![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1355156
À̼ÒÇÁ·» ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â)Isoprene Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Type, By Application, By End Use Industry, By Region, Competition |
¼¼°èÀÇ À̼ÒÇÁ·» ½ÃÀåÀº 2022³â¿¡ 46¾ï 2,840¸¸ ´Þ·¯¸¦ ±â·ÏÇßÀ¸¸ç, 2028³â±îÁöÀÇ CAGRÀº 7.5%ÀÇ °ß°íÇÑ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù.
¤½ÃÖ±Ù ¼ö³â°£ ¼¼°è À̼ÒÇÁ·» ½ÃÀåÀº °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ »ó½Â Ãß¼¼´Â ¾ÕÀ¸·Îµµ °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̼ÒÇÁ·»Àº ¼®À¯¿Í õ¿¬°¡½º¿¡¼ ÃßÃâÇÑ ¹«»öÀÇ Èֹ߼º ¾×ü·Î ÇÕ¼º°í¹« ¹× ±âŸ ¿¤¶ó½ºÅä¸Ó »ý»êÀÇ ÁÖ¿ä ¿ø·á·Î Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ°í ¿©·¯ »ê¾÷¿¡¼ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼¼°è À̼ÒÇÁ·» ½ÃÀåÀº ÈÇÐ ±â¾÷¿¡°Ô Å« ±âȸ°¡ µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ ÇÕ¼º°í¹«¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í Á¢ÂøÁ¦, ÄÚÆÃÁ¦, ÇコÄÉ¾î µî ´Ù¾çÇÑ ÃÖÁ¾ ¿ëµµ ºÐ¾ß¿¡¼ À̼ÒÇÁ·»ÀÇ »ç¿ë È®´ë°¡ ÀÌ·¯ÇÑ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
½ÃÀå ±Ô¸ð 2022³â | 46¾ï 2,843¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 63¾ï 9,767¸¸ ´Þ·¯ |
CAGR 2023-2028 | 5.37% |
±Þ¼ºÀå ºÎ¹® | ÁßÇÕ µî±Þ |
ÃÖ´ë ½ÃÀå | ¾Æ½Ã¾ÆÅÂÆò¾ç |
ÀÚµ¿Â÷ ¾÷°è°¡ Áö¼Ó°¡´É¼º°ú ȯ°æÀû Ã¥ÀÓÀ» Áß½ÃÇÏ°Ô µÇ¸é¼ '±×¸° ŸÀ̾î' Çõ¸íÀÌ ÀϾ°í ÀÖ½À´Ï´Ù. ÇÕ¼º°í¹«ÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â °ÍÀ¸·Î ¾Ë·ÁÁø À̼ÒÇÁ·»Àº ÀÌ·¯ÇÑ Áøº¸ÀûÀÎ ¿òÁ÷ÀÓ¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ŸÀ̾î Á¦Á¶¿¡ ÇʼöÀûÀÎ ÇÕ¼º °í¹«´Â À̼ÒÇÁ·»¿¡ ÀÇÁ¸ÇÏ¿© ź¼º, ³»±¸¼º ¹× ¿ì¼öÇÑ ³ë¸é Á¢Áö·ÂÀ» ºÎ¿©ÇÕ´Ï´Ù. ŸÀ̾î Á¦Á¶¿¡¼ À̼ÒÇÁ·»ÀÇ »ç¿ëÀº ȸÀü ÀúÇ×À» ÁÙÀ̰í, °ßÀηÂÀ» Çâ»ó½Ã۸ç, ¼ö¸íÀ» ¿¬ÀåÇϴ ŸÀÌ¾î °³¹ß¿¡ ÇʼöÀûÀ̸ç, ¿¬ºñ È¿À²À» ³ôÀ̰í ģȯ°æ ÀÚµ¿Â÷ »ê¾÷À» ½ÇÇöÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)ÀÇ Àα⵵ ÀÚµ¿Â÷ »ê¾÷¿¡¼ À̼ÒÇÁ·» »ç¿ëÀÇ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, EV°¡ ¼¼°è¿¡¼ È®»êµÊ¿¡ µû¶ó Àü±â ¸ðºô¸®Æ¼¿¡ Æ¯ÈµÈ Å¸À̾ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °í¼º´É, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ŸÀ̾ »ý»êÇÏ´Â µ¥ ÀÖÀ¸¸ç, À̼ÒÇÁ·»ÀÇ ¿ªÇÒÀº ÁÖÇà°Å¸®, ¹èÅ͸® ¼ö¸í ¹× Àü¹ÝÀûÀÎ ¿îÀü °æÇè¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ EV ºÎ¹®¿¡¼ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ Áö¼Ó°¡´ÉÇÏ°í ±â¼úÀûÀ¸·Î Áøº¸µÈ ¹Ì·¡¸¦ ÇâÇØ ³ª¾Æ°¡´Â °¡¿îµ¥, À̼ÒÇÁ·»Àº ÀÌ ¿©Á¤ÀÇ Áß¿äÇÑ ½ÇÇöÀÚ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. À̼ÒÇÁ·»ÀÌ Å¸ÀÌ¾î ¼º´É, ¿¬ºñ È¿À²¼º ¹× ÀÚµ¿Â÷ÀÇ Áö¼Ó°¡´É¼ºÀ» Çâ»ó½ÃŰ´Â ¿ªÇÒÀ» ÇÏ´Â °ÍÀº ÀÚµ¿Â÷ »ê¾÷À» Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, À̼ÒÇÁ·»ÀÌ Áß¿äÇÑ ¿ªÇÒÀ»ÇÒ °ÍÀÓÀ» ºÐ¸íÈ÷ º¸¿©ÁÝ´Ï´Ù.
