![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1359875
¸¶ÀÌÅ©·ÎÅͺó ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) - Àü·ÂÁ¤°Ýº°, ¿ëµµº°(¿º´ÇÕ¹ßÀü, ´ë±â Àü·Â), ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°, °æÀïMicroturbine Market- Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 By Power Rating, By Application (Combined Heat & Power and Standby Power), By End-user, By Region, Competition |
¼¼°èÀÇ ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀåÀº 2022³â¿¡ 1¾ï 9,083¸¸ ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇϸç, 2028³âÀÇ CAGRÀº 9.01%·Î, 2028³â 2,518¾ï 2,000¸¸ ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
Àú°øÇØ ¿¡³ÊÁö »ý»ê¿¡ ´ëÇÑ Çʿ伺°ú ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±ú²ýÇϰí Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÏ¸é¼ ¿¹Ãø ±â°£ Áß ¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É°ú ¿À¿° ¼öÁØ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¼¼°è ½ÃÀå¿¡¼ ¸¶ÀÌÅ©·ÎÅÍºó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °æÁ¦ ¹ßÀüÀº ¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀåÀÇ ¼ºÀå°ú ¹ßÀü¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
2023³â ½ÃÀå ±Ô¸ð | 2¾ï 573¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 3¾ï 4,522¸¸ ´Þ·¯ |
CAGR 2023-2028 | 9.05% |
±Þ¼ºÀå ºÎ¹® | »ê¾÷¿ë |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀåÀº ûÁ¤ÇÏ°í ºÐ»êµÈ ¿¡³ÊÁö »ý»ê ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ȯ°æ Áö¼Ó°¡´É¼º°ú ¿Â½Ç°¡½º ¹èÃâ·® °¨¼Ò¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ´õ ±ú²ýÇϰí È¿À²ÀûÀÎ ¿¡³ÊÁö ±â¼ú·Î ÀüȯÇÏ´Â Ãß¼¼ÀÔ´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀº õ¿¬°¡½º, ¹ÙÀÌ¿À°¡½º, Àç»ý ¿¬·á µî ´Ù¾çÇÑ ¿¬·á·Î ±¸µ¿ÇÒ ¼ö ÀÖ°í, ±âÁ¸ ȼ®¿¬·á ¹ßÀü¿¡ ºñÇØ ¿À¿°¹°ÁúÀ» Àû°Ô ¹èÃâÇÑ´Ù´Â Á¡¿¡¼ ¸Å·ÂÀûÀÎ ¼Ö·ç¼ÇÀÔ´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀº ºÐ»êÇü ¿¡³ÊÁö »ý»ê¿¡ ÀûÇÕÇϸç, ¼ÒºñÁö¿Í °¡±î¿î °÷¿¡¼ Àü·ÂÀ» »ý»êÇϱ⠶§¹®¿¡ ¼ÛÀü ¹× ¹èÀü ¼Õ½ÇÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ´ÙÀç´Ù´ÉÇÑ ½Ã½ºÅÛÀº ¿º´ÇÕ¹ßÀü(CHP) ½Ã½ºÅÛ, ¸¶ÀÌÅ©·Î±×¸®µå, Off-grid ¹ßÀü ÇÁ·ÎÁ§Æ® µî¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö »ý»ê¿¡ ºÐ»êÇü Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÔÀ¸·Î½á ¿¡³ÊÁö È¿À²°ú ±×¸®µå º¹¿ø·ÂÀ» ³ôÀÔ´Ï´Ù. ƯÈ÷ ¿Üµý Áö¿ª°ú ºñÀü±âÈ Áö¿ª¿¡¼ ¸¶ÀÌÅ©·Î±×¸®µå äÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¸¶ÀÌÅ©·ÎÅÍºó¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ¿¡¼ ¸¶ÀÌÅ©·ÎÅͺóÀº Áö¿ª »çȸ, »ê¾÷ ¹× »ó¾÷½Ã¼³¿¡ Àü±â¿Í ¿À» °ø±ÞÇÒ ¼ö ÀÖ´Â ½Å·ÚÇÒ ¼ö ÀÖ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ Å¾籤 ¹× dz·Â¹ßÀü°ú °°Àº °£ÇæÀûÀÎ Àç»ý ¿¡³ÊÁö ¿øÀ» º¸¿ÏÇÏ´Â ¸¶ÀÌÅ©·ÎÅͺóÀÇ ´É·ÂÀº ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Àü¹ÝÀûÀÎ ½Å·Ú¼º°ú ¾ÈÁ¤¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.
