½ÃÀ庸°í¼­
»óǰÄÚµå
1354776

ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ ¹× ¿¹Ãø(2018-2028³â)

Distributed Temperature Sensing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F Segmented By Operating Principle, By Fiber Type, By Application, By Region

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 172 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀåÀº ¼®À¯ ¹× °¡½º ºÎ¹®¿¡¼­ ¾ÈÀü°ú º¸¾È¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °ßÀεǰí ÀÖ½À´Ï´Ù.

ÀÌ ¼ºÀåÀº ¿¹»óµÇ´Â ¸î ³âµ¿¾È ¿ÂµµÀÇ ¸Å¿ì ÀÛÀº º¯È­¸¦ °¨ÁöÇÏ´Â ±Þ¼ÓÇÑ ¹ßÀü°ú °ü·ÃµÈ »õ·Î¿î ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ºÐ»êÇü ¿Âµµ °¨Áö´Â ±âº»ÀûÀ¸·Î ±¤¼¶À¯ ÄÉÀ̺íÀ» »ç¿ëÇÏ´Â ¿©·¯ ±¤¼¶À¯ ÀÀ¿ë ºÐ¾ß¿¡¼­ ¿Âµµ ÃøÁ¤¿¡ »ç¿ëµË´Ï´Ù. ºÐ»êÇü ¿Âµµ °¨Áö ½Ã½ºÅÛÀº Àü¸® ¹æ»ç¼±¿¡ ´ëÇÑ ³»¼º, ÄÄÆÑÆ®ÇÑ Å©±â, ÀüÀڱ⠰£¼·À» ¹Þ±â ¾î·Á¿ò µî ¼ö¸¹Àº ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁ¡Àº ¼®À¯ ¹× °¡½º, Àü·Â ¹× À¯Æ¿¸®Æ¼ µî ´Ù¾çÇÑ ¿ëµµ¿¡¼­ÀÇ ¿Âµµ °ËÁö¡¤ÃøÁ¤¿¡ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù.

ºÐ»êÇü ¿Âµµ °¨Áö´Â °è¼ÓÇØ¼­ ÃâÇöÇÏ´Â ±â¼úÀ̱⠶§¹®¿¡ Áö³­ ¸î ³âµ¿¾È ¹° ±â¹Ý ÀÀ¿ë ºÐ¾ß¿¡ ´ëÇÑ µµÀÔÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ´ë±Ô¸ð ¹× ¼ö¿ªÀÇ ¼ö¹®ÇÐÀû °úÁ¤À» ¸ð´ÏÅ͸µÇϱâ À§ÇØ ±¤¹üÀ§ÇÑ ¹°¸®ÇÐÀû Á¢±Ù¹ýÀÌ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ÁöÇ¥¼ö¿Í ÁöÇϼö »çÀÌÀÇ ºÒ¾ÈÁ¤¼ºÀ» Á¤·®È­Çϱâ À§ÇØ ´Ù¾çÇÑ ¹°¸® Ž»ç ±â¹ý¿¡ ´ëÇÑ ¼ö¿ä°¡ ±Þ¼ÓÈ÷ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµç ¿äÀεéÀº ºÐ»êÇü ¿Âµµ °¨ÁöÀÇ Ã¤Åà Ȯ´ë¿¡ ±â¿©ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024-2028³â
½ÃÀå ±Ô¸ð 7,031¾ï 2,000¸¸ ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 1Á¶445¾ï 9,000¸¸ ´Þ·¯
CAGR 2023-2028³â 6.42%
±Þ¼ºÀå ºÎ¹® »ê¾÷¿ë
ÃÖ´ë ½ÃÀå ºÏ¹Ì

ºÐ»êÇü ¿Âµµ °¨Áö¸¦ »ç¿ëÇÏ¿© ÇÏÃþÀÇ ¿Âµµ º¯È­¸¦ ÃßÀûÇÔÀ¸·Î½á ÁöÇϼö À¯Ãâ ±¸¿ªÀ» ½Äº°ÇÏ´Â °æ¿ì°¡ ´Ã¾î³ª°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ö¹® ÁöÁú ÇÐÀû °úÁ¤À» ³ôÀº °ø°£Àû ¹× ½Ã°£Àû ºóµµ·Î Á¶»çÇϱâ À§ÇØ ºÐ»êÇü ¿Âµµ °¨Áö·Î °»³» ¿Âµµ¸¦ ¸ð´ÏÅ͸µ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¼¾¼­¸¦ ÆÐ½Ãºê ¸ðµå·Î »ç¿ëÇÏ¿© ÇöÀå¿¡¼­ÀÇ ÁöÇϼöÀÇ È帧, °»Á¤³»ÀÇ È帧, ÁöÇÏÀÇ ¿­Æ¯¼º Æò°¡¸¦ ½Ç½ÃÇÏ´Â °Íµµ ÀϹÝÀûÀ¸·Î µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀÌ ºÐ»êÇü ¿Âµµ ¼¾¼­ÀÇ ÀÌ¿ëÀ» Å©°Ô µÞ¹ÞħÇÏ°í ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷Á÷Àå¿¡¼­ÀÇ ¾ÈÀü¼º Çâ»óÀÇ ¿ä±¸°¡ ½ÃÀå ¼ºÀåÀ» µÞ¹Þħ

¼®À¯»ê¾÷Àº Áö³­ ¼ö½Ê³â µ¿¾È ÀϰüµÈ ¼ºÀåÀ» Áö¼ÓÇϰí ÀÖ½À´Ï´Ù. ¼®À¯ ¹× °¡½º, Àü·Â °¨½Ã µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ »ý»ê·®À» ´Ã¸®±â À§ÇØ °íµµÀÇ ±â¼ú ±â±â°¡ µµÀԵǾî Á÷ÀåÀÇ ¾ÈÀü¼º°ú º¸¾È¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ·¯ÇÑ °í¾Ð¡¤°í¿ÂÀÇ °¡È¤ÇÑ È¯°æÇÏ¿¡¼­ÀÇ °¨Áö ¼ö¿ä Áõ°¡¿¡ µû¶ó ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀåÀº ÇâÈÄ ¼ö³â°£ Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

±¤¼¶À¯ °¨Áö ÄÉÀ̺íÀÇ º¸±ÞÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼Ó

¸Å¿ì Á¤È®Çϰí ÀÀ´ä ½Ã°£ÀÌ ¸Å¿ì ±ä ¿Âµµ °¨Áö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é ±¤¼¶À¯ ±â¹Ý ¿Âµµ °¨Áö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÕ´Ï´Ù. °¨Áö ¿ëµµÀÇ ±¤¼¶À¯ ÄÉÀÌºí »ý»ê·®ÀÌ ¸¹±â ¶§¹®¿¡ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀåÀº ÇâÈÄ ¼ö³â°£ È®´ëµÉ ¿¹Á¤ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±¤¼¶À¯ ¼¾¼­´Â °íÁøµ¿, ³ëÀÌÁî, ±Ø´ÜÀûÀÎ ¿­, ºÒ¾ÈÁ¤ÇÏ°í ½ÀÇÑ È¯°æ°ú °°Àº °¡È¤ÇÑ Á¶°Ç¿¡ ÀûÇÕÇÕ´Ï´Ù.

°è¼Ó ¼ºÀåÇÏ´Â ÀÀ¿ë ºÐ¾ß¿¡¼­ ³ôÀº »ý»ê¼ºÀ¸·Î ½ÃÀå ¼ºÀå ÃËÁø

±¤¼¶À¯ ±â¹Ý ¼¾¼­ÀÇ ³ôÀº »ý»ê¼º¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ Å« Ç¥¸éÀû¿¡¼­ ´õ ±ä °Å¸®ÀÇ ¿Âµµ °¨Áö¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇØÀú, ÇØ¾ç µî ¸¹Àº »ê¾÷ÀÌ °è¼Ó ¼ºÀåÇϰí ÀÖÀ¸¸ç, ¾à°£ÀÇ ¿Âµµ º¯È­µµ Á¤È®ÇÏ°Ô Å½ÁöÇÒ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿Âµµ °¨Áö ¿ëµµ Áõ°¡´Â ¿¹»óµÇ´Â ¸î ³âµ¿¾È ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀåÀ» ¹Ð¾î¿Ã¸± °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÀÌ¿ë °¡´ÉÇÑ »ç¿ëÀÚ Á¤ÀÇ

TechSci Research´Â ÁÖ¾îÁø ½ÃÀå µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ±â¾÷ °íÀ¯ÀÇ ¿ä±¸¿¡ ¸Â°Ô »ç¿ëÀÚ Á¤ÀǸ¦ Á¦°øÇÕ´Ï´Ù. º¸°í¼­¿¡¼­´Â ´ÙÀ½À» »ç¿ëÀÚ Á¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¾÷ Á¤º¸

  • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷(ÃÖ´ë 5»ç)ÀÇ »ó¼¼ ºÐ¼®°ú ÇÁ·ÎÆÄÀϸµ

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå COVID-19°¡ ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ

Á¦4Àå ÁÖ¿ä ¿ä¾à

Á¦5Àå °í°´ÀÇ ¸ñ¼Ò¸®

Á¦6Àå ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • µ¿ÀÛ ¿ø¸®º°(±¤½Ã°£ ¿µ¿ª ¹Ý»çÀ²¹ý, ±¤ Á֯ļö ¿µ¿ª ¹Ý»çÀ²¹ý)
    • ÆÄÀ̹ö À¯Çüº°(½Ì±Û ¸ðµå ÆÄÀ̹ö, ¸ÖƼ ¸ðµå ÆÄÀ̹ö)
    • ¿ëµµº°(¼®À¯ ¹× °¡½º, Àü·Â ÄÉÀÌºí °¨½Ã, ÇÁ·Î¼¼½º¡¤ÆÄÀÌÇÁ¶óÀÎ ¸ð´ÏÅ͸µ, È­Àç °ËÁö, ȯ°æ °¨½Ã)
    • Áö¿ªº°(ºÏ¹Ì, À¯·´ ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ³²¹Ì)
  • ±â¾÷º°(2022³â)
  • ½ÃÀå ¸Ê

Á¦7Àå ºÏ¹ÌÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • µ¿ÀÛ ¿ø¸®º°
    • ÆÄÀ̹ö À¯Çüº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ºÏ¹ÌÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå : ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ

Á¦8Àå À¯·´ÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • µ¿ÀÛ ¿ø¸®º°
    • ÆÄÀ̹ö À¯Çüº°
    • ¿ëµµº°
    • ±¹°¡º°
  • À¯·´ÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå : ±¹°¡º° ºÐ¼®
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ·¯½Ã¾Æ
    • ½ºÆäÀÎ

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • µ¿ÀÛ ¿ø¸®º°
    • ÆÄÀ̹ö À¯Çüº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå : ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ

Á¦10Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • µ¿ÀÛ ¿ø¸®º°
    • ÆÄÀ̹ö À¯Çüº°
    • ¿ëµµº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå : ±¹°¡º° ºÐ¼®
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«

Á¦11Àå ³²¹ÌÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • µ¿ÀÛ ¿ø¸®º°
    • ÆÄÀ̹ö À¯Çüº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ³²¹ÌÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½ÃÀå : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ÄÝ·Òºñ¾Æ

Á¦12Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
    • °¡È¤ÇÑ È¯°æ¿¡¼­ÀÇ °¨Áö ¹× ¸ð´ÏÅ͸µ ¿ëµµ¿¡¼­ÀÇ ºÐ»êÇü ¿Âµµ °¨Áö ½Ã½ºÅÛ/¼¾¼­ÀÇ ½Å·Ú¼º
    • ÀÛ¾÷ ÇöÀå¿¡¼­ÀÇ ³ëµ¿ ¾ÈÀü ¿ä±¸ Áõ°¡
    • ¼®À¯ ¹× °¡½º »ê¾÷¿¡ À־ÀÇ ¿ëµµ Áõ°¡
  • °úÁ¦
    • ±¤ÄÉÀ̺íÀº ¹°¸®Àû ¼Õ»óÀ» ¹Þ±â ½±´Ù
    • ºÐ»êÇü ¿Âµµ °¨Áö ½Ã½ºÅÛÀÇ °íºñ¿ë

Á¦13Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

  • ºÐ»êÇü ¿Âµµ °¨Áö ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø Á¤Ã¥
  • È®´ë ´É·Â°ú Á¦Ç° ÇÁ·Î¸ð¼Ç¿¡ ÁÖ·ÂÇÏ´Â Åé ±â¾÷
  • ÇØÀú »ê¾÷ ºÐ¾ß¿¡¼­ÀÇ °íÁ¤¹Ðµµ ºÐ»êÇü ¿Âµµ °¨Áö
  • ÆÄÀ̹ö ¿Éƽ½º »ê¾÷¿¡ À־ÀÇ ±â¼úÀÇ Áøº¸¿Í ¸ð¾ÆÀû ÅõÀÚ
  • ¼ÒÇü °¨Áö ½Ã½ºÅÛ¿¡ÀÇ ¿ä±¸¸¦ ¹è°æÀ¸·Î ÁøÇàÇÏ´Â ¿¬±¸ °³¹ßÀÇ ÁøÀü

Á¦14Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Baker Hughes Company
  • Schlumberger Limited
  • LIOS Technology GMBH
  • Halliburton Company Corporation
  • Yokogawa Electric Corporation
  • AP Sensing GmbH
  • Bandweaver Technologies Pvt. Ltd.
  • Sensornet Limited
  • Sumitomo Electric Industries, Ltd.
  • Weatherford International plc

Á¦15Àå Àü·«Àû Á¦¾È

Á¦16Àå ±â¾÷ ¼Ò°³¿Í ¸éÃ¥»çÇ×

(Âü°í: ±â¾÷ ¸ñ·ÏÀº °í°´ÀÇ ¿ä±¸¿¡ µû¶ó »ç¿ëÀÚ Á¤ÀÇ °¡´ÉÇÕ´Ï´Ù.)

AJY 23.11.01

Global Distributed Temperature Sensing Market is driven by the rising demand for safety and security in the oil & gas sectors. This growth is on account of the new technological advancements with the rapid development in detection of very small changes in the temperature in the forecast years. The Distributed Temperature Sensing (DTS) is basically used for the measurement of temperature across several fiber optic applications using optical fiber cables. Numerous advantages of DTS system include resistance to ionizing radiation, compact size, and insusceptibility to electromagnetic interference. These advantages have boosted their usage for sensing and measuring temperature across different applications, such as oil & gas, power & utility, and others.

Distributed temperature sensing is an emergent technology; therefore, its implementation across water-based applications has increased in the past years. A wide range of geophysical methods are being considered for monitoring hydrologic processes at large scales and the catchment. The demand for various geophysical methods is rising rapidly, in order to quantify the instabilities between surface water and groundwater. All these factors are projected to contribute to the rising adoption of DTS.

By directing a laser light along the fiber-optic cable, the DTS through fiber optics is transmitted. The incident light scatters as a result of photons' interactions with the chemical structures of the fiber. Temperature is measured using the variation in optical powers that has been observed. In hydrologic processes, the distribution temperature sensing is employed in a variety of applications, including determining transmissive fractures in bedrock boreholes and evaluating the interaction of a stream and an estuary in the aquifer.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 703.12 Billion
Market Size 2028USD 1044.59 Billion
CAGR 2023-20286.42%
Fastest Growing SegmentIndustrial
Largest MarketNorth America

Increasingly, groundwater discharge zones are being identified by the use of distributed temperature sensing to track temperature variations in the stream bed. Additionally, downhole temperature can be monitored with distributed temperature sensing to examine hydrogeological processes with high spatial and temporal frequency. The use of these sensors in passive mode for on-site groundwater flow, in-well flow, and subsurface thermal property assessment is also becoming more common. Such factors are significantly boosting the utilization of distributed temperature sensors, which is fuelling market expansion.

Need for Enhanced Safety at any Industrial Workplace is Fuelling the Market Growth

The petroleum industry has been witnessing consistent growth for the past few decades. Over a period, advanced technological instruments are introduced invarious industries such as oil & gas, power monitoring, etc., to increase production, which has created a huge demand for safety and security at the workplace. Moreover, due to this increased demand for sensing in harsh environments with high pressure and temperature, the distributed temperature sensing market is expected to witness continuous growth in the coming years.

Increasing Proliferation of Optic Fiber Sensing Cable is Driving the Market Growth

Rising demand for temperature sensing with high accuracy and very high response time is going to increase the need for optic fiber-based temperature sensing systems. The high production of fiber cables for sensing applications is going to increase the distributed temperature sensing market in the forthcoming years. These fiber optic sensors are appropriate for rough conditions including high vibrations, noise, extreme heat, unstable and wet environments.

High Productivity in the Ever-growing Applications is Driving the Market Growth

The demand for high productivity of fiber optic-based sensors is increasing due to the rise in the requirement for temperature sensing over longer distances with larger surface areas. Many industries like subsea, marines etc., are still growing that increases the need for more accurate detection of even the small change in temperature. This increase in the applications of temperature sensing is going to boost the global distributed temperature sensing market in the forecast years.

Market Segmentation

Based on Operating Principle, the market is fragmented into Optical Time Domain Reflectometry and Optical Frequency Domain Reflectometry. Based on Fiber Type, the market is segmented into Single-Mode Fiber and Multi-Mode Fiber. Based on Application, the market is separated into Oil & Gas, Power Cable Monitoring, Process & Pipeline Monitoring, Fire Detection and Environmental Monitoring.

Company Profiles

Baker Hughes Company, Schlumberger Limited, LIOS Technology GMBH, Halliburton Company Corporation, Yokogawa Electric Corporation, AP Sensing GmbH, Bandweaver Technologies Pvt. Ltd., Sensornet Limited, Sumitomo Electric Industries, Ltd., Weatherford International plc are among the major market players in the global platform that lead the market growth of the global Distributed Temperature Sensing market.

Report Scope

In this report, the Global Distributed Temperature Sensing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Distributed Temperature Sensing Market, By Operating Principle:

  • Optical Time Domain Reflectometry
  • Optical Frequency Domain Reflectometry

Distributed Temperature Sensing Market, By Fiber Type:

  • Single-Mode Fiber
  • Multi-Mode Fiber

Distributed Temperature Sensing Market, By Application:

  • Oil & Gas
  • Power Cable Monitoring
  • Process & Pipeline Monitoring
  • Fire Detection
  • Environmental Monitoring

Distributed Temperature Sensing Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • United Kingdom
    • France
    • Russia
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
  • Middle East & Africa
    • UAE
    • Saudi Arabia
    • South Africa
  • South America
    • Brazil
    • Argentina
    • Colombia

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Distributed Temperature Sensing market.

Available Customizations

With the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

2. Research Methodology

3. Impact of COVID-19 on Global Distributed Temperature Sensing Market

4. Executive Summary

5. Voice of Customers

6. Global Distributed Temperature Sensing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Operating Principle (Optical Time Domain Reflectometry and Optical Frequency Domain Reflectometry)
    • 6.2.2. By Fiber Type (Single-Mode Fiber and Multi-Mode Fiber)
    • 6.2.3. By Application (Oil & Gas, Power Cable Monitoring, Process & Pipeline Monitoring, Fire Detection and Environmental Monitoring)
    • 6.2.4. By Region (North America, Europe Asia-Pacific, Middle East & Africa and South America)
  • 6.3. By Company (2022)
  • 6.4. Market Map

7. North America Distributed Temperature Sensing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Operating Principle (Optical Time Domain Reflectometry and Optical Frequency Domain Reflectometry)
    • 7.2.2. By Fiber Type (Single-Mode Fiber and Multi-Mode Fiber)
    • 7.2.3. By Application (Oil & Gas, Power Cable Monitoring, Process & Pipeline Monitoring, Fire Detection and Environmental Monitoring)
    • 7.2.4. By Country
  • 7.3. North America Distributed Temperature Sensing Market Country Analysis
    • 7.3.1. United States Distributed Temperature Sensing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Operating Principle
        • 7.3.1.2.2. By Fiber Type
        • 7.3.1.2.3. By Application
    • 7.3.2. Canada Distributed Temperature Sensing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Operating Principle
        • 7.3.2.2.2. By Fiber Type
        • 7.3.2.2.3. By Application
    • 7.3.3. Mexico Distributed Temperature Sensing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Operating Principle
        • 7.3.3.2.2. By Fiber Type
        • 7.3.3.2.3. By Application

8. Europe Distributed Temperature Sensing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Operating Principle (Optical Time Domain Reflectometry and Optical Frequency Domain Reflectometry)
    • 8.2.2. By Fiber Type (Single-Mode Fiber and Multi-Mode Fiber)
    • 8.2.3. By Application (Oil & Gas, Power Cable Monitoring, Process & Pipeline Monitoring, Fire Detection and Environmental Monitoring)
    • 8.2.4. By Country
  • 8.3. Europe Distributed Temperature Sensing Market Country Analysis
    • 8.3.1. Germany Distributed Temperature Sensing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Operating Principle
        • 8.3.1.2.2. By Fiber Type
        • 8.3.1.2.3. By Application
    • 8.3.2. United Kingdom Distributed Temperature Sensing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Operating Principle
        • 8.3.2.2.2. By Fiber Type
        • 8.3.2.2.3. By Application
    • 8.3.3. France Distributed Temperature Sensing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Operating Principle
        • 8.3.3.2.2. By Fiber Type
        • 8.3.3.2.3. By Application
    • 8.3.4. Russia Distributed Temperature Sensing Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Operating Principle
        • 8.3.4.2.2. By Fiber Type
        • 8.3.4.2.3. By Application
    • 8.3.5. Spain Distributed Temperature Sensing Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Operating Principle
        • 8.3.5.2.2. By Fiber Type
        • 8.3.5.2.3. By Application

9. Asia-Pacific Distributed Temperature Sensing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Operating Principle (Optical Time Domain Reflectometry and Optical Frequency Domain Reflectometry)
    • 9.2.2. By Fiber Type (Single-Mode Fiber and Multi-Mode Fiber)
    • 9.2.3. By Application (Oil & Gas, Power Cable Monitoring, Process & Pipeline Monitoring, Fire Detection and Environmental Monitoring)
    • 9.2.4. By Country
  • 9.3. Asia-Pacific Distributed Temperature Sensing Market Country Analysis
    • 9.3.1. China Distributed Temperature Sensing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Operating Principle
        • 9.3.1.2.2. By Fiber Type
        • 9.3.1.2.3. By Application
    • 9.3.2. India Distributed Temperature Sensing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Operating Principle
        • 9.3.2.2.2. By Fiber Type
        • 9.3.2.2.3. By Application
    • 9.3.3. Japan Distributed Temperature Sensing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Operating Principle
        • 9.3.3.2.2. By Fiber Type
        • 9.3.3.2.3. By Application
    • 9.3.4. South Korea Distributed Temperature Sensing Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Operating Principle
        • 9.3.4.2.2. By Fiber Type
        • 9.3.4.2.3. By Application
    • 9.3.5. Australia Distributed Temperature Sensing Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Operating Principle
        • 9.3.5.2.2. By Fiber Type
        • 9.3.5.2.3. By Application

10. Middle East & Africa Distributed Temperature Sensing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Operating Principle (Optical Time Domain Reflectometry and Optical Frequency Domain Reflectometry)
    • 10.2.2. By Fiber Type (Single-Mode Fiber and Multi-Mode Fiber)
    • 10.2.3. By Application (Oil & Gas, Power Cable Monitoring, Process & Pipeline Monitoring, Fire Detection and Environmental Monitoring)
    • 10.2.4. By Country
  • 10.3. Middle East & Africa Distributed Temperature Sensing Market Country Analysis
    • 10.3.1. UAE Distributed Temperature Sensing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Operating Principle
        • 10.3.1.2.2. By Fiber Type
        • 10.3.1.2.3. By Application
    • 10.3.2. Saudi Arabia Distributed Temperature Sensing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Operating Principle
        • 10.3.2.2.2. By Fiber Type
        • 10.3.2.2.3. By Application
    • 10.3.3. South Africa Distributed Temperature Sensing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Operating Principle
        • 10.3.3.2.2. By Fiber Type
        • 10.3.3.2.3. By Application

11. South America Distributed Temperature Sensing Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Operating Principle (Optical Time Domain Reflectometry and Optical Frequency Domain Reflectometry)
    • 11.2.2. By Fiber Type (Single-Mode Fiber and Multi-Mode Fiber)
    • 11.2.3. By Application (Oil & Gas, Power Cable Monitoring, Process & Pipeline Monitoring, Fire Detection and Environmental Monitoring)
    • 11.2.4. By Country
  • 11.3. South America Distributed Temperature Sensing Market Country Analysis
    • 11.3.1. Brazil Distributed Temperature Sensing Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Operating Principle
        • 11.3.1.2.2. By Fiber Type
        • 11.3.1.2.3. By Application
    • 11.3.2. Argentina Distributed Temperature Sensing Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Operating Principle
        • 11.3.2.2.2. By Fiber Type
        • 11.3.2.2.3. By Application
    • 11.3.3. Colombia Distributed Temperature Sensing Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Operating Principle
        • 11.3.3.2.2. By Fiber Type
        • 11.3.3.2.3. By Application

12. Market Dynamics

  • 12.1. Drivers
    • 12.1.1. Trustworthiness of DTS Systems/Sensors for Sensing & Monitoring Applications in Severe Environments
    • 12.1.2. Growing Need for Labor Safety at Working Sites
    • 12.1.3. Rising Applications in the Oil & Gas Industry
  • 12.2. Challenges
    • 12.2.1. Optical Cables are Inclined to Physical Damage
    • 12.2.2. High Costs Associated with DTS Systems

13. Market Trends & Developments

  • 13.1. Supportive Government Policies for Distributed Temperature Sensing Technologies
  • 13.2. Top Companies Focusing on the Capacity of Expansion and Product Promotions
  • 13.3. Distributed Temperature Sensing with High Precision Among Subsea Areas of Industries
  • 13.4. Technological Advancements & Budding Investments in the Fiber-Optics Industry
  • 13.5. Ongoing Advancements in R&D with the Need for Miniature Sensing Systems

14. Company Profiles

  • 14.1. Competitive Outlook
    • 14.1.1. Business Overview
    • 14.1.2. Key Revenue and Financials
    • 14.1.3. Recent Developments
    • 14.1.4. Key Personnel
    • 14.1.5. Key Product/Services Offered
  • 14.2. Key Players Profiled (Leading Companies)
    • 14.2.1. Baker Hughes Company
    • 14.2.2. Schlumberger Limited
    • 14.2.3. LIOS Technology GMBH
    • 14.2.4. Halliburton Company Corporation
    • 14.2.5. Yokogawa Electric Corporation
    • 14.2.6. AP Sensing GmbH
    • 14.2.7. Bandweaver Technologies Pvt. Ltd.
    • 14.2.8. Sensornet Limited
    • 14.2.9. Sumitomo Electric Industries, Ltd.
    • 14.2.10. Weatherford International plc

15. Strategic Recommendations

16. About Us & Disclaimer

(Note: The companies list can be customized based on the client requirements.)

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