ÀÇ·á °úÇÐ ±â¼úÀÇ ´«ºÎ½Å ¹ßÀü°ú ÇÔ²² À̼ÒÇÁ·»Àº ÀÇ·á ºÐ¾ß¿¡¼ ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ´Â Áß¿äÇÑ ¼ººÐÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. À̼ÒÇÁ·»Àº ÀÇ·á±â±â ¹× Àåºñ Á¦Á¶¿¡ ÀÌ»óÀûÀÎ ¼ÒÀç°¡ µÉ ¼ö ÀÖ´Â µ¶Æ¯ÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¿ì¼öÇÑ Åº¼º°ú À¯¿¬¼ºÀ¸·Î ÀÎÇØ ÀÇ·á¿ë Æ©ºê, Ä«Å×ÅÍ ¹× ÁÖ»ç±â ºÎǰ Á¦Á¶¿¡ ¸Å¿ì ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â »ýü ÀûÇÕ¼º, ³»±¸¼º ¹× ´Ù¾çÇÑ ¸ê±Õ ¹æ¹ý¿¡ ´ëÇÑ ³»¼ºÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ À̼ÒÇÁ·»ÀÌ ¼±È£µÇ´Â ¼±ÅÃÀÔ´Ï´Ù. ÀÇ·á ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó Ư¼öÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀÇ·á±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó À̼ÒÇÁ·» °è¿ Àç·áÀÇ Á߿伺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. À̼ÒÇÁ·» À¯µµÃ¼´Â Á¡Âø¼º µå·¹½Ì Àç·á ¹× ºØ´ë¿Í °°Àº »óó Ä¡·á Á¦Ç°ÀÇ Á¦Á¶¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. À̼ÒÇÁ·» ±â¹Ý Á¢ÂøÁ¦´Â ÇǺο¡ ¿ì¼öÇÑ Á¢Âø·ÂÀ» Á¦°øÇÏ´Â µ¿½Ã¿¡ ȯÀÚÀÇ Æí¾ÈÇÔ¿¡ Áß¿äÇÑ ¿ä¼ÒÀÎ ½±°í °íÅë ¾ø´Â ¹Ú¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ À̼ÒÇÁ·»ÀÇ °¡½º Åõ°ú¼º ¹× ½Àµµ Á¶Àý Ư¼ºÀº ÃÖÀûÀÇ Ä¡À¯ Á¶°ÇÀ» ÃËÁøÇÏ´Â °í±Þ »óó °ü¸® Á¦Ç° »ý»ê¿¡ ±â¿©ÇÕ´Ï´Ù. Á¦¾à¾÷°è´Â ÇöÀç Ä¡·á °á°ú¸¦ °³¼±Çϰí ȯÀÚÀÇ ¼øÀÀµµ¸¦ ³ôÀ̱â À§ÇØ Çõ½ÅÀûÀÎ ¾à¹°Àü´Þ ½Ã½ºÅÛÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. À̼ÒÇÁ·» ±â¹Ý Æú¸®¸Ó´Â ¼¹æÇü ¾à¹° Á¦Á¦, °æÇÇ Èí¼ö ÆÐÄ¡ ¹× À̽ÄÇü ¾à¹°Àü´Þ ½Ã½ºÅÛÀÇ °¡´É¼ºÀ» ã±â À§ÇØ ±¤¹üÀ§ÇÏ°Ô ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ÙÀç´Ù´ÉÇÑ Æú¸®¸Ó´Â ¾à¹° ¹æÃâ ¼Óµµ¸¦ Á¶ÀýÇϰí, »ýü ÀÌ¿ë·üÀ» ³ôÀ̸ç, ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈÇϵµ·Ï ¸ÂÃãÈÇÒ ¼ö ÀÖÀ¸¸ç, ¾à¹° Åõ¿© ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇコÄÉ¾î ºÐ¾ß¿¡¼´Â ¾ÈÀü°ú °¨¿° ¿¹¹æÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù. À̼ÒÇÁ·» ±â¹Ý ¼ÒÀç´Â ¶Ù¾î³ °µµ, À¯¿¬¼º ¹× ÀúÀڱؼº Ư¼ºÀ¸·Î ÀÎÇØ ¼ö¼ú¿ë Àå°©°ú º¸È£º¹ Á¦Á¶¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ÀÇ·á Àü¹®°¡¿¡°Ô ÀÇ·á ½Ã¼ú Áß È¯ÀÚ¿Í ÀÇ·áÁø ¸ðµÎÀÇ ¾ÈÀüÀ» º¸ÀåÇÏ´Â ÇʼöÀûÀÎ º¸È£ Àåºñ¸¦ Á¦°øÇÕ´Ï´Ù.