Á¤ºÎ Á¤Ã¥°ú Àμ¾Æ¼ºê´Â ¸¶ÀÌÅ©·ÎÅͺóÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ°í ¼¼°è ½ÃÀåÀ» ÁÖµµÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡¿¡¼ ¸¶ÀÌÅ©·ÎÅͺóÀ» Æ÷ÇÔÇÑ ºÐ»êÇü ¿¡³ÊÁö ¹ßÀü ±â¼úÀÇ °³¹ß ¹× º¸±ÞÀ» Àå·ÁÇϱâ À§ÇØ Áö¿ø Á¤Ã¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â ±âÈÄ º¯È ¸ñÇ¥ ´Þ¼º°ú ¿¡³ÊÁö ¾Èº¸ Çâ»ó¿¡ ÀÖÀ¸¸ç, ûÁ¤¿¡³ÊÁö¿Í ºÐ»êÇü ¹ßÀüÀÇ Á߿伺À» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¸¶ÀÌÅ©·ÎÅÍºó ¼³Ä¡¿¡ ÅõÀÚÇÏ´Â ±â¾÷°ú ¼ÒºñÀÚ¿¡°Ô ´Ù¾çÇÑ ±ÝÀ¶ ÇýÅÃ, ¼¼¾×°øÁ¦, º¸Á¶±Ý, °íÁ¤°¡°Ý ÀÓº£µðµåÁ¦µµ µîÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àμ¾Æ¼ºê´Â Ãʱâ ÀÚº» ºñ¿ëÀ» Å©°Ô ³·Ãß°í ÅõÀÚ ¸ÅÃâ·üÀ» Çâ»ó½ÃÄÑ ¸¶ÀÌÅ©·ÎÅͺó ÇÁ·ÎÁ§Æ®¸¦ º¸´Ù °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ °ÍÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç»ý¿¡³ÊÁö ÅëÇÕ ¹× ¹èÃâ °¨¼Ò¿¡ ´ëÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í Àǹ«È´Â ¸¶ÀÌÅ©·ÎÅÍºó µµÀÔ¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ƯÁ¤ Áö¿ª¿¡¼´Â ¸¶ÀÌÅ©·ÎÅͺóÀÌ Àç»ý¿¡³ÊÁö ÀÎÁõ¼¿Í ź¼Ò¹èÃâ±Ç ¹ßÇàÀÇ ´ë»óÀÌ µÉ ¼ö ÀÖÀ¸¸ç, Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·Î¼ÀÇ ¸Å·ÂÀ» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù.
¿¡³ÊÁö È¿À²Àº ¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀåÀ» ÁÖµµÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±â¾÷°ú »ê¾÷°è´Â ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨Çϸç ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Àû±ØÀûÀ¸·Î ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀº ¶Ù¾î³ Àü±â ¹× ¿ È¿À²·Î ³Î¸® ÀÎÁ¤¹Þ°í ÀÖÀ¸¸ç, ¿º´ÇÕ¹ßÀü(CHP)¿¡ ¸Å¿ì ÀûÇÕÇϸç, ¿º´ÇÕ¹ßÀüÀ̶ó°íµµ ºÒ¸®´Â CHP ½Ã½ºÅÛÀº ÇϳªÀÇ ¿¬·á °ø±Þ¿ø¿¡¼ Àü±â¿Í »ç¿ë °¡´ÉÇÑ ¿À» µ¿½Ã¿¡ »ý»êÇÕ´Ï´Ù. ¹ßÀü½Ã ¹ß»ýÇÏ´Â Æó¿Àº ³¹æ, ³Ã¹æ ¹× »ê¾÷ °øÁ¤¿¡ È¿°úÀûÀ¸·Î Ȱ¿ëµÇ¾î Àüü ½Ã½ºÅÛÀÇ È¿À²À» Å©°Ô