Thermo Fisher, Emerson, Airoptic, Neoplas control, Northrop Grumman, LSE Monitors, Aerodyne Research, Physical Sciences Inc, Picarro, Quantared Technologies, Toshiba, Horiba, IRsweep, Eralytics, AP2E, AVL Emission Test Systems GmbH, LaserMaxDefence, Neo Monitors, Kittiwake Procal, Wavelengths Electronics, Diehl Defence, Los Gatos, Cemtek KVB-Enertec, Boreal Laser, Emsys Maritime Ltd, DiaMonTech AG, KNESTEL GmbH, Healthy Photon, MIRO Analytical Technologies AG, Leonardo DRS and many more.

Key Features of the report:

  • Revenues of the ICLs and QCLs markets at the level of sources and systems
  • Market forecasts up to 2026
  • Comprehensive overview of ICL and QCL products and their applications at the level of sources and equipment (excluding THz range)
  • Comparison of ICL and QCL-based equipment with the other competitive systems
  • Business models analysis
  • Identification of challenges and bottlenecks for the broader adoption of ICLs and QCLs in large volume applications
  • Review of the recent application trends (with the focus on gas spectroscopy)
  • Review of potentially attractive applications for ICLs and QCLs

Table of Contents

Executive Summary

1. Introduction

  • Study goals and objectives
  • Information sources and methodology
  • Scope of the report
  • Glossary
  • Definitions
  • List of companies mentioned in the report

2. The charm of Cascade Lasers

  • Inherent features
  • Large expectations growing throughout the years
  • Competitive market environment

3. Steadily growing market with well known players

  • Market data
  • Forecasts
  • Solving the chicken and egg problem

4. About CL technology

  • How do CLs work
  • QCLs
  • ICLs
  • QCLs vs. ICLs
  • Technological competition
  • Components for systems

5. About applications

  • Landscape and competition
  • Techniques
  • Segment description:
    • Industry
    • Security & Safety
    • Defense
    • Environment
    • Healthcare
    • Transports

6. Conclusions

7. Appendices

8. About TEMATYS

Back to Top
전화 문의
F A Q