Áö¼Ó°¡´ÉÇÑ °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ °Ç¼³ ¾÷°èÀÇ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó À̼ÒÇÁ·»Àº ¶Ñ·ÇÇÑ Æ¯¼º°ú ¶Ù¾î³ ÀåÁ¡À» °¡Áø Áß¿äÇÑ ¼ººÐÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. À̼ÒÇÁ·»À» ÁÖ¼ººÐÀ¸·Î ÇÏ´Â ¿¤¶ó½ºÅä¸Ó°¡ ÇÔÀ¯µÈ °ÇÃàÀÚÀç´Â ¹°¸®Àû ½ºÆ®·¹½º¿Í ȯ°æÀû ¿äÀο¡ ´ëÇØ ¶Ù¾î³ ³»±¸¼º°ú ź·Â¼ºÀ» ¹ßÈÖÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº ±ä ¼ö¸í°ú ¼º´ÉÀÌ °¡Àå Áß¿äÇÑ ÁöºØÀç ¹× ½Ç¸µÀç¿Í °°Àº Áß¿äÇÑ ¿ëµµ¿¡¼ ¸Å¿ì ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. À̼ÒÇÁ·» ±â¹Ý ¹ÐºÀÀç¿Í Á¢ÂøÁ¦´Â ¿ì¼öÇÑ Á¢Âø·Â°ú ³»½À¼ºÀ» Á¦°øÇÏ¿© °Ç¼³ ÇÁ·ÎÁ§Æ®ÀÇ ±¸Á¶Àû ¹«°á¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. À̴ â¹®, ¹®, ¹Ù´ÚÀç¿Í °°ÀÌ ³»¼ö¼º°ú °ÇÑ Á¢Âø·ÂÀ» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ¿¡¼ ƯÈ÷ À¯¸®ÇÕ´Ï´Ù. ¶ÇÇÑ µµ½ÃÈ ¹× ÀÎÇÁ¶ó ±¸Ãà¿¡ µû¸¥ °ÇÃàÀÚÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÁÖ°Å, »ó¾÷ ¹× ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®ÀÇ ´Ù¾çÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â À̼ÒÇÁ·»ÀÇ ¹ü¿ë¼ºÀ» Áö¿øÇÕ´Ï´Ù.
¾ÆÀ̼ÒÇÁ·»Àº ´Ù¾çÇÑ Á¦Ç°ÀÇ ±âº» ÄÄÆ÷³ÍÆ®À̱⠶§¹®¿¡ ½ÃÀåÀÇ ¾ÈÁ¤¼ºÀº ¿ø·á ºñ¿ë ¹× °ø±Þ°ú ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ½À´Ï´Ù. źȼö¼Ò ÈÇÕ¹°ÀÎ À̼ÒÇÁ·»Àº ¿øÀ¯, õ¿¬°¡½º(NGL), ÇÕ¼º°¡½º(Syngas), ¹ÙÀÌ¿À ¿ø·á µî ´Ù¾çÇÑ ¿ø·á¿¡¼ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¿ø·á °¡°ÝÀº º¹ÀâÇÑ ÁöÁ¤ÇÐÀû ¿äÀÎ, ¼ö¿ä ¹× °ø±ÞÀÇ ºÒ±ÕÇü, µ¹¹ß »óȲ µîÀÇ ¿µÇâÀ» ¹Þ¾Æ °íÀ¯ÇÑ º¯µ¿À» °Þ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯µ¿Àº À̼ÒÇÁ·» »ý»ê ºñ¿ëÀÇ ¾ÈÁ¤¼º¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ½ÃÀå¿¡ ±¤¹üÀ§ÇÑ ¿µÇâÀ» ¹ÌÄ¡´Â ºÒÈ®½Ç¼ºÀ» °¡Á®¿É´Ï´Ù.