Çâ»ó½Ãŵ´Ï´Ù. ÄÄÆÑÆ®ÇÑ Å©±â¿Í ¸ðµâ½Ä ¼³°è°¡ Ư¡ÀÎ ¸¶ÀÌÅ©·ÎÅͺóÀº »ó¾÷¿ë °Ç¹°, º´¿ø, Á¦Á¶ ½Ã¼³ µî ´Ù¾çÇÑ CHP ½Ã¼³¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀ» ÀÌ¿ëÇÑ CHP ½Ã½ºÅÛÀ» äÅÃÇÔÀ¸·Î½á ÃÖÁ¾»ç¿ëÀÚ´Â ±âÁ¸ÀÇ ±×¸®µå ±â¹Ý Àü±â ¹× °³º° ³¹æ ½Ã½ºÅÛ¿¡ ºñÇØ »ó´çÇÑ ¿¡³ÊÁö Àý°¨°ú ¿Â½Ç °¡½º ¹èÃâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º Àü·«¿¡¼ ¿¡³ÊÁö È¿À²ÀÌ Áö¼ÓÀûÀ¸·Î ÁÖ¸ñ¹ÞÀ¸¸é¼ CHP ¿ëµµÀÇ ¸¶ÀÌÅ©·ÎÅͺó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¸¶ÀÌÅ©·ÎÅͺóÀº °íÈ¿À², Àú¹èÃâ, ¿¬·áÀÇ À¯¿¬¼º µî ¿©·¯ °¡Áö ÀåÁ¡À» Á¦°øÇÏ´Â Á¤±³Çϰí ÄÄÆÑÆ®ÇÑ ¹ßÀü ÀåºñÀÔ´Ï´Ù. ±×·¯³ª ¸¶ÀÌÅ©·ÎÅͺó ½Ã½ºÅÛ ±¸¸Å ¹× ¼³Ä¡¿¡ ÇÊ¿äÇÑ ¸·´ëÇÑ Ãʱâ ÀÚº» ÁöÃâÀº ¸¹Àº ÀáÀç °í°´¿¡°Ô Å« À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀÇ ³ôÀº Ãʱ⠺ñ¿ëÀº ÁַΠ÷´Ü ±â¼ú, Àü¹® ¿£Áö´Ï¾î¸µ ¹× Á¦Á¶¿¡ °í±Þ Àç·á¸¦ »ç¿ëÇϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ ¸¶ÀÌÅ©·ÎÅͺó »ý»êÀÇ ±Ô¸ðÀÇ °æÁ¦´Â ¾ÆÁ÷ ¿Õº¹µ¿ ¿£ÁøÀ̳ª °¡½º Åͺó°ú °°Àº ÀüÅëÀûÀÎ ¹ßÀü ±â¼ú¿¡ ÇÊÀûÇÒ ¸¸ÇÑ ¼öÁØ¿¡ µµ´ÞÇÏÁö ¸øÇß½À´Ï´Ù. ¶ÇÇÑ ¸¶ÀÌÅ©·ÎÅͺóÀº Àü±â ¿¬°á ¹× ¹è±â ½Ã½ºÅÛ°ú °°Àº Ãß°¡ ÀÎÇÁ¶ó °³Á¶°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹À¸¸ç, ÀÌ´Â Àüü µµÀÔ ºñ¿ë¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ƯÈ÷ ¼Ò±Ô¸ð ¿ëµµ¿¡¼ ±âÁ¸ ¹ßÀü ¹æ½Ä¿¡ ºñÇØ ÅõÀÚ È¸¼ö ±â°£ÀÌ ¸Å·ÂÀûÀÌÁö ¾Ê±â ¶§¹®¿¡ ÃÖÁ¾»ç¿ëÀÚÀÇ ÀÇ¿åÀ» ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ Á¦Á¶¾÷ü¿Í ¾÷°è ÀÌÇØ°ü°èÀÚµéÀº ¸¶ÀÌÅ©·ÎÅͺóÀÇ È¿À²À» ³ôÀÌ°í »ý»ê ºñ¿ëÀ» ³·Ã߸ç Çõ½ÅÀûÀÎ ÀÚ±Ý Á¶´Þ ¸ðµ¨À» ¸ð»öÇÏ´Â ¿¬±¸°³¹ß¿¡ Àû±Ø ³ª¼°í ÀÖ½À´Ï´Ù. ºÐ»êÇü ¿¡³ÊÁö ¹ßÀü ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê, ¼¼±Ý °øÁ¦ ¹× º¸Á¶±Ýµµ ¸¶ÀÌÅ©·ÎÅͺó ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ°í ´õ ¸¹Àº °í°´Ãþ¿¡°Ô °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ½Ã½ºÅÛÀ» ¸¸µå´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀåÀÌ Á÷¸éÇÑ ¶Ç ´Ù¸¥ °úÁ¦´Â Àü·Â¸Á ÅëÇÕ°ú Àü·Â ǰÁú ¹®Á¦ÀÔ´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀº ¿º´ÇÕ¹ßÀü(CHP) ½Ã½ºÅÛ, ¿ø°Ý ¹ßÀü, ¸¶ÀÌÅ©·Î±×¸®µå ¼³Ä¡¿Í °°Àº ºÐ»êÇü ¿¡³ÊÁö ¹ßÀü ¿ëµµ¿¡ ÀϹÝÀûÀ¸·Î »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµ¿¡¼´Â ¸¶ÀÌÅ©·ÎÅͺó°ú À¯Æ¿¸®Æ¼ ±×¸®µå ¹× ±âŸ Àü·Â °ø±Þ¿ø°úÀÇ ¿øÈ°ÇÑ ÅëÇÕ ¹× µ¿±âȰ¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÅëÇÕÀÇ ¾î·Á¿òÀº ž籤 ¹× dz·Â¹ßÀü°ú °°Àº Àç»ý ¿¡³ÊÁö¿øÀÇ º¯µ¿¼º ¶§¹®¿¡ ÇÏÀ̺긮µå ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ ¸¶ÀÌÅ©·ÎÅͺó°ú °áÇյǴ °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ¹ß»ýÇÕ´Ï´Ù. ºÎÇÏ º¯µ¿À» °ü¸®ÇÏ°í °úµµ±âÀû »óȲ¿¡¼ °èÅë ¾ÈÁ¤¼ºÀ» º¸ÀåÇϱâ À§Çؼ´Â ¸¶ÀÌÅ©·ÎÅÍºó¿¡ Ã·´Ü Á¦¾î ½Ã½ºÅÛÀ» žÀçÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ Á¤Àü ¹× ÀçÁ¢¼Ó½Ã °èÅë µ¿±âȸ¦ ¿øÈ°ÇÏ°Ô À¯ÁöÇÏ´Â °ÍÀÌ Àü·Â ǰÁúÀ» À¯ÁöÇÏ°í °èÅë È¥¶õÀ» ¹æÁöÇÏ´Â µ¥ °¡Àå Áß¿äÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ ¹®Á¦´Â ¸¶ÀÌÅ©·ÎÅͺóÀ» Àü·Â¸Á°ú ÅëÇÕÇÒ ¶§ Àü·Â ǰÁúÀÔ´Ï´Ù. ÃÖÁ¾»ç¿ëÀÚ¿¡°Ô ¿øÈ°ÇÑ Àü·Â °ø±ÞÀ» º¸ÀåÇϱâ À§ÇØ ¸¶ÀÌÅ©·ÎÅͺóÀº Àü¾Ð Á¶Á¤, Á֯ļö ¾ÈÁ¤¼º, ³·Àº °íÁ¶ÆÄ ¿Ö°î°ú °°Àº ¾ö°ÝÇÑ Àü·Â ǰÁú Ç¥ÁØÀ» ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±âÁØ¿¡¼ ¹þ¾î³ª¸é Àåºñ °íÀå, °í°¨µµ ÀüÀÚ Àåºñ ¼Õ»ó ¹× ±ÔÁ¦ ´ç±¹ÀÇ Ã³¹úÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀå¿¡¼ º¼ ¼ö ÀÖ´Â Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ÇÏÀ̺긮µå ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ¸¶ÀÌÅ©·ÎÅͺóÀÌ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¸¶ÀÌÅ©·ÎÅͺó, ž籤(PV), dz·Â Åͺó, ¿¡³ÊÁö ÀúÀå ¹× ±âÁ¸ ¹ßÀü±â¸¦ Æ÷ÇÔÇÑ ¿©·¯ ¿¡³ÊÁö ¿øÀ» °áÇÕÇÏ¿© º¸´Ù ¾ÈÁ¤ÀûÀ̰í È¿À²ÀûÀ̸ç Áö¼Ó°¡´ÉÇÑ ¹ßÀü ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀº ž籤°ú dz·Â µî °£ÇæÀûÀÎ Àç»ý ¿¡³ÊÁö¿øÀ» º¸¿ÏÇÒ ¼ö ÀÖ´Â ¾ÈÁ¤ÀûÀ̰í È¿À²ÀûÀÎ Àü¿øÀ» Á¦°øÇÔÀ¸·Î½á ÇÏÀ̺긮µå ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀº õ¿¬°¡½º, ¹ÙÀÌ¿À°¡½º, ¼ö¼Ò µî ´Ù¾çÇÑ ¿¬·á·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â À¯¿¬¼ºÀ» ÅëÇØ ´Ù¾çÇÑ ¿¡³ÊÁö ¹Í½º¿¡ ÀûÀÀÇÏ°í ¿¬·áÀÇ °¡¿ë¼º°ú ¼ö¿ä¿¡ µû¶ó ½Ã½ºÅÛ ¼º´ÉÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå ¿ëµµ¿¡¼ ¸¶ÀÌÅ©·ÎÅͺóÀº ½Ã½ºÅÛÀÇ ¹éº» ¿ªÇÒÀ» Çϸç ÃÖ¼ÒÇÑ ¼ö¿ä¸¦ ÃæÁ·ÇÏ´Â ±âÀúºÎÇÏ Àü·ÂÀ» Áö¼ÓÀûÀ¸·Î °ø±ÞÇÕ´Ï´Ù. ±×¸®°í Àç»ý¿¡³ÊÁö »ý»ê·®ÀÌ ¸¹Àº ½Ã°£´ë¿¡´Â ž籤 ¹× dz·Â¹ßÀüÀÌ ¸¶ÀÌÅ©·ÎÅͺóÀÇ Ãâ·ÂÀ» º¸¿ÏÇÏ¿© ȼ®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ¿î¿µ ºñ¿ëÀ» ³·Ãä´Ï´Ù. ¹èÅ͸®¿Í °°Àº ¿¡³ÊÁö ÀúÀå ±â¼úÀ» ÅëÇÕÇÏ¿© À׿© Àç»ý ¿¡³ÊÁö¸¦ ÀúÀåÇϰí ÇÇÅ© ½Ã°£À̳ª Àç»ý ¿¡³ÊÁö¸¦ »ç¿ëÇÒ ¼ö ¾øÀ» ¶§ ¹æÀüÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ¸¶ÀÌÅ©·ÎÅͺóÀ» ÅëÇÕÇÏ¸é ¸î °¡Áö ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ù°, Àç»ý ÀÚ¿ø°ú ºñÀç»ý ÀÚ¿øÀÇ »ç¿ëÀ» ÃÖÀûÈÇÏ¿© Àü¹ÝÀûÀÎ ¿¡³ÊÁö È¿À²°ú ½Ã½ºÅÛ ¾ÈÁ¤¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. µÑ°, ȼ®¿¬·á¿¡¼ »ý»êµÇ´Â ¿¡³ÊÁöÀÇ ÀϺθ¦ ´ëüÇÔÀ¸·Î½á ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̰í Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù. ¸¶Áö¸·À¸·Î, ¿©·¯ ¿¡³ÊÁö¿øÀÇ °áÇÕÀº Àü·Â¸ÁÀÇ ½Å·Ú¼º°ú º¹¿ø·ÂÀ» Çâ»ó½ÃÄÑ ¼ÛÀü¸ÁÀÌ Áß´ÜµÈ °æ¿ì¿¡µµ Áö¼ÓÀûÀÎ Àü·Â °ø±ÞÀ» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. Żź¼ÒÈ¿Í Àç»ý¿¡³ÊÁö ÅëÇÕ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÇÏÀ̺긮µå ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ¸¶ÀÌÅ©·ÎÅͺóÀ» ÅëÇÕÇÏ´Â Ãß¼¼´Â ´õ¿í ź·ÂÀ» ¹Þ¾Æ ¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀå È®´ë¸¦ °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿º´ÇÕ¹ßÀü(CHP)Àº ¿¹Ãø ±â°£ Áß ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿º´ÇÕ ¹ßÀüÀ¸·Îµµ ¾Ë·ÁÁø CHP´Â ¼¼°è ¿¡³ÊÁö ȯ°æ¿¡¼ ¸¶ÀÌÅ©·ÎÅͺóÀÇ ¸Å¿ì À¯¸®ÇÑ ¿ëµµ¸¦ ³ªÅ¸³»¸ç, CHP ½Ã½ºÅÛÀº ´ÜÀÏ ¿¬·á °ø±Þ¿øÀ¸·ÎºÎÅÍ Àü±â¿Í À¯¿ëÇÑ ¿À» È¿À²ÀûÀ¸·Î »ý»êÇÏ¿© ¿¡³ÊÁö È¿À²À» Å©°Ô Çâ»ó½Ã۰í ȯ°æÀû ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀº ¼ÒÇü Å©±â, °íÈ¿À², ¿¬·áÀÇ À¯¿¬¼ºÀ¸·Î ÀÎÇØ CHP ¿ëµµ¿¡ ÀûÇÕÇϸç, ºÐ»êÇü ¿¡³ÊÁö ¹ßÀüÀÇ ¸Å¿ì Áß¿äÇÑ ÄÄÆ÷³ÍÆ®·Î, ƯÈ÷ Àü±â¿Í ¿ ¿¡³ÊÁö¸¦ µ¿½Ã¿¡ °ø±ÞÇØ¾ß ÇÏ´Â »ê¾÷, »ó¾÷¿ë °Ç¹°, ÀÇ·á ½Ã¼³, Áö¿ª ³¹æ ¿ëµµ¿¡¼ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¼±È£µÇ°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ¼¼°è ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀå¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ¹Ì±¹°ú ij³ª´Ù°¡ ÀÌ »ê¾÷ÀÇ ¼ºÀå¿¡ Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÅºÅºÇÑ »ê¾÷ ±â¹Ý, ÷´Ü ±â¼ú äÅÃ, ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ´Ù¾çÇÑ ¿ëµµ¿¡¼ ¸¶ÀÌÅ©·ÎÅÍºó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ãµ¿¬°¡½ºÀÇ ±¤¹üÀ§ÇÑ »ç¿ë, Àç»ý ¿¬·áÀÇ °¡¿ë¼º ¹× Á¤ºÎ Áö¿ø Á¤Ã¥Àº ¸¶ÀÌÅ©·ÎÅͺó ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀåÀº ÀüÅë ÀÖ´Â Á¦Á¶¾÷ü, ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ, ¼ºñ½º ÇÁ·Î¹ÙÀÌ´õÀÇ Á¸Àç°¡ Ư¡ÀÔ´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ¿¡³ÊÁö µ¶¸³¼º, ź·Â¼º, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ ºÐ»êÇü ¿¡³ÊÁö »ý»ê¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·ÎÅͺóÀº ¼ÒÇü »çÀÌÁî, Àú¹èÃâ, ´Ù¾çÇÑ ¿¬·á·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ µµ½Ã ¹× ¿Üµý Áö¿ªÀÇ ºÐ»êÇü ¹ßÀü¿¡ ¸Å¿ì ÀûÇÕÇÕ´Ï´Ù. ¿¬¹æ ¹× ÁÖÁ¤ºÎ°¡ Á¦°øÇÏ´Â ´Ù¾çÇÑ Á¤ºÎ ÇýÅÃ, ¼¼¾× °øÁ¦ ¹× º¸Á¶±ÝÀº ¸¶ÀÌÅ©·ÎÅͺó ½Ã½ºÅÛ µµÀÔÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç»ý ¿¡³ÊÁö Ç¥ÁØ, ¹èÃâ·® °¨Ãà ¸ñÇ¥ ¹× ¼ø °è·® ÇÁ·Î±×·¥Àº ÃÖÁ¾»ç¿ëÀÚ°¡ ûÁ¤ ¿¡³ÊÁö ¹ßÀü°ú °æÁ¦Àû ÀÌÁ¡À» À§ÇØ ¸¶ÀÌÅ©·ÎÅÍºó¿¡ ÅõÀÚÇϵµ·Ï Àå·ÁÇÕ´Ï´Ù.
¼¼°èÀÇ ¸¶ÀÌÅ©·ÎÅͺó ½ÃÀå º¸°í¼´Â ÁÖ¾îÁø ½ÃÀå µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î Tech Sci Research°¡ ±â¾÷ÀÇ Æ¯Á¤ ¿ä±¸¿¡ µû¶ó ¸ÂÃãȸ¦ Á¦°øÇÕ´Ï´Ù. º¸°í¼¿¡´Â ´ÙÀ½°ú °°Àº »ç¿ëÀÚ Á¤Àǰ¡ °¡´ÉÇÕ´Ï´Ù.
The Global Microturbine Market reached a size of USD 190.83 million in 2022 and is projected to grow to USD 251.82 billion by 2028, with a CAGR of 9.01% through 2028. The increasing need and demand for low-emission energy generation are fueling the expansion of the global microturbine market. Moreover, the surge in demand for clean and sustainable energy is driving the global microturbine market throughout the forecast period. Growing environmental concerns and pollution levels are stimulating the demand for microturbines in the global market. Additionally, economic advancements are contributing to the growth and development of the global microturbine market.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2023 | USD 205.73 million |
Market Size 2028 | USD 345.22 million |
CAGR 2023-2028 | 9.05% |
Fastest Growing Segment | Industrial |
Largest Market | North America |
The global microturbine market is primarily driven by the increasing demand for clean and distributed energy generation solutions. With a growing emphasis on environmental sustainability and reducing greenhouse gas emissions, there is a shift towards cleaner and more efficient energy technologies. Microturbines present an attractive solution as they can operate on a variety of fuels, including natural gas, biogas, and renewable fuels, while emitting lower levels of pollutants compared to conventional fossil-fueled power generation. Microturbines are well-suited for distributed energy generation applications, where power is produced in close proximity to the point of consumption, resulting in reduced transmission and distribution losses. These versatile systems find applications in combined heat and power (CHP) systems, microgrids, and off-grid power generation projects. By providing a decentralized approach to energy production, they enhance energy efficiency and grid resilience. The increasing adoption of microgrids, particularly in remote and off-grid locations, further fuels the demand for microturbines. In such settings, microturbines offer a reliable and cost-effective solution for providing electricity and heat to communities, industrial facilities, and commercial establishments. Moreover, the ability of microturbines to complement intermittent renewable energy sources, such as solar and wind power, enhances the overall reliability and stability of distributed energy systems.
Government policies and incentives play a crucial role in promoting the adoption of microturbines and driving the global market. Many countries have implemented supportive policies to encourage the development and deployment of distributed energy generation technologies, including microturbines. Governments worldwide are increasingly recognizing the importance of clean energy and decentralized power generation in achieving climate goals and improving energy security. Consequently, various financial incentives, tax credits, grants, and feed-in tariffs are offered to businesses and consumers investing in microturbine installations. These incentives significantly reduce the upfront capital costs and improve the return on investment, making microturbine projects more economically viable. Moreover, regulatory frameworks and mandates related to renewable energy integration and emissions reduction create a conducive environment for microturbine adoption. In certain regions, microturbines may be eligible for renewable energy certificates or carbon credits, further enhancing their attractiveness as sustainable energy solutions.
Energy efficiency plays a crucial role in driving the global microturbine market. Businesses and industries are actively seeking ways to optimize energy usage, reduce operating costs, and minimize environmental impact. Microturbines are widely recognized for their exceptional electrical and thermal efficiency, making them highly suitable for combined heat and power (CHP) applications. CHP systems, also known as cogeneration, offer the simultaneous production of electricity and usable heat from a single fuel source. The waste heat generated during power generation is effectively utilized for heating, cooling, or industrial processes, resulting in significant improvements in overall system efficiency. Microturbines, characterized by their compact size and modular design, can seamlessly integrate into various CHP installations, including commercial buildings, hospitals, and manufacturing facilities. By embracing microturbine-based CHP systems, end-users can achieve substantial energy savings and reduce greenhouse gas emissions compared to conventional grid-based electricity and separate heating systems. As energy efficiency continues to gain prominence in sustainability strategies, the demand for microturbine solutions in CHP applications is projected to fuel market expansion.
Microturbines are sophisticated and compact power generation devices that offer numerous advantages, including high efficiency, low emissions, and fuel flexibility. However, the significant initial capital expenditure required for purchasing and installing microturbine systems can pose a substantial barrier for many potential customers. The elevated upfront cost of microturbines can be primarily attributed to the advanced technology, specialized engineering, and the use of premium materials in their manufacturing. Moreover, the economies of scale for microturbine production have not yet reached levels comparable to conventional power generation technologies like reciprocating engines or gas turbines. Additionally, microturbines often necessitate additional infrastructure modifications, such as electrical interconnection and exhaust systems, which contribute to the overall deployment cost. These factors can potentially discourage end-users, particularly in small-scale applications, where the payback period may not be as attractive compared to traditional power generation options. To tackle the challenge of the high initial investment cost, manufacturers and industry stakeholders are actively engaged in research and development efforts to enhance microturbine efficiency, reduce production costs, and explore innovative financing models. Government incentives, tax credits, and grants for distributed energy generation projects can also play a significant role in fostering the adoption of microturbine systems, making them more economically viable for a broader customer base.
Another challenge faced by the global microturbine market is the integration of the grid and issues related to power quality. Microturbines are commonly utilized in distributed energy generation applications, such as combined heat and power (CHP) systems, remote power generation, and microgrid installations. In these applications, the seamless integration and synchronization of microturbines with the utility grid or other power sources are crucial. The integration challenges arise due to the fluctuating nature of renewable energy sources, like solar and wind power, which are often combined with microturbines in hybrid energy systems. To manage load variations and ensure grid stability during transient conditions, microturbines must be equipped with sophisticated control systems. Moreover, maintaining seamless grid synchronization during grid blackouts and reconnection events is of utmost importance to uphold power quality and prevent grid disruptions. Another concern is power quality when integrating microturbines with the utility grid. To ensure smooth power delivery to end-users, microturbines need to adhere to stringent power quality standards, including voltage regulation, frequency stability, and low harmonic distortion. Any deviation from these standards can result in equipment malfunctions, damage to sensitive electronic devices, and potential penalties imposed by regulatory authorities.
One of the significant trends observed in the global microturbine market is the increasing integration of microturbines in hybrid energy systems. These systems combine multiple energy sources, including microturbines, solar photovoltaics (PV), wind turbines, energy storage, and traditional generators, to create a more reliable, efficient, and sustainable power generation solution. Microturbines play a crucial role in hybrid systems by providing a stable and efficient power source that complements intermittent renewable energy sources like solar and wind. The flexibility of microturbines to operate on various fuels, such as natural gas, biogas, and hydrogen, enables them to adapt to different energy mixes, optimizing system performance based on fuel availability and demand. In hybrid microgrid applications, microturbines act as the backbone of the system, providing continuous baseload power to meet the minimum demand. Solar and wind sources then supplement the microturbine output during periods of high renewable energy production, reducing the reliance on fossil fuels and lowering operating costs. The integration of energy storage technologies, such as batteries, allows for the storage of excess renewable energy and its discharge during peak demand or when renewable sources are unavailable. The integration of microturbines in hybrid energy systems offers several advantages. Firstly, it enhances overall energy efficiency and system stability by optimizing the use of renewable and non-renewable resources. Secondly, it reduces greenhouse gas emissions and supports sustainability goals by displacing a portion of the energy generated from fossil fuels. Lastly, the combination of multiple energy sources increases the reliability and resilience of the power system, ensuring continuous power supply even in the event of a grid outage. As the focus on decarbonization and renewable energy integration continues to grow, the trend of integrating microturbines in hybrid energy systems is expected to gain momentum, driving the expansion of the global microturbine market.
Combined Heat and Power (CHP) is poised to dominate the market during the forecast period. Also known as cogeneration, CHP represents a highly advantageous application of microturbines in the global energy landscape. CHP systems effectively generate both electricity and useful heat from a single fuel source, providing substantial energy efficiency improvements and environmental