![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1424146
¼¼°è Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀå : ±Ô¸ð¿Í ¿¹Ãø, ¼¼°è¿Í Áö¿ªÀÇ Á¡À¯À², µ¿Çâ, ¼ºÀå ±âȸ ºÐ¼® º¸°í¼ ¹üÀ§: ±¸¼ºº°, Àü°³º°, Á¶Á÷ ±Ô¸ðº°, ¿ëµµº°Photonic Design Automation Market Size and Forecasts, Global and Regional Share, Trends, and Growth Opportunity Analysis Report Coverage: By Component, Deployment, Organization Size, and Application |
Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀå ±Ô¸ð´Â 2022³â 13¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2030³â¿¡´Â 39¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 13.8%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Electronic Design Automation(EDA) µµ±¸¿¡ Æ÷Åä´Ð½º¸¦ ÅëÇÕÇÏ´Â °ÍÀº Photonic Design Automation ½ÃÀåÀÇ Áß¿äÇÑ µ¿ÇâÀÔ´Ï´Ù. ±âÁ¸ÀÇ EDA º¥´õ´Â ½ÅÈï Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ ÀáÀç·ÂÀ» ÀνÄÇÏ°í ±âÁ¸ Åø¿¡ Æ÷Åä´Ð½º¿¡ Æ¯ÈµÈ ±â´É°ú ¼º´ÉÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ ÅëÇÕÀ» ÅëÇØ ¼³°èÀÚ´Â Æ÷Åä´Ð½º ÄÄÆ÷³ÍÆ®¸¦ ¿Ïº®ÇÏ°Ô ¼³°è¿¡ ÅëÇÕÇÒ ¼ö ÀÖ¾î ¼³°è ÇÁ·Î¼¼½º¸¦ È¿À²ÈÇÏ°í Æ÷Åä´Ð½º µð¹ÙÀ̽ºÀÇ ¼º´É°ú ±â´ÉÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. Æ÷Åä´Ð½º¸¦ EDA Åø¿¡ ÅëÇÕÇÔÀ¸·Î½á ¼³°èÀÚ´Â Àͼ÷ÇÑ ¼³°è ȯ°æ°ú ¿öÅ©Ç÷ο츦 Ȱ¿ëÇÒ ¼ö ÀÖ¾î Àü¿ë Æ÷Åä´Ð½º ¼³°è Åø°ú °ü·ÃµÈ ÇнÀ °î¼±À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ÷Åä´Ð½º¸¦ EDA Åø¿¡ ÅëÇÕÇÔÀ¸·Î½á ÀÏ·ºÆ®·Î´Ð½º¿Í Æ÷Åä´Ð½ºÀÇ À¶ÇÕÀ» ÃËÁøÇÏ¿© ÀÏ·ºÆ®·Î´Ð½º¿Í Æ÷Åä´Ð½ºÀÇ À¶ÇÕ È¸·Î¸¦ °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ À¶ÇÕÀº ½Ç¸®ÄÜ Æ÷Åä´Ð½º¿Í °°Àº ±â¼úÀÇ Áøº¸¿¡ ¸Å¿ì Áß¿äÇÏ¸ç Æ÷Åä´Ð½º¿Í IC ¼³°è °£¿¡ °ø±¸, ÇÁ·Î¼¼½º ¹× ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨À» °øÀ¯ÇÔÀ¸·Î½á Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ °³Ã´À» °¡¼ÓÈÇÕ´Ï´Ù. Àü¹ÝÀûÀ¸·Î, EDA Åø¿¡ Æ÷Åä´Ð½º¸¦ ÅëÇÕÇÏ´Â °ÍÀº Æ÷Åä´Ð½ºÀÇ Á߿伺ÀÌ Áõ°¡ÇÏ°í Æ÷Åä´Ð½º ºÐ¾ß¿¡¼ È¿À²ÀûÀÎ ¼³°è ÇÁ·Î¼¼½º¿Í ÃÖÀûÈ ±â¼úÀÇ Çʿ伺¿¡ ´ëÇÑ ¾÷°èÀÇ ÀνÄÀ» ¹Ý¿µÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¼³°èÀÚ´Â Æ÷Åä´Ð½ºÀÇ ÀáÀç·ÂÀ» Ȱ¿ëÇÏ¿© ÀüÀÚ ¼³°è¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÄÄÆÑÆ®ÇÑ ¸ðµ¨¸µ ¹× ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀÇ Áøº¸´Â Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀº ÀüÀÚ¿Í Æ÷Åä´Ð½ºÀÇ À¶ÇÕ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, º¸´Ù ºü¸£°í È¿À²ÀûÀÎ ¼³°è ÇÁ·Î¼¼½º¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÄÄÆÑÆ® ¸ðµ¨¸µÀº º¹ÀâÇÑ Æ÷Åä´Ð½º ÀåÄ¡ÀÇ °Åµ¿À» Á¤È®ÇÏ°Ô º¸¿©ÁÖ´Â ´Ü¼øÈµÈ ¼öÇÐ ¸ðµ¨ÀÇ °³¹ßÀ» ÀǹÌÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨À» ÅëÇØ ¼³°èÀÚ´Â ºñ¿ëÀÌ ¸¹ÀÌ µé°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â µð¹ÙÀ̽º ·¹º§ ½Ã¹Ä·¹À̼ÇÀ» ¼öÇàÇÏÁö ¾Ê°íµµ Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®¸¦ ½Ã¹Ä·¹À̼ÇÇÏ°í ¼º´ÉÀ» ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÄÆÑÆ®ÇÑ ¸ðµ¨¸µÀ» ¼³°è ÀÚµ¿È µµ±¸¿¡ ÅëÇÕÇÔÀ¸·Î½á ¼³°èÀÚ´Â ¼³°è ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇϰí ÅëÇÕµÈ ÀüÀÚ-±¤ ȸ·Î ¼º´ÉÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀº ÀüÀÚ-±¤ Çù·Â ¼³°è¿¡¼ ¿ÏÀü ÁýÀû ȸ·Î °³¹ß·ÎÀÇ ÀüȯÀ» ¿ëÀÌÇÏ°Ô ÇÏ°í ¼³°èÀÚ°¡ °í¼º´É°ú °íÈ¿À²À» ´Þ¼ºÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀåÁ¡Àº º¸´Ù Á¤±³ÇÑ ÀÀ¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ°í ±¤ÀÚ ¼³°è ÀÚµ¿È ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù.
ÄÄÆÑÆ®ÇÑ ¸ðµ¨¸µ Åø°ú ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀ» Æ÷Åä´Ð ¼³°è ÀÚµ¿È ¿öÅ©Ç÷ο쿡 ÅëÇÕÇÔÀ¸·Î½á, ¼³°èÀÚ´Â ´Ù¾çÇÑ ¼³°è ¿É¼ÇÀ» °ËÅäÇϰí, ´Ù¾çÇÑ ÆÄ¶ó¹ÌÅÍÀÇ ¿µÇâÀ» Æò°¡Çϸç, Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¼³°è ¹Ýº¹ÀÌ »¡¶óÁö°í ½ÃÀå Ãâ½Ã ½Ã°£ÀÌ ´ÜÃàµÇ°í Àü¹ÝÀûÀÎ ¼³°è ǰÁúÀÌ Çâ»óµË´Ï´Ù. Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ ±â¾÷ÀÌ Á¦°øÇÏ´Â ÄÄÆÑÆ®ÇÑ ¸ðµ¨¸µ ¹× ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀÇ Á߿伺Àº »ê¾÷°è¿Í ÇÐ°è ¸ðµÎ¿¡ ÀÇÇØ Àνĵǰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ÀüÀÚ ¼³°è ÀÚµ¿È °ø±Þ¾÷ü´Â ±âÁ¸ Åø¿¡ Æ÷Åä´Ð½º¿¡ Æ¯ÈµÈ ±â´É°ú ¼º´ÉÀ» ÅëÇÕÇÏ¿© ¼³°èÀÚ´Â Æ÷Åä´Ð½º ±¸¼º ¿ä¼Ò¸¦ ¿Ïº®ÇÏ°Ô ¼³°è¿¡ ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù.
Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ ¼Ö·ç¼Ç ºÐ¾ß¿¡´Â Æ÷Åä´Ð½º ÁýÀû ȸ·Î(PIC) ¹× ±âŸ Æ÷Åä´Ð½º µð¹ÙÀ̽ºÀÇ ¼³°è, ½Ã¹Ä·¹ÀÌ¼Ç ¹× °ËÁõÀ» ¿ëÀÌÇÏ°Ô ÇÏ´Â ´Ù¾çÇÑ ¼ÒÇÁÆ®¿þ¾î ¹× µµ±¸°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº Æ÷Åä´Ð½º »ê¾÷¿¡ Æ¯ÈµÈ °úÁ¦¿Í ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Á¦À۵Ǿú½À´Ï´Ù. Photonic Design Automation(PDA) µµ±¸´Â ½Ã¹Ä·¹À̼Ç, ¸ðµ¨¸µ ¹× ºÐ¼®À» À§ÇÑ °í±Þ ±â´ÉÀ» ¼³°èÀÚ¿¡°Ô Á¦°øÇÏ¿© ±¤ÀÚ µð¹ÙÀ̽º °³¹ß ¹× Çâ»óÀ» µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀº ¼³°èÀÚ°¡ º¹ÀâÇÑ ±¤ ȸ·Î¸¦ È¿À²ÀûÀ¸·Î »ý¼ºÇÏ°í °ËÁõÇϰí, ¼º´ÉÀ» ÃÖÀûÈÇϰí, È¿À²ÀûÀÎ Á¦Á¶ °øÁ¤À» º¸ÀåÇÕ´Ï´Ù. ¼³°èÀÚ°¡ Æ÷Åä´Ð ȸ·Î¸¦ ¸¸µé°í ¹èÄ¡ÇÒ ¼ö ÀÖ´Â ¼ÒÇÁÆ®¿þ¾î µµ±¸¿¡´Â µµÆÄ°ü, º¯Á¶±â, °ËÃâ±â, ÇÊÅÍ µîÀÇ ±¸¼º ¿ä¼Ò°¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â Á¾Á¾ ¼³°è ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇϱâ À§ÇØ »ç¿ëÀÚ Ä£ÈÀûÀÎ ÀÎÅÍÆäÀ̽º¿Í °í±Þ ¼³°è ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ ¼ºÀåÀº Åë½Å, µ¥ÀÌÅͼ¾ÅÍ, ÀÇ·á, ¼¾½Ì, À̹Ì¡ µî ´Ù¾çÇÑ ¿ëµµ·Î Æ÷Åä´Ð½º µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÌ ¹è°æ¿¡ ÀÖ½À´Ï´Ù. Æ÷Åä´Ð½º »ê¾÷ÀÌ ÁøÈ¿Í È®´ë¸¦ °è¼ÓÇϰí ÀÖ´Â °¡¿îµ¥, È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼³°è ÅøÀÇ Çʿ伺ÀÌ Á¡Á¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ Çмú ¿¬±¸ ºÐ¾ß´Â Æ÷Åä´Ð½º ¼³°è ¹× °ü·Ã ¼ºñ½º¿Í °ü·ÃµÈ ¿¬±¸ °³¹ß Ȱµ¿À» ¼öÇàÇÏ´Â ´ëÇÐ, ¿¬±¸ ±â°ü ¹× Çмú Àü¹®°¡ÀÇ Âü¿©¸¦ ÀǹÌÇÕ´Ï´Ù. ÀÌ ºÎ¹®Àº Æ÷Åä´Ð½º ºÐ¾ß¸¦ ¹ßÀü½ÃŰ°í ¼³°è ±â¹ý, ¾Ë°í¸®Áò ¹× ÅøÀÇ Çõ½ÅÀ» ÃßÁøÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Çмú±â°ü°ú ¿¬±¸±â°üÀº »õ·Î¿î °³³ä°ú ¾Ë°í¸®Áò, ±â¼úÀ» ޱ¸ÇÏ´Â ¿¬±¸°³¹ß Ȱµ¿¿¡ Àû±ØÀûÀ¸·Î ÀÓÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ ±â¾÷ÀÌ Á¦°øÇÏ´Â ´Ù¾çÇÑ ¼Ö·ç¼ÇÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®, ½Ã½ºÅÛ, ÁýÀû ȸ·Î ¼³°èÀÇ °úÁ¦¿Í ÇѰ踦 ÇØ°áÇϱâ À§ÇØ Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼³¹®Á¶»ç´Â ÀÌ ºÐ¾ßÀÇ ¹ßÀü¿¡ ±â¿©ÇÏ¸ç ¾÷°è ½Ç¹«ÀÚ¿¡°Ô ±ÍÁßÇÑ ÀλçÀÌÆ®À» Á¦°øÇÕ´Ï´Ù. Çмú ¿¬±¸¿øÀº Á¾Á¾ Áö½ÄÀ» °øÀ¯Çϰí, ¾ÆÀ̵ð¾î¸¦ ±³È¯Çϰí, °øµ¿ ¿¬±¸ ÇÁ·ÎÁ§Æ®¿¡¼ Çù·ÂÇϱâ À§ÇØ ¾÷°è Àü¹®°¡, ´Ù¸¥ Çмú ±â°ü ¹× ¿¬±¸ ÄÁ¼Ò½Ã¾ö°ú Çù·ÂÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °øµ¿ ¿¬±¸´Â ÇÐÁ¦ °£ Á¢±ÙÀ» ÃËÁøÇÏ°í ±¤ÀÚ ¼³°è ÀÚµ¿ÈÀÇ ´Ù¾çÇÑ °üÁ¡À» ÅëÇÕ ÇÒ ¼ö ÀÖ½À´Ï´Ù. Çмú ¿¬±¸ ºÐ¾ß´Â Æ÷Åä´Ð½º »ê¾÷¿¡¼ Çù¾÷°ú Áö½ÄÀÇ °øÀ¯¸¦ ÃËÁøÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÅØ»ç½º´ëÇÐ µðÀÚÀÎ ¿ÀÅä¸ÞÀÌ¼Ç ¿¬±¸¼Ò(UTDA)´Â Æ÷Åä´Ð½º µðÀÚÀÎ ¿ÀÅä¸ÞÀÌ¼Ç ½ÃÀå¿¡¼ ¿Éƽ½º/Æ÷Åä´Ð½º, ÀÏ·ºÆ®·Î´Ð½º, ½Å±â¼úÀÇ µðÀÚÀÎ ¿ÀÅä¸ÞÀÌ¼Ç ¾Ë°í¸®Áò, ±â¹ý, µµ±¸ÀÇ ¿¬±¸ °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.
»ê¾÷ ¿¬±¸ ¹× Á¦Á¶ ±â¾÷Àº ƯÈ÷ Æ÷Åä´Ð½º »ê¾÷À» À§ÇÑ ¼³°è ÀÚµ¿È µµ±¸¸¦ °³¹ßÇϰí Ȱ¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸¸¦ »ç¿ëÇÏ¸é ¼³°èÀÚ´Â ·¹À̾ƿô »ý¼º, ½Ã¹Ä·¹À̼Ç, °ËÁõ, ÃÖÀûÈ µî ¼³°è ÇÁ·Î¼¼½ºÀÇ ´Ù¾çÇÑ ´Ü°è¸¦ ÀÚµ¿ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸¸¦ Ȱ¿ëÇÔÀ¸·Î½á ±â¾÷Àº ¼³°è »çÀÌŬÀ» °¡¼ÓÈÇϰí, ¼³°è ǰÁúÀ» Çâ»ó½Ã۰í, Æ÷Åä´Ð½º Á¦Ç° ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. »ê¾÷¿¬±¸¡¤Á¦Á¶ ºÎ¹®¿¡¼´Â Æ÷Åä´Ð µð¹ÙÀ̽ºÀÇ Á¦Á¶ °øÁ¤ ÃÖÀûÈ¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â °í±Þ Á¦Á¶ ±â¼ú, °øÁ¤ Á¦¾î ±â¼ú, ¼öÀ² Çâ»ó Àü·« °³¹ß µîÀÌ Æ÷ÇԵ˴ϴÙ. Á¦Á¶ È¿À²¼º°ú ¼öÀ²À» °³¼±ÇÔÀ¸·Î½á ±â¾÷Àº °íǰÁúÀÇ Æ÷Åä´Ð ±¸¼º ¿ä¼Ò¿Í ½Ã½ºÅÛÀ» ºñ¿ë È¿À²ÀûÀ¸·Î »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ ±â¾÷Àº Á¾Á¾ Æ÷Åä´Ð Á¦Á¶¾÷ü¿Í Çù·ÂÇÏ¿© Á¦Ç°À» °ÈÇÏ°í ÆÇ¸Å¸¦ ÃËÁøÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, 2022³â 3¿ù Cadence Design Systems´Â ÇÏÀÌÆÛ½ºÄÉÀÏ ÄÄÇ»ÆÃ, 5G Åë½Å, Ç×°ø¿ìÁÖ ½Ã½ºÅÛ µî ½Ç¸®ÄÜ Æ÷Åä´Ð½º IC °³¹ßÀ» °¡¼ÓÈÇϱâ À§ÇØ GlobalFoundries¿Í Çù·ÂÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Çù¾÷Àº ÀÌ·¯ÇÑ Á¦Ç°¿¡ ´ëÇÑ ÀÎÁöµµ¸¦ Å©°Ô ³ô¿© Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù.
¼¼°è Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀº ±¸¼º ¿ä¼Ò, ¹èÆ÷, Á¶Á÷ ±Ô¸ð ¹× ¿ëµµ¿¡ µû¶ó ±¸ºÐµË´Ï´Ù. AIM Photonics Inc, Ansys Inc, Cadence Design Systems Inc, LioniX International BV, Luceda Photonics, Optiwave Systems Inc, Siemens AG, Synopsys Inc, SystemLab Inc, VPlphotonics GmbH µîÀÌ Æ÷Åä´Ð µðÀÚÀÎ ÀÚµ¿È ½ÃÀåÀÇ ¼±µµ ±â¾÷ÀÔ´Ï´Ù.
The Photonic design automation market size was valued at US$ 1.39 billion in 2022 and is expected to reach US$ 3.90 billion by 2030; it is estimated to record a CAGR of 13.8% from 2022 to 2030.