°ø±Þ¸ÁÀÇ È¥¶õÀº ŸÀ̾î, Á¢ÂøÁ¦ µî Á¦Ç° »ý»ê¿¡ ÇʼöÀûÀÎ À̼ÒÇÁ·»À» È®º¸ÇÏ´Â µ¥ Å« ¾î·Á¿òÀ» ÃÊ·¡ÇÕ´Ï´Ù. Á¤Ä¡Àû ºÒ¾È, ¹«¿ª ¸¶Âû, ÁöÁ¤ÇÐÀû »ç°ÇÀ¸·Î ÀÎÇØ ±¹°æÀ» ³Ñ³ªµå´Â ¿øÀÚÀç È帧ÀÌ ¹æÇØ¹Þ¾Æ °ø±Þ¸ÁÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù. Àåºñ °íÀå, À¯Áöº¸¼ö ¹®Á¦, ¿¹±âÄ¡ ¸øÇÑ °¡µ¿ Áß´Ü µî Á¦Á¶ ½Ã¼³ÀÇ ¿î¿µ Áß´ÜÀº °ø±Þ ºÎÁ·À¸·Î À̾îÁ® °ø±Þ¸Á ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ È¯°æ ±ÔÁ¦ ¹× Áö¼Ó°¡´É¼º ¿ä±¸»çÇ× Áõ°¡·Î ÀÎÇØ Á¦Á¶ °øÁ¤ÀÇ Á¶Á¤ ¹× °ø±Þ¸Á º¯°æÀÌ ÇÊ¿äÇÒ ¼öµµ ÀÖ½À´Ï´Ù.
À̼ÒÇÁ·» »ê¾÷ÀÇ ÁÖ¿ä ½ÃÀå µ¿ÇâÀº ±â¼ú ¹ßÀü°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ¸ÞŸ¼¼½Ã½º ¹× »êÈ Å»¼ö¼Ò¿Í °°Àº Ã˸аøÁ¤ÀÇ ¹ßÀüÀº È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ» ³ôÀ̱â À§ÇØ Á¦Á¶ ¹æ¹ýÀ» ÃÖÀûÈÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Çõ½ÅÀº ¼öÀ²À» ³ôÀÌ°í Æó±â¹°À» ÃÖ¼ÒÈÇÒ »Ó¸¸ ¾Æ´Ï¶ó ºñ¿ë Àý°¨°ú ȯ°æÀû ÀÌÁ¡À» °¡Á®´ÙÁÝ´Ï´Ù. ³ª³ë±â¼úÀº Àç·á Ư¼ºÀ» Á¤¹ÐÇÏ°Ô Á¶ÀÛÇÒ ¼ö ÀÖÀ¸¸ç, °µµ, ³»±¸¼º ¹× ±â´É¼ºÀÌ ¶Ù¾î³ °í¼º´É À̼ÒÇÁ·» ±â¹Ý ¼ÒÀ縦 °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù.
ºê¸®Áö½ºÅæÀº »ê¾÷±â¼úÁ¾ÇÕ¿¬±¸¼Ò, µµÈ£Äí´ëÇб³, ENEOS, ´ÖÄÚ È¦µù½º ÁÖ½Äȸ»ç¿Í °øµ¿À¸·Î ÆóŸÀ̾ Ȱ¿ëÇÏ¿© °í¼öÀ²·Î À̼ÒÇÁ·»À» Á¦Á¶ÇÏ´Â ÄɹÌÄà ¸®»çÀÌŬ ±â¼úÀÇ ¿¬±¸°³¹ßÀ» ½ÃÀÛÇÏ¿´½À´Ï´Ù. ºê¸®Áö½ºÅæÀº ¾÷°è¸¦ ¼±µµÇÏ´Â ±â¾÷ ¹× ÇаèÀÇ ³ëÇÏ¿ì¿Í ±â¼úÀ» °áÇÕÇÏ¿© Áö¼Ó°¡´ÉÇÑ »çȸ¿¡ ±â¿©ÇÒ ¼ö ÀÖ´Â Çõ½ÅÀûÀÎ ÀçȰ¿ë ±â¼ú °³¹ßÀ» ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, 2030³â±îÁö Á¾ÇÕÀûÀÎ ½ÇÁõ ½ÃÇèÀ» ÅëÇØ ÀÌ ±â¼úÀÇ »çȸ Àû¿ëÀ» ÃËÁøÇÒ °èȹÀÔ´Ï´Ù.
À̼ÒÇÁ·» »ý»êÀÇ Áö¼Ó°¡´É¼ºÀº ȯ°æÀû Ã¥ÀÓ°ú Àå±âÀû ½ÇÇà °¡´É¼º¿¡ ´ëÇÑ ¾÷°èÀÇ ¾à¼ÓÀ» ¹Ý¿µÇÏ¿© »õ·Î¿î ÃÊÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
´Ù¾çÇÑ ºÐ¾ßÀÇ »ê¾÷ÀÌ È¯°æ Ä£ÈÀû °üÇàÀ¸·Î ÀüȯÇÏ´Â °¡¿îµ¥, ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ´Â Áß¿äÇÑ ÅºÈ¼ö¼ÒÀÎ À̼ÒÇÁ·»ÀÇ »ý»êµµ ÀÌ·¯ÇÑ ÆÐ·¯´ÙÀÓÀÇ º¯È¸¦ ¼ö¿ëÇϰí ÀÖ½À´Ï´Ù. À̼ÒÇÁ·» »ý»ê¿¡ ´ëÇÑ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¼¼°è À̼ÒÇÁ·» ½ÃÀåÀÇ ¹Ì·¡ Ãß¼¼¸¦ Çü¼ºÇÏ´Â Çõ½ÅÀûÀÎ Æ®·»µå·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. °ú°Å¿¡´Â ¼®À¯ÈÇÐ ¿ø·á¿Í °ü·ÃÀÌ ÀÖ¾ú´ø À̼ÒÇÁ·» ½ÃÀåÀº ÀÌÁ¦ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ Áö¼Ó°¡´É¼ºÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ȼ®¿¬·á¿¡ Å©°Ô ÀÇÁ¸ÇÏ´ø ±âÁ¸ÀÇ À̼ÒÇÁ·» »ý»ê ¹æ½ÄÀº ¼øÈ¯ °æÁ¦¿¡ ±â¿©ÇÏ°í ¿Â½Ç°¡½º ¹èÃâÀ» ÃÖ¼ÒÈÇϴ ģȯ°æÀûÀÎ ´ë¾ÈÀ¸·Î ÀçÁ¶¸íµÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À¸Å½º, ³ó¾÷Æó±â¹° µî Àç»ýÇÑ ¿ø·á·Î »ý»êµÇ´Â ¹ÙÀÌ¿À À̼ÒÇÁ·»Àº ¼®À¯ ±â¹Ý À̼ÒÇÁ·»À» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¿Á¼ö¼ö, »çÅÁ¼ö¼ö, ¿ìµåĨ°ú °°Àº ¿ø·áÀÇ Àç¹è´Â À̼ÒÇÁ·» »ý»ê¿¡ ÀÖÀ¸¸ç, º¸´Ù ģȯ°æÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÏ¿© ¾÷°èÀÇ È¼® ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãâ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ À̼ÒÇÁ·» »ý»êÀÇ Áö¼Ó°¡´É¼º ±¸»óÀº ź¼Ò ¹èÃâÀ» Å©°Ô ÁÙÀÌ°í °øÁ¤À»º¸´Ù ģȯ°æÀûÀ¸·Î ¸¸µå´Â °ÍÀ» ¸ñÇ¥·ÎÇÕ´Ï´Ù. Àç»ýÇÑ ¿ø·á¸¦ Çõ½ÅÀûÀÎ Á¦Á¶ ±â¼ú°ú °áÇÕÇϸé À̼ÒÇÁ·» »ý»ê¿¡ µû¸¥ ź¼Ò ¹èÃâ·®À» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ À̼ÒÇÁ·» »ý»êÀº ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈÇÏ°í Æó±â¹° ¹ß»ýÀ» ÃÖ¼ÒÈÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù. È¿À²ÀûÀÎ »ý»ê °øÁ¤À» äÅÃÇÏ°í Æó±â¹° È帧À» ¿ø·á·Î »ç¿ëÇÔÀ¸·Î½á ¾÷°è´Â ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ°í ¼øÈ¯ °æÁ¦¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù.
2022³â¿¡´Â ŸÀÌ¾î ºÐ¾ß°¡ À̼ÒÇÁ·» ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¾ÕÀ¸·Îµµ °è¼Ó È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÁÖ·Î ´Ù¾çÇÑ Â÷Á¾ÀÇ Å¸À̾î Á¦Á¶¿¡ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ±â ¶§¹®ÀÔ´Ï´Ù. À̼ÒÇÁ·»Àº ¼Ò·®ÀÇ ÀÌ¼ÒºÎÆ¿·»°ú °áÇÕÇϸé ÀÌÀü¿¡ ºÎÆ¿ °í¹«·Î ¾Ë·ÁÁø ÀÌ¼ÒºÎÆ¿·»-À̼ÒÇÁ·» °í¹«¸¦ »ý»êÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ÀÌ °í¹«´Â ÁַΠŸÀ̾îÀÇ ³»ºÎ ¶óÀ̳ʿ¡ »ç¿ëµÇ¸ç, ºñ¿ë È¿À²ÀûÀÎ °¡°ÝÀ¸·Î ³»±¸¼ºÀÌ ¶Ù¾î³ ±â°èÀû Ư¼ºÀ» Á¦°øÇϱ⠶§¹®¿¡ ´Ù¾çÇÑ ¿£Áö´Ï¾î¸µ ¿ëµµ¿¡ »ç¿ëµË´Ï´Ù. ±× °á°ú, ŸÀ̾î Á¦Á¶¾÷ü´Â ź·Â ÀÖ°í ¿À·¡ Áö¼ÓµÇ´Â ÀÚµ¿Â÷ ŸÀ̾ »ý»êÇϱâ À§ÇØ À̼ÒÇÁ·»¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ¹Ì±¹, µ¶ÀÏ, ÇÁ¶û½º µî °æÁ¦°¡ źźÇÑ ±¹°¡¿¡¼ ÀÚµ¿Â÷ »ê¾÷ÀÇ ¼ºÀåÀº ŸÀÌ¾î ¼ö¿äÀÇ Áß¿äÇÑ ÃËÁøÁ¦°¡ µÇ¾î À̼ÒÇÁ·» ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ´Ù¾çÇÑ ÃÖÁ¾ ¿ëµµ »ê¾÷ÀÇ ¼ºÀå¿¡ ÈûÀÔ¾î À̼ÒÇÁ·» ½ÃÀåÀÇ ¼¼°è ¸®´õ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. À̼ÒÇÁ·»Àº ŸÀ̾î Á¢ÂøÁ¦ ¹× »ê¾÷¿ë °í¹«·Î ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖÀ¸¸ç, ÀÚµ¿Â÷ »ý»êÀÇ ±ÞÁõÀ¸·Î ÀÎÇÑ ´ë±Ô¸ð ŸÀ̾î Á¦Á¶ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ Á¡Àº Áß±¹ÀÌ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼ µÎµå·¯Áø °í¹« »ý»ê±¹ÀÌÀÚ ¼Òºñ±¹À̶ó´Â Á¡À̸ç, ±¹³»¿¡´Â ¸¹Àº Á¦Á¶¾÷ü°¡ Á¸ÀçÇÑ´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ Àεµ ¼º¬°ñ ÁÖ Á¤ºÎÀÇ º¸°í¼¿¡ µû¸£¸é ÀεµÀÇ °í¹« ¼Òºñ·®Àº Áß±¹, ¹Ì±¹, ÀϺ»¿¡ ÀÌ¾î ¼¼°è 4À§ÀÔ´Ï´Ù.
Tech Sci Research´Â ±â¾÷ÀÇ °íÀ¯ÇÑ ¿ä±¸¿¡ µû¶ó ¸ÂÃãÈÇÒ ¼ö ÀÖ½À´Ï´Ù. º¸°í¼¿¡¼ ´ÙÀ½°ú °°Àº Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °¡´ÉÇÕ´Ï´Ù.
The global isoprene market was valued at USD 4,628.4 million in 2022 and is projected to experience robust growth with a CAGR of 7.5% through 2028. Recent years have witnessed significant growth in the global isoprene market, and this upward trend is expected to persist. Isoprene, a colorless volatile liquid derived from petroleum or natural gas, plays a crucial role as a key raw material in the production of synthetic rubber and other elastomers. With its versatile applications and increasing demand across multiple industries, the global isoprene market presents significant opportunities for chemical companies. Factors driving this growth include the escalating demand for synthetic rubber, particularly in the automotive sector, and the expanding utilization of isoprene in various end-use segments, including adhesives, coatings, and healthcare.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 4628.43 Million |
Market Size 2028 | USD 6397.67 Million |
CAGR 2023-2028 | 5.37% |
Fastest Growing Segment | Polymerization Grade |
Largest Market | Asia Pacific |
The automotive industry's heightened focus on sustainability and environmental responsibility has given rise to the "green tire" revolution. Isoprene, known for enhancing the performance of synthetic rubber, plays a pivotal role in this progressive movement. Synthetic rubber, a vital component in tire production, relies on isoprene to impart elasticity, durability, and excellent road grip. The utilization of isoprene in tire manufacturing is crucial for the development of tires with reduced rolling resistance, improved traction, and extended lifespan, contributing to enhanced fuel efficiency and a more environmentally friendly automotive industry. The increasing popularity of electric vehicles (EVs) is another significant driver for the use of isoprene in the automotive industry. As EVs gain traction globally, the demand for tires specifically tailored to electric mobility is rising. Isoprene's role in crafting high-performance, energy-efficient tires is pivotal for the EV segment, as it directly impacts factors such as range, battery longevity, and overall driving experience. As the automotive industry progresses towards a sustainable and technologically advanced future, isoprene emerges as a critical enabler of this journey. The role of isoprene in improving tire performance, fuel efficiency, and overall vehicle sustainability underscores its profound significance in shaping the automotive landscape.
With notable advancements in medical science and technology, isoprene is emerging as a vital ingredient with diverse applications in healthcare. Isoprene possesses unique properties that make it an optimal material for producing medical devices and equipment. Its exceptional elasticity and flexibility make it highly desirable for fabricating medical tubing, catheters, and syringe components. These materials require biocompatibility, durability, and the ability to withstand diverse sterilization methods, making isoprene the preferred choice. As medical technology advances, the increasing demand for specialized and reliable medical devices highlights the significance of isoprene-based materials. Isoprene derivatives play a crucial role in formulating wound care products, including adhesive dressings and bandages. Isoprene-based adhesives offer excellent adhesion to the skin while allowing for easy and painless removal, a critical factor in patient comfort. Additionally, isoprene's gas permeability and moisture management properties contribute to creating advanced wound care products that promote optimal healing conditions. The pharmaceutical industry is currently transitioning towards innovative drug delivery systems aimed at enhancing therapeutic outcomes and ensuring patient compliance. Isoprene-based polymers are extensively researched for their potential in sustained-release drug formulations, transdermal patches, and implantable drug delivery systems. These versatile polymers can be customized to regulate drug release rates, enhance bioavailability, and minimize adverse effects, revolutionizing the field of medication administration. Moreover, in the healthcare sector, ensuring safety and infection control is of utmost importance. Isoprene-based materials are utilized in manufacturing surgical gloves and protective apparel due to their exceptional strength, flexibility, and hypoallergenic properties. These materials provide healthcare professionals with indispensable protective equipment that guarantees the safety of both patients and providers during medical procedures.
As the construction sector's need for sustainable and high-performance materials grows, isoprene has emerged as a critical component with distinct properties and notable advantages. Construction materials infused with isoprene-based elastomers demonstrate exceptional durability and resilience to physical stresses and environmental factors. These qualities are highly sought-after in critical applications such as roofing and sealing, where longevity and performance are paramount. Isoprene-based sealants and adhesives offer superior bonding capabilities and moisture resistance, enhancing the structural integrity of construction projects. This proves particularly advantageous in applications that require water resistance and strong adhesion, such as window, door, and flooring installations. Furthermore, the increasing demand for construction materials, driven by urbanization and infrastructure development, underscores the versatility of isoprene in meeting the diverse requirements of residential, commercial, and infrastructure projects.
Given that isoprene serves as a fundamental building block for various products, its market stability is closely tied to the costs and supply of its feedstocks. Isoprene, a hydrocarbon compound, can be obtained from different raw materials like crude oil, Natural Gas Liquids (NGLs), Synthesis Gas (Syngas), and bio-based feedstocks. Raw material prices are subject to inherent volatility influenced by complex geopolitical factors, supply-demand imbalances, and unforeseen events. This volatility significantly impacts the stability of isoprene production costs and introduces uncertainties that have far-reaching effects in the market.
Supply chain disruptions present a significant challenge to the availability of isoprene, a crucial component in the manufacturing of products such as tires and adhesives. Political instability, trade tensions, and geopolitical events can impede the flow of raw materials across borders, resulting in supply chain delays. Operational disruptions in manufacturing facilities, such as equipment failures, maintenance issues, or unforeseen shutdowns, can lead to shortages and impact supply chain reliability. Additionally, increasing environmental regulations and sustainability requirements may necessitate adjustments in manufacturing processes and potential modifications to the supply chain.
Key market trends in the isoprene industry encompass technological advancements and an increasing emphasis on sustainability. Progress in catalytic processes, such as metathesis and oxidative dehydrogenation, optimize production methods for enhanced efficiency and sustainability. These technological breakthroughs not only enhance yield and minimize waste but also offer cost savings and environmental benefits. Nanotechnology enables precise manipulation of material properties, leading to the development of high-performance isoprene-based materials with superior strength, durability, and functionality.
Bridgestone Corporation, in collaboration with the National Institute of Advanced Industrial Science and Technology (AIST), Tohoku University, ENEOS, and JGC HOLDINGS CORPORATION, has initiated a research and development program aimed at advancing chemical recycling technologies that efficiently utilize discarded tires for high-yield isoprene production. By leveraging the collective expertise and technologies of industry-leading companies and academic institutions, Bridgestone aims to create innovative recycling technologies that contribute to a more sustainable society. Comprehensive demonstrations are planned to facilitate the social implementation of these technologies by 2030.
Sustainability in isoprene production is an emerging focus, reflecting the industry's commitment to environmental responsibility and long-term viability.
As industries across various sectors transition towards more environmentally conscious practices, the production of isoprene, a vital hydrocarbon with versatile applications, is embracing this paradigm shift. The growing emphasis on sustainability in isoprene production is emerging as a transformative trend that not only aligns with environmental objectives but also shapes the future of the global isoprene market. The isoprene market, traditionally associated with petrochemical feedstocks, is now embracing sustainability to mitigate its environmental impact. Conventional methods of isoprene production, heavily reliant on fossil fuels, are being reassessed in favor of greener alternatives that contribute to the circular economy and minimize greenhouse gas emissions. Bio-based isoprene, derived from renewable feedstocks such as biomass and agricultural waste, has gained attention as a sustainable substitute for petroleum-based isoprene. The cultivation of feedstock sources like corn, sugarcane, and wood chips offers a more environmentally friendly approach to isoprene production, reducing the industry's dependence on fossil resources. Furthermore, sustainability initiatives in isoprene production aim to significantly reduce carbon emissions, making the process more environmentally friendly. Renewable feedstocks, combined with innovative production technologies, have the potential to substantially decrease the carbon footprint associated with isoprene manufacturing. Sustainable isoprene production focuses on optimizing resource utilization and minimizing waste generation. By adopting efficient production processes and utilizing waste streams as feedstock, the industry can reduce its environmental impact and contribute to a circular economy.
In 2022, the tires segment dominated the isoprene market and is projected to continue expanding in the years ahead. This is primarily due to its extensive use in tire manufacturing across various vehicle types. Isoprene, when combined with isobutylene in small quantities, is used to produce isobutylene-isoprene rubber, formerly known as butyl rubber. These rubbers are primarily employed in tire inner liners, offering durable mechanical properties at a cost-effective price, thereby driving their adoption in various engineering applications. As a result, tire manufacturers heavily rely on isoprene to create resilient and long-lasting tires for vehicles. The growing automotive industry in robust economies such as China, India, the U.S., Germany, France, and others serves as a significant driver for tire demand, thus positively impacting the growth of the isoprene market.
In terms of type, the polymerization grade segment dominated the isoprene market in 2022 and is expected to continue expanding in the future. This can be attributed to the similar applications of polymerization grade isoprene to natural rubber. Polyisoprene is produced by combining multiple isoprene molecules, resulting in four isomers, with cis- and trans-isoprene being the most significant. The increasing market demand for polymer-grade isoprene is driven by its various properties, including cold resistance, high resilience, and good tensile strength. Isoprene, a transparent and colorless liquid with a concentration of 99.3%, finds widespread use in various industries. Polymer-grade isoprene is utilized in the manufacture of polyisoprene, which is used in tires, mechanical molded goods, motor mounts, shock-absorber bushings, and pipe gaskets. The growing utilization of polyisoprene in a wide range of industrial products is expected to drive the market demand for polymer-grade isoprene in the coming years.
The Asia Pacific region has emerged as the global leader in the Isoprene market, driven by the growth of various end-use industries. Isoprene finds extensive application as a tire adhesive and industrial rubber, catering to the rising demand for large-scale tire manufacturing due to the surge in vehicle production. Notably, China stands out as a prominent producer and consumer of rubber in the Asia Pacific region, benefitting from a substantial number of manufacturers within the country. In addition, the Government of West Bengal (India) reports that India ranks fourth globally in rubber consumption, following China, the U.S., and Japan.
In this report, the Global Isoprene Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Isoprene Market.
Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report: