![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1354765
¿È¸¼ö Áõ±â¹ß»ý±â ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ ¹× ¿¹Ãø(2018-2028³â)Heat Recovery Steam Generator Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F Segmented By Design, By Application, By Power Rating, By End-user, By Region and Competition |
¿È¸¼ö Áõ±â¹ß»ý±âÀÇ ¼¼°è ½ÃÀåÀº 2022³â 8¾ï 9,061¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸£·¶À¸¸ç, 2028³â±îÁö CAGRÀº 3.26%·Î 2028³â 13¾ï 1,759¸¸ ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï.
±Þ¼ÓÇÑ µµ½ÃÈ¿Í »ê¾÷ ¼ºÀåÀº ¿¡³ÊÁö ¼ö¿ä¸¦ Å©°Ô Áõ°¡½ÃÄÑ ¼¼°èÀÇ ¿È¸¼ö Áõ±â¹ß»ý±â ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÚ¿ø ÀÌ¿ëÀ» ÃÖÀûÈÇϱâ À§ÇÑ È¿À²ÀûÀÎ ¿¡³ÊÁö °ü¸®ÀÇ Çʿ伺ÀÌ ÇöÀúÇÑ ¿äÀÎÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü·Â °¡°Ý »ó½Â°ú º¸´Ù È¿À²ÀûÀÎ ¹ßÀü ÇÁ·Î¼¼½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ½ÃÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ»êÈź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇÑ ¾ö°ÝÇÑ Á¤ºÎ±ÔÁ¦ÀÇ ½Ç½Ã¿Í ȯ°æÀǽÄÀÇ °íÁ¶°¡ »ê¾÷°è Àüü¿¡¼ ¿È¸¼ö Áõ±â¹ß»ý±âÀÇ º¸±Þ¿¡ °øÇåÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²ÀûÀÎ ºÐ¾ß¿¡¼ ¿ ȸ¼ö Áõ±â¹ß»ý±âÀÇ Àαâ´Â ûÁ¤ ¿¡³ÊÁö¸¦ »ý¼ºÇÏ´Â ´É·Â¿¡ ±âÀÎÇÕ´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
2023³â ½ÃÀå ±Ô¸ð | 9¾ï 5,965¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 11¾ï 6,334¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 3.16% |
±Þ¼ºÀå ºÎ¹® | ÈÇÐǰ |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
¿È¸¼ö Áõ±â¹ß»ý±â ¼¼°è ½ÃÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â »ê¾÷ °øÁ¤ ¹× ¹ßÀü¿¡¼ ¿¡³ÊÁö È¿À²°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ±âÈÄ º¯È, ȯ°æ ¿µÇâ, ÀÚ¿ø ºÎÁ·¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, »ê¾÷°è¿Í ¹ßÀü¼Ò´Â ¿¡³ÊÁö ÀÌ¿ëÀ» ÃÖÀûÈÇÏ°í ¹èÃâ·®À» ÁÙÀÌ´Â ¹æ¹ýÀ» Àû±ØÀûÀ¸·Î ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍÀÇ Æó¿À» ȸ¼öÇÏ°í °¡Ä¡ÀÖ´Â Áõ±â ¿¡³ÊÁö·Î º¯È¯ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¸ñÀûÀ» ´Þ¼ºÇϴµ¥ ÀÖ¾î¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¡³ÊÁö È¿À²À̶ó´Â °³³äÀº ÀÚ¿ø Àý¾à¿¡ ±×Ä¡Áö ¾Ê°í ÁÖ¾îÁø ÀԷ¿¡¼ ¿¡³ÊÁö Ãâ·ÂÀ» ±Ø´ëÈÇÏ´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. º¹ÇÕ »çÀÌŬ ¹ßÀü¼Ò ¹× »ê¾÷ °øÁ¤¿¡ ÅëÇÕÇÔÀ¸·Î½á ¿ ȸ¼ö Áõ±â¹ß»ý±â´Â ´Ù¸¥ ¹æ¹ýÀ¸·Î ¼Õ½ÇµÇ´Â Æó¿ÀÇ »ç¿ëÀ» ÃËÁøÇÕ´Ï´Ù. ±× °á°ú, Àüü ½Ã½ºÅÛÀÇ È¿À²ÀÌ Çâ»óµÇ°í, ¿¬·á ¼Òºñ·®ÀÌ °¨¼ÒµÇ°í, ¿Â½Ç°¡½º ¹èÃâ·®ÀÌ °¨¼ÒµË´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´É¼º Ãø¸é¿¡¼µµ ¿È¸¼ö Áõ±â¹ß»ý±âÀÇ Á߿伺ÀÌ °Á¶µË´Ï´Ù. Æó¿À» ȸ¼öÇÏ°í ¿¬·á¸¦ Ãß°¡ÀûÀ¸·Î ¼ÒºñÇÏÁö ¾Ê°í Ãß°¡ ¿¡³ÊÁö¸¦ »ý¼ºÇÔÀ¸·Î½á ¿ ȸ¼ö½Ä Áõ±â ¹ß»ý±â´Â º¸´Ù Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¹Í½º¿¡ ±â¿©ÇÕ´Ï´Ù. À̴ ȼ®¿¬·á·ÎºÎÅÍÀÇ Å»°¢°ú ¿¡³ÊÁö ´Ù¼Òºñ¿ë »ç¾÷ÀÇ ÀÌ»êÈź¼Ò ¹èÃâ·® °¨ÃàÀ» ¸ñÇ¥·Î ÇÏ´Â ¼¼°èÀÇ ³ë·Â°ú ÀÏÄ¡Çϰí ÀÖ½À´Ï´Ù. ¼¼°è Á¤ºÎ¿Í ±ÔÁ¦±â°üÀº ¿¡³ÊÁö È¿À²ÀûÀÎ ±â¼úÀÇ Ã¤¿ëÀ» ÃËÁøÇϱâ À§ÇÑ Á¤Ã¥°ú Àμ¾Æ¼ºê¸¦ ½Ç½ÃÇß½À´Ï´Ù. ÆÄ¸® ÇùÁ¤°ú °°Àº ±¹Á¦ÀûÀÎ ÇÕÀÇ´Â À§±â°¨À» ³ôÀÌ°í ¿È¸¼ö½Ä Áõ±â ¹ß»ý±â¿Í °°Àº È¿À²À» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ¸Â´Â ¼Ö·ç¼ÇÀ» ¸ð»öÇϵµ·Ï »ê¾÷°è¿¡ Ã˱¸Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è¿Í ¹ßÀüÀÌ ¿¡³ÊÁö È¿À²°ú Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥ ¿È¸¼ö Áõ±â¹ß»ý±â ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó ¿Õ¼ºÇØ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°èÀÇ ¿È¸¼ö Áõ±â¹ß»ý±â ½ÃÀåÀÇ ¼ºÀåÀº º¹ÇÕ »çÀÌŬ ¹ßÀüÀÇ Ã¤¿ë Áõ°¡ÀÇ ¿µÇâÀ» °ÇÏ°Ô ¹Þ°í ÀÖ½À´Ï´Ù. °¡½º Åͺó°ú Áõ±â ÅͺóÀ¸·Î ±¸¼ºµÈ º¹ÇÕ »çÀÌŬ ¹ßÀü¼Ò´Â È¿À²¼º°ú À¯¿¬¼ºÀ» ³ôÀÌ Æò°¡ÇÕ´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â °¡½º ÅͺóÀÇ Æó¿À» ȸ¼öÇÏ¿© Áõ±â·Î º¯È¯Çϰí 2Â÷ Áõ±â ÅͺóÀ» ±¸µ¿ÇÏ¿© Ãß°¡ ¹ßÀüÀ» ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹ßÀü¼Ò¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. °áÇÕ »çÀÌŬ ¹ßÀü¼ÒÀÇ È¿À²Àº °¡½º ÅͺóÀÇ ¹è±â¿Í Áõ±â ÅͺóÀÇ ÀÀÃà±â ¸ðµÎ¿¡¼ ¿¡³ÊÁö¸¦ ÃßÃâÇÔÀ¸·Î½á ¹ß»ýÇÕ´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â ¾µµ¥¾ø´Â ¿À» À¯¿ëÇÑ ¿¡³ÊÁö·Î º¯È¯ÇÔÀ¸·Î½á ÀÌ È¿À²¿¡ ±â¿©ÇÏ¸ç ±âÁ¸ ¹ßÀü¼Ò¿¡ ºñÇØ ³ôÀº ¿È¿À²°ú ³·Àº ¿¬·á¼Òºñ¸¦ ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. °áÇÕ »çÀÌŬ ¹ßÀüÀÇ È®´ë´Â ¿©·¯ ¿äÀο¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ù°, ÀÌ·¯ÇÑ ¹ßÀü¼ÒÀÇ À¯¿¬¼ºÀº º£À̽º·Îµå ¹ßÀü°ú ÇÇÅ· ¹ßÀü ¸ðµÎ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ¾î Àü·Â ¼ö¿ä º¯µ¿¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. µÑ°, ƯÈ÷ ºÏ¹Ì¿Í °°Àº Áö¿ª¿¡¼ °¡½º È·Â ¹ßÀüÀÇ ÀÌ¿ëÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â °ÍÀÌ °áÇÕ »çÀÌŬ ¹ßÀü¼Ò¿Í ¿È¸¼ö Áõ±â¹ß»ý±â ±â¼ú¿¡ À¯¸®ÇÑ È¯°æÀ» ¸¸µé¾î ³»°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¾籤 ¹ßÀü°ú dz·Â ¹ßÀü°ú °°Àº Àç»ý °¡´É ¿¡³ÊÁö¿ø°ú °¡½º ÅͺóÀ» ÅëÇÕÇÏ¿© ÇÏÀ̺긮µå ¹ßÀü ½Ã½ºÅÛÀ» ±¸ÃàÇÏ´Â °Íµµ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â ¾ÈÁ¤ÀûÀÌ°í ¾ÈÁ¤ÀûÀÎ Áõ±â ¹ßÀüÀ» Á¦°øÇÏ¿© °£ÇæÀûÀÎ Àç»ý °¡´É ¿¡³ÊÁö¸¦ º¸¿ÏÇÏ°í ¿¡³ÊÁö ¹Í½ºÀÇ Àü¹ÝÀûÀÎ È¿À²¼º°ú ½Å·Ú¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. È¿À²ÀûÀ̰í À¯¿¬ÇÑ ¹ßÀü¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó Áõ°¡Çϰí ÀÖ´Â °¡¿îµ¥, ÄÞ¹ÙÀÎµå »çÀÌŬ Ç÷£Æ®¿Í ¿È¸¼ö Áõ±â¹ß»ý±âÀÇ Ã¤¿ëÀÌ ¿È¸¼ö½Ä Áõ±â¹ß»ý±â ½ÃÀåÀÇ È®´ë¸¦ °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÁÖµÈ °úÁ¦ Áß Çϳª´Â ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈÇÏ¸é¼ Æó¿À» È¿À²ÀûÀ¸·Î ȸ¼ö¡¤À̵¿ÇÒ ¼ö ÀÖ´Â ¿È¸¼ö Áõ±â¹ß»ý±âÀÇ ¼³°è¿¡ ÀÖ½À´Ï´Ù. À̸¦ À§Çؼ´Â º¹ÀâÇÑ ¿±³È¯ ½Ã½ºÅÛ ¼³°è, ÀûÀýÇÑ Àç·á ¼±ÅÃ, ¹ßÀü±âÀÇ À¯Ã¼ ¿ªÇÐ °ü¸®°¡ ÇÊ¿äÇÕ´Ï´Ù. ÃÖÀûÀÇ ¿Àü´ÞÀ» ´Þ¼ºÇÏ°í ¿ ¼Õ½ÇÀ» ÃÖ¼ÒÈÇÏ·Á¸é ¿¿ªÇаú À¯Ã¼¿ªÇÐÀ» ±íÀÌ ÀÌÇØÇØ¾ß Çϸç Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÑ º¹ÀâÇÑ ¼³°è·Î À̾îÁý´Ï´Ù. ¶ÇÇÑ ¿È¸¼ö Áõ±â ¹ß»ý±â´Â ºÎÇÏÀÇ º¯È, ¿¬·á Á¶¼ºÀÇ º¯µ¿, ¿Âµµ º¯È µî ´Ù¾çÇÑ ¿îÀü Á¶°Ç¿¡ ÀûÀÀÇØ¾ß ÇÕ´Ï´Ù. µû¶ó¼ È¿À²ÀûÀÎ ¼º´ÉÀ» À¯ÁöÇϱâ À§ÇØ Áõ±â ¹ß»ý ÆÄ¶ó¹ÌÅ͸¦ µ¿ÀûÀ¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ´Â °í±Þ Á¦¾î ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. À¯¿¬¼º, È¿À²¼º ¹× ¿îÀü ¾ÈÁ¤¼ºÀÇ °úÁ¦ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀº ¿È¸¼ö Áõ±â ¹ß»ý±â Á¦Á¶¾÷ü¿Í ¿îÀüÀÚ¿¡°Ô Áö¼ÓÀûÀÎ °úÁ¦ÀÔ´Ï´Ù. È¿À²¼º