The integration of photonics into electronic design automation (EDA) tools is a significant trend in the photonic design automation market. Established EDA vendors recognize the potential of the emerging photonic design automation market and incorporate photonics-specific features and capabilities into their existing tools. This integration enables designers to seamlessly incorporate photonics components into their designs, streamlining the design process and optimizing the performance and functionality of photonic devices. By integrating photonics into EDA tools, designers can leverage familiar design environments and workflows, reducing the learning curve associated with specialized photonic design tools. The integration of photonics into EDA tools also facilitates the convergence of electronics and photonics, enabling the development of integrated electronic-photonic circuits. This convergence is crucial for the advancement of technologies such as silicon photonics, where the sharing of tools, processes, and simulation models between photonics and IC design accelerates the development of photonic design automation market. Overall, the integration of photonics into EDA tools reflects the industry's recognition of the growing importance of photonics and the need for efficient design processes and optimization techniques in the photonic field. It enables designers to harness the potential of photonics and seamlessly incorporate it into their electronic designs.
Advancements in compact modeling and simulation tools are expected to have a significant impact on the photonic design automation market. These tools play a crucial role in the convergence of electronics and photonics, enabling faster and more efficient design processes. Compact modeling refers to the development of simplified mathematical models that precisely denote the behavior of complex photonic devices. These models allow designers to simulate and analyze the performance of photonic components without the need for expensive and time-consuming device-level simulations. By incorporating compact modeling into design automation tools, designers can streamline the design process and optimize the performance of integrated electronic-photonic circuits. These tools facilitate the transition from electronic-photonic co-design to the development of fully integrated circuits, enabling designers to achieve high performance and efficiency. Such advantages enable higher applications and promote photonic design automation market growth.
The integration of compact modeling and simulation tools into the photonic design automation workflow enables designers to explore different design options, evaluate the impact of various parameters, and make informed decisions. This leads to faster design iterations, reduced time-to-market, and improved overall design quality. The importance of compact modeling and simulation tools offered by photonic design automation market players is recognized by both industry and academia. Established electronic design automation vendors are incorporating photonics-specific features and capabilities into their existing tools, allowing designers to integrate photonics components into their designs seamlessly.
The solution segment of the photonic design automation market encompasses a variety of software and tools that facilitate the design, simulation, and verification of photonic integrated circuits (PICs) and other photonic devices. These solutions are purpose-built to address the distinctive challenges and needs of the photonics industry. Photonic design automation (PDA) tools are instrumental in expediting the development and enhancement of photonic devices by equipping designers with advanced capabilities for simulation, modeling, and analysis. These tools enable designers to effectively create and validate intricate photonic circuits, optimize performance, and ensure efficient production processes. Software tools that enable designers to create and lay out photonic circuits have components such as waveguides, modulators, detectors, and filters. These tools often provide a user-friendly interface and advanced design capabilities to streamline the design process. The photonic design automation market growth is driven by the growing demand for photonic devices in various applications, including telecommunications, data centers, healthcare, sensing, and imaging. As the photonics industry continues to evolve and expand, the need for efficient and reliable design tools becomes increasingly important.
The academic research segment of the photonic design automation market refers to the involvement of universities, research institutions, and academic professionals in conducting research and development activities related to photonic design and associated services. This segment plays a crucial role in advancing the field of photonics and driving innovation in design methodologies, algorithms, and tools. Academic institutions and research organizations actively engage in research and development activities to explore new concepts, algorithms, and techniques. They thus avail the different solutions offered by photonic design automation market players. They focus on developing innovative solutions to address the challenges and limitations in the design of photonic components, systems, and integrated circuits, by utilizing such solutions. This research contributes to the advancement of the field and provides valuable insights for industry practitioners. Academic researchers often collaborate with industry experts, other academic institutions, and research consortia to share knowledge, exchange ideas, and collaborate on joint research projects. These collaborations foster interdisciplinary approaches and enable the integration of diverse perspectives in photonic design automation. The academic research segment plays a vital role in facilitating collaboration and knowledge sharing within the photonics industry. For instance, the University of Texas Design Automation Laboratory (UTDA) focuses on the R&D of design automation algorithms, methodologies, and tools for optics/photonics, electronics, and emerging technologies in the photonic design automation market.
Industrial research and manufacturing companies develop and utilize design automation tools specifically tailored for the photonics industry. These tools enable designers to automate various stages of the design process, such as layout generation, simulation, verification, and optimization. By leveraging these tools, companies can accelerate the design cycle, improve design quality, and reduce time-to-market for photonic products. The industrial research and manufacturing segment focuses on optimizing the manufacturing processes for photonic devices. This includes developing advanced fabrication techniques, process control methodologies, and yield enhancement strategies. By improving manufacturing efficiency and yield rates, companies can achieve cost-effective production of high-quality photonic components and systems. Photonic design automation market players often collaborate with photonic manufacturers to enhance and promote their products. For instance, in March 2022, Cadence Design Systems collaborated with GlobalFoundries for accelerating silicon photonics IC development for hyperscale computing, 5G communications, and aerospace systems among others. Such collaborations greatly enhance the awareness regarding such products, and also promote photonic design automation market growth.
The global photonic design automation market is segmented based on component, deployment, organization size, and application. Based on component, the photonic design automation market is divided into solutions and services. In terms of deployment, the photonic design automation market is bifurcated into on-premise and cloud. By organization size, the photonic design automation market is bifurcated into SMEs and large enterprises. Based on application, the photonic design automation market is divided into academic research and industrial research & manufacturing. By geography, the photonic design automation market is segmented into North America, Europe, Asia Pacific (APAC), and Rest of the World (RoW). AIM Photonics Inc, Ansys Inc, Cadence Design Systems Inc, LioniX International BV, Luceda Photonics, Optiwave Systems Inc, Siemens AG, Synopsys Inc, SystemLab Inc, and VPlphotonics GmbH are among the prominent photonic design automation market players.