Çâ»óÀÇ Áö¼ÓÀûÀÎ Ãß±¸´Â ÀÌ °úÁ¦ÀÇ ¶Ç ´Ù¸¥ Ãø¸éÀÔ´Ï´Ù. »ê¾÷°è¿Í ¹ßÀü¼Ò°¡ ¿¡³ÊÁö ÀÌ¿ëÀ» ±Ø´ëÈÇÏ°í ¹èÃâÀ» ÃÖ¼ÒÈÇÏ·Á°í ³ë·ÂÇÏ´Â µ¿¾È ¿È¸¼ö Áõ±â¹ß»ý±â´Â º¸´Ù ³ôÀº ¿È¿À² ¼öÁØÀ» ´Þ¼ºÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î ÁøÈÇØ ³ª°¡¾ß ÇÕ´Ï´Ù. Çõ½ÅÀûÀÎ Àç·á, ÷´Ü ¿±³È¯±â ¼³°è ¹× Á¦¾î Àü·« °³¼±À» ÅëÇÕÇÏ´Â °ÍÀº ¿¹»óµÇ´Â È¿À²¼º°ú ±ÔÁ¦ ¿ä±¸ »çÇ×À» ÃæÁ·½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
À¯¿¬ÇÑ ÅëÇÕ°ú ÇÏÀ̺긮µå ÆÄ¿ö ½Ã½ºÅÛÀÇ ÀÌ¿ëÀº ¼¼°èÀÇ ¿È¸¼ö Áõ±â¹ß»ý±â ½ÃÀåÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁöÀÇ ÁøÈ¿Í ´Ù¾çÈ¿¡ µû¶ó ¿È¸¼ö½Ä Áõ±â¹ß»ý±â´Â Àç»ý°¡´É¿¡³ÊÁö¿Í Á¾·¡ÀÇ È¼®¿¬·á µî ¿©·¯ ¿¡³ÊÁö¿øÀ» Á¶ÇÕÇÑ ÇÏÀ̺긮µå ¹ßÀü¼Ò·ÎÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ÆÄ¿ö ½Ã½ºÅÛÀº ¿îÀü À¯¿¬¼º Çâ»ó, È¿À² Çâ»ó, ȯ°æ ¿µÇâ °¨¼Ò µîÀÇ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â °¡½ºÅͺó µî¿¡¼ ¹ß»ýÇÏ´Â Æó¿À» È¿°úÀûÀ¸·Î ÀÌ¿ëÇÏ¿© Àü¹ÝÀûÀÎ È¿À² Çâ»ó¿¡ °øÇåÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.ÀÌ Ãß¼¼ÀÇ ÇѰ¡Áö Çö»óÀº ž籤 ¹ßÀü°ú dz·Â ¹ßÀü°ú °°Àº Àç»ý °¡´É ¿¡³ÊÁö¿ø°ú ¿È¸¼ö Áõ±â¹ß»ý±âÀÇ ÅëÇÕÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °¡º¯ ¿¡³ÊÁö ¿øÀº ¿È¸¼ö Áõ±â¹ß»ý±â¿¡ ÀÇÇØ º¸¿ÏµÇ¸ç, °£ÇæÀûÀÎ Àç»ý °¡´É ¿¡³ÊÁö¸¦ ¾ÈÁ¤µÈ Áõ±â ¹ß»ýÀ¸·Î º¸¿ÏÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú´Â Àü·Â °ø±ÞÀÇ ½Å·Ú¼ºÀ» Çâ»ó½Ã۰í Ãß°¡ ¹é¾÷ ½Ã½ºÅÛÀÇ Çʿ伺À» ÃÖ¼ÒÈÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Ãø¸éÀº ¿È¸¼ö Áõ±â¹ß»ý±â¿Í ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ °áÇÕÀÔ´Ï´Ù. ¹èÅ͸® ¹× Ãà¿ ½Ã½ºÅÛ°ú °°Àº °í±Þ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀº ½ÅÀç»ý ¿¡³ÊÁö¿øÀÇ º¯µ¿¼ºÀ» ¿ÏÃæÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â ÀúÀåµÈ ¿ ¿¡³ÊÁö¸¦ È¿À²ÀûÀ¸·Î Áõ±â·Î º¯È¯ÇÒ ¼ö ÀÖÀ¸¸ç, Àç»ý °¡´É ¿¡³ÊÁö°¡ ¿¡³ÊÁö¸¦ »ý»êÇÏÁö ¾Ê´Â °æ¿ì¿¡µµ Áö¼ÓÀûÀ¸·Î ¹ßÀüÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ¹ßÀü ½Ã½ºÅÛÀº ´Ù¾çÇÑ ±¸¼º ¿ä¼ÒÀÇ ¿îÀüÀ» ÃÖÀûÈÇϱâ À§ÇÑ °í±Þ Á¦¾î Àü·«ÀÌ ÇÊ¿äÇÕ´Ï´Ù. °èÅëÀÇ ¾ÈÁ¤¼º°ú È¿À²¼ºÀ» À¯ÁöÇÏ¸é¼ ¿¡³ÊÁö¿ø °£À» ¿øÈ°ÇÏ°Ô ÀüȯÇÏ´Â ´É·ÂÀº ÀÌ·¯ÇÑ Ãß¼¼ÀÇ ÀáÀç·ÂÀ» ½ÇÇöÇÏ´Â µ¥ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. À¯¿¬ÇÑ ÅëÇÕ°ú ÇÏÀ̺긮µå ÆÄ¿ö ½Ã½ºÅÛÀÇ µ¿ÇâÀÌ ±â¼¼¸¦ ´Ã¸±¼ö·Ï ¿È¸¼ö½Ä Áõ±â¹ß»ý±â ½ÃÀå¿¡´Â ÀûÀÀ¼ºÀÌ ³ôÀº ¼³°è, °í±Þ Á¦¾î ½Ã½ºÅÛ, Á¾ÇÕÀûÀÎ ¿£Áö´Ï¾î¸µ Àü¹® Áö½ÄÀÌ ¿ä±¸µÉ °ÍÀÔ´Ï´Ù. ÇÏÀ̺긮µå ÆÄ¿ö ½Ã½ºÅÛÀÇ ÀåÁ¡À» ±Ø´ëÈÇϱâ À§Çؼ´Â ¿È¸¼ö Áõ±â¹ß»ý±â Á¦Á¶¾÷ü, Àç»ý °¡´É ¿¡³ÊÁö ±â¾÷, Á¦¾î ½Ã½ºÅÛ °³¹ßÀÚÀÇ Çù·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼öÆò µå·³ ´ÜÀ§ ºÐ¾ß°¡ ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼öÆò µå·³Çü ¿È¸¼ö Áõ±â¹ß»ý±â´Â ¼öÁ÷ µå·³Çü ¿È¸¼ö Áõ±â¹ß»ý±â¿¡¼ º¼ ¼ö ÀÖ´Â ¼öÁ÷ ¹èÄ¡¿Í´Â ´ëÁ¶ÀûÀ¸·Î ¼öÁõ±â µå·³À» ¼öÆòÀ¸·Î ¹èÄ¡ÇÏ¿© ¼³°èµÇ¾ú½À´Ï´Ù. ÀÌ ¼³°è´Â ¹°°ú Áõ±âÀÇ ÀÚ¿¬ ¼øÈ¯ ÃËÁø, ¿Àü´Þ È¿À² Çâ»ó, ±¸Á¶Àû ÀÀ·Â °¨¼Ò µîÀÇ ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ¼öÆò µå·³ÀÇ ±¸¼ºÀº Áõ±â¿Í ¹°ÀÇ È¥ÇÕ¹°À» º¸´Ù ±ÕÀÏÇÏ°Ô ºÐÆ÷½ÃÄÑ Áõ±â¿Í ¹°ÀÇ »óºÐ¸®¸¦ ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿È¸¼ö Áõ±â¹ß»ý±â´Â ÀÌÄڳ븶ÀÌÀú, Áõ¹ß±â, °ú¿±â µî°ú °°Àº ´Ù¾çÇÑ ¾Ð·Â ±¸¼º ¿ä¼Ò¸¦ ¼öÆò Çì´õ·Î »óÈ£ ¿¬°áÇÕ´Ï´Ù. ÀÌ ±¸¼ºÀº È¿À²ÀûÀÎ ¿±³È¯°ú Áõ±â ¹ß»ýÀ» ÃËÁøÇÏ¿© Àü¹ÝÀûÀÎ ¿È¿À² Çâ»ó¿¡ ±â¿©ÇÕ´Ï´Ù. ¼öÆò µå·³ÀÇ ¼³°è´Â ¹°°ú Áõ±âÀÇ ÀÚ¿¬ ¼øÈ¯¿¡ ÀÇÇÑ È¿À²ÀûÀÎ ¿Àü´ÞÀ» ÃËÁøÇÏ¿© ¿¡³ÊÁö º¯È¯ÀÇ °³¼±°ú Àü¹ÝÀûÀÎ ¿È¿À²ÀÇ Çâ»óÀ» °¡Á®¿É´Ï´Ù. ¼öÆò µå·³Çü ¿È¸¼ö Áõ±â¹ß»ý±â´Â ´Ù¾çÇÑ ¿îÀü Á¶°Ç°ú ºÎÇÏ º¯µ¿¿¡ À¯¿¬ÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç, º£À̽º ·Îµå ¹ßÀü°ú ÇÇÅ· ¹ßÀü ¸ðµÎ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¿È¸¼ö½Ä Áõ±â¹ß»ý±â´Â ´Ù¾çÇÑ »ê¾÷ ¹× ¹ßÀü ½Ã³ª¸®¿À¿¡ Àû¿ëµÇ¸ç ÀϹÝÀûÀ¸·Î °¡½º Åͺ󿡼 Æó¿À» ȸ¼öÇϰí Ãß°¡ ¹ßÀüÀ» À§ÇØ Áõ±â¸¦ »ý¼ºÇÏ´Â °áÇÕ »çÀÌŬ ¹ßÀü¼Ò¿¡¼ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ ÄÚÁ¦³Ê·¹ÀÌ¼Ç Ç÷£Æ®, »ê¾÷ °øÁ¤, Áö¿ª ³¹æ ¿ëµµ¿¡µµ ä¿ëµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È À¯Æ¿¸®Æ¼ ºÎ¹®ÀÌ ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â À¯Æ¿¸®Æ¼ ±Ô¸ðÀÇ ¹ßÀü, ƯÈ÷ ÄÞ¹ÙÀÎµå »çÀÌŬ ¹ßÀü¼Ò¿¡¼ ³Î¸® ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. °áÇÕ »çÀÌŬ ±¸¼º¿¡¼´Â õ¿¬ °¡½ºÀÇ ¿¬¼Ò¸¦ ÅëÇØ ¹ßÀüÇϱâ À§ÇØ °¡½º ÅͺóÀÌ Ã¤Åõ˴ϴÙ. ÀÌ Åͺ󿡼 ¹ß»ýÇÏ´Â Æó¿Àº ¿ ȸ¼ö½Ä Áõ±â ¹ß»ý±â¿¡ ÀÇÇØ ÀÌ¿ëµÇ¾î Áõ±â·Î º¯È¯µË´Ï´Ù. ÀÌ Áõ±â¸¦ ÀÌ¿ëÇÏ¿© Áõ±â ÅͺóÀ» ±¸µ¿ÇÏ¿© ´õ¿í ¹ßÀüÇÕ´Ï´Ù. º¹ÇÕ »çÀÌŬ ¹ßÀü¼ÒÀÇ °¡½º Åͺó°ú Áõ±â ÅͺóÀÇ °ø»ý °ü°è´Â ±âÁ¸ ¹ßÀü¼Ò¿¡ ºñÇØ Àü¹ÝÀûÀÎ È¿À²À» Å©°Ô ³ô¿© ¿¬·á ¼Òºñ¸¦ ÁÙÀÔ´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â ¿¡³ÊÁö È¿À²À» ±Ø´ëÈÇÏ´Â À¯Æ¿¸®Æ¼ ºÎ¹®ÀÇ ¸ñÀû¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °¡½º ÅͺóÀ¸·ÎºÎÅÍ Æó¿À» ȸ¼öÇÏ¿© Áõ±â ¹ß»ý¿¡ ÀÌ¿ëÇÔÀ¸·Î½á, ¿È¸¼ö Áõ±â¹ß»ý±â´Â ¿¬·á·ÎºÎÅÍ Àü±â·ÎÀÇ ¿¡³ÊÁö º¯È¯ Àüü¸¦ ÃÖÀûÈÇÕ´Ï´Ù. ÀÌ È¿À²ÀÇ Çâ»óÀº ¿¬·á ¼Òºñ¸¦ ÁÙÀÌ°í °á°úÀûÀ¸·Î Àü·Â ȸ»çÀÇ ºñ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â Àü·Â ȸ»ç°¡ µ¿ÀÏÇÑ ¾çÀÇ ¿¬·á·Î ´õ ¸¹Àº Àü·ÂÀ» ¹ßÀü½Ãų ¼ö ÀÖµµ·Ï ÇÏ¿© ¿î¿µ ºñ¿ëÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì´Â È®¸³µÈ »ê¾÷ ºÎ¹®, °ß°íÇÑ ¿¡³ÊÁö ÀÎÇÁ¶ó, ¿¡³ÊÁö È¿À² ¹× ¹èÃâ °¨Ãà¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¿ ȸ¼ö½Ä Áõ±â ¹ß»ý±â ½ÃÀå¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â ÄÞ¹ÙÀÎµå »çÀÌŬ ¹ßÀü¼ÒÀÇ Áß¿äÇÑ ±¸¼º¿ä¼ÒÀ̸ç, ÀÌ Áö¿ªÀÇ ¿¡³ÊÁö ¹ßÀü¿¡ ³Î¸® º¸±ÞµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ Ç÷£Æ®´Â ¿¡³ÊÁö º¯È¯°ú È¿À²À» ÃÖÀûÈÇϱâ À§ÇØ °¡½º Åͺó°ú Áõ±â ÅͺóÀ» ÅëÇÕÇÕ´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ´õ ±ú²ýÇϰí È¿À²ÀûÀÎ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â °¡½º ÅͺóÀ¸·ÎºÎÅÍÀÇ Æó¿ ȸ¼ö¸¦ °¡´ÉÇÏ°Ô ÇÏ°í ¿¬·á ¼Òºñ ¹× ¹èÃâÀ» ÁÙÀ̱⠶§¹®¿¡ ÀÌ ÀüȯÀÇ ÇÙ½ÉÀÌ µË´Ï´Ù. ºÏ¹ÌÀÇ Ç³ºÎÇÑ Ãµ¿¬ °¡½º ÀÚ¿øÀ¸·Î ÀÎÇØ °¡½º È·Â ¹ßÀüÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â´Â ÀÌ·¯ÇÑ °¡½ºÅͺóÀÇ Æó¿À» ȸ¼öÇϴµ¥ ÀÌ¿ëµÇ¾î ¹ßÀü¼Ò ÀüüÀÇ È¿À²À» ³ô¿© º¸´Ù Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö¹Í½º¿¡ °øÇåÇϰí ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â¿Í Àç»ý °¡´É ¿¡³ÊÁö¿øÀÇ ÅëÇÕÀº Áõ°¡ÇÏ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù. ¿È¸¼ö Áõ±â¹ß»ý±â¿Í ž籤 ¹ßÀü°ú dz·Â ¹ßÀüÀ» °áÇÕÇÑ ÇÏÀ̺긮µå ¹ßÀü ½Ã½ºÅÛÀº ¿¡³ÊÁöÀÇ È¸º¹·ÂÀ» ³ôÀÌ°í ¿¡³ÊÁö ÀÌ¿ëÀ» ÃÖÀûÈÇϱâ À§ÇØ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù.
Tech Sci ResearchÀÇ ¿È¸¼ö Áõ±â¹ß»ý±â ¼¼°è ½ÃÀå º¸°í¼´Â ÁÖ¾îÁø ½ÃÀå µ¥ÀÌÅ͸¦ ¹ÙÅÁÀ¸·Î ±â¾÷ °íÀ¯ÀÇ ¿ä±¸¿¡ ¸Â°Ô ¸ÂÃã¼³Á¤À» Á¦°øÇÕ´Ï´Ù. º¸°í¼¿¡¼´Â ´ÙÀ½À» »ç¿ëÀÚ Á¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù.
The Global Heat Recovery Steam Generator Market reached a size of USD 890.61 million in 2022 and is projected to grow to USD 1317.59 million by 2028, with a CAGR of 3.26% through 2028. Rapid urbanization and industrial growth have significantly increased the demand for energy, driving the global heat recovery steam generator (HRSG) market. The need for efficient energy management to optimize resource utilization has emerged as a prominent factor. Moreover, the market has been propelled by escalating electricity prices and the demand for more effective power generation processes. Additionally, the implementation of stringent government regulations to reduce carbon footprint and the growing environmental awareness have contributed to the widespread adoption of HRSGs across industries. The popularity of HRSGs among energy-efficient sectors can be attributed to their ability to generate clean energy.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2023 | USD 959.65 million |
Market Size 2028 | USD 1163.34 million |
CAGR 2023-2028 | 3.16% |
Fastest Growing Segment | Chemicals |
Largest Market | North America |
One of the key drivers propelling the Global Heat Recovery Steam Generator (HRSG) Market is the increasing global demand for energy efficiency and sustainability in industrial processes and power generation. With growing concerns about climate change, environmental impact, and resource scarcity, industries, and power plants are actively seeking ways to optimize energy utilization and reduce emissions. HRSGs play a pivotal role in achieving these objectives by enabling the recovery of waste heat from various sources and converting it into valuable steam energy. The concept of energy efficiency extends beyond resource conservation; it also encompasses maximizing energy output from a given input. Through integration into combined cycle power plants or industrial processes, HRSGs facilitate the utilization of waste heat that would otherwise be lost. This results in improved overall system efficiency, reduced fuel consumption, and decreased greenhouse gas emissions. Furthermore, the sustainability aspect underscores the significance of HRSGs. By recovering waste heat and generating additional energy without additional fuel consumption, HRSGs contribute to a more sustainable energy mix. This aligns with global efforts to transition away from fossil fuels and reduce the carbon footprint of energy-intensive operations. Governments and regulatory bodies worldwide are implementing policies and incentives to promote the adoption of energy-efficient technologies. International agreements such as the Paris Agreement have created a sense of urgency, prompting industries to explore solutions like HRSGs that not only enhance efficiency but also align with sustainability targets. As industries and power generation continue to prioritize energy efficiency and sustainability, the demand for HRSG technology is expected to remain strong, driving market growth.
The growth of the Global Heat Recovery Steam Generator (HRSG) Market is strongly influenced by the increasing adoption of combined cycle power generation. Combined cycle power plants, comprising gas turbines and steam turbines, are highly valued for their efficiency and flexibility. HRSGs play a crucial role in these plants by capturing waste heat from gas turbines and converting it into steam, which drives a secondary steam turbine for additional power generation. The efficiency of combined-cycle power plants stems from extracting energy from both the gas turbine's exhaust and the steam turbine's condenser. HRSGs contribute to this efficiency by converting wasted heat into useful energy, resulting in higher thermal efficiency and lower fuel consumption compared to traditional power plants. The expansion of combined cycle power generation is driven by multiple factors. Firstly, the flexibility of these plants allows them to adapt to both baseload and peaking power generation, accommodating fluctuations in electricity demand. Secondly, the increasing use of gas-fired power generation, particularly in regions like North America, creates a favorable environment for combined cycle plants and HRSG technology. Furthermore, the integration of renewable energy sources, such as solar and wind power, with gas turbines is being explored to create hybrid power systems. HRSGs can complement intermittent renewables by providing steady and reliable steam generation, thereby enhancing the overall efficiency and reliability of the energy mix. As the demand for efficient and flexible power generation continues to rise, the adoption of combined cycle plants and HRSGs is expected to drive the expansion of the HRSG market.
One primary challenge lies in designing HRSGs that can efficiently capture and transfer waste heat while minimizing energy losses. This entails engineering intricate heat exchange systems, selecting appropriate materials, and managing fluid dynamics within the generator. Achieving optimal heat transfer and minimizing heat loss necessitates a profound understanding of thermodynamics and fluid mechanics, leading to intricate designs that require specialized expertise. Furthermore, HRSGs must adapt to varying operating conditions, including load changes, fuel composition fluctuations, and temperature variations. This requires advanced control systems capable of dynamically adjusting steam generation parameters to maintain efficient performance. Balancing the demands of flexibility, efficiency, and operational stability presents an ongoing challenge for HRSG manufacturers and operators. The ongoing pursuit of efficiency enhancement is another aspect of this challenge. As industries and power plants strive to maximize energy utilization and minimize emissions, HRSGs must continuously evolve to achieve higher thermal efficiency levels. Incorporating innovative materials, advanced heat exchanger designs, and improved control strategies is imperative to keep up with efficiency expectations and regulatory requirements.
The use of flexible integration and hybrid power systems is reshaping the Global Heat Recovery Steam Generator (HRSG) Market. As the energy landscape evolves and diversifies, HRSGs are increasingly being integrated into hybrid power plants that combine multiple energy sources, such as renewables and conventional fossil fuels. Hybrid power systems offer advantages such as enhanced operational flexibility, increased efficiency, and reduced environmental impact. HRSGs play a crucial role in these systems by effectively utilizing waste heat generated from gas turbines or other sources, contributing to overall efficiency improvement. One manifestation of this trend is the integration of HRSGs with renewable energy sources, such as solar and wind power. These variable energy sources can be complemented by HRSGs, which provide stable steam generation to supplement intermittent renewables. This synergy enhances the reliability of the power supply and minimizes the need for additional backup systems. Another aspect involves the coupling of HRSGs with energy storage technologies. Advanced energy storage solutions, such as batteries and thermal storage systems, can buffer the fluctuating nature of renewable energy sources. HRSGs can then efficiently convert stored thermal energy into steam, providing continuous power generation even when renewables are not producing energy. Hybrid power systems require sophisticated control strategies to optimize the operation of different components. The ability to seamlessly transition between energy sources while maintaining grid stability and efficiency is a critical challenge in realizing the potential of this trend. As the trend of flexible integration and hybrid power systems gains momentum, the HRSG market will experience a demand for adaptable designs, advanced control systems, and comprehensive engineering expertise. Collaborations between HRSG manufacturers, renewable energy companies, and control system developers will be essential in maximizing the benefits of hybrid power systems.
Horizontal Drum Units segment is expected to dominate the market during the forecast period. Horizontal drum HRSGs are designed with a horizontal orientation of the steam drums, as opposed to the vertical arrangement found in vertical drum HRSGs. This design choice offers several advantages, including enhanced natural circulation of water and steam, improved heat transfer efficiency, and the potential for reduced structural stress. The horizontal drum configuration allows for a more uniform distribution of the steam-water mixture, aiding in better separation of steam and water phases. These HRSGs consist of various pressure components, such as economizers, evaporators, and superheaters, interconnected by horizontal headers. This configuration facilitates efficient heat exchange and steam generation, contributing to higher overall thermal efficiency. The horizontal drum design promotes efficient heat transfer due to the natural circulation of water and steam, resulting in improved energy conversion and increased overall thermal efficiency. Horizontal drum HRSGs are renowned for their flexibility in accommodating various operating conditions and load changes, making them suitable for both base load and peaking power generation. They find application in a range of industries and power generation scenarios, commonly used in combined cycle power plants to recover waste heat from gas turbines and generate steam for additional electricity generation. Moreover, they are employed in cogeneration plants, industrial processes, and district heating applications.
The utility segment is expected to dominate the market during the forecast period. HRSGs are extensively utilized in utility-scale power generation, particularly in combined cycle power plants. In a combined cycle configuration, gas turbines are employed to generate electricity through the combustion of natural gas. The waste heat produced by these turbines is harnessed by HRSGs, which convert it into steam. This steam is then utilized to drive a steam turbine, thereby generating additional electricity. The symbiotic relationship between gas and steam turbines in combined cycle plants significantly enhances overall efficiency and reduces fuel consumption when compared to conventional power plants. HRSGs play a crucial role in the utility segment's objective of maximizing energy efficiency. By recovering waste heat from gas turbines and utilizing it for steam generation, HRSGs optimize the overall conversion of energy from fuel to electricity. This improved efficiency leads to reduced fuel consumption, resulting in cost savings for utilities. HRSGs empower utilities to generate more electricity from the same amount of fuel, thereby optimizing operational costs.
North America is expected to dominate the market during the forecast period. North America plays a prominent role in the HRSG market, driven by its well-established industrial sector, robust energy infrastructure, and growing focus on energy efficiency and emissions reduction. HRSGs are essential components of combined cycle power plants, which are prevalent in the region's energy generation landscape. These plants integrate gas turbines and steam turbines to optimize energy conversion and efficiency. The region is undergoing a shift towards cleaner and more efficient energy sources. HRSGs are key to this transition as they enable the recovery of waste heat from gas turbines, reducing fuel consumption and emissions. North America's abundant natural gas resources have resulted in a significant rise in gas-fired power generation. HRSGs are utilized to capture waste heat from these gas turbines, enhancing the overall efficiency of power plants and contributing to a more sustainable energy mix. The integration of HRSGs with renewable energy sources is a growing trend. Hybrid power systems that combine HRSGs with solar or wind power are being explored to improve energy resilience and optimize energy utilization.
In this report, the Global Heat Recovery Steam Generator Market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Heat Recovery Steam Generator Market.
Global Heat Recovery Steam Generator Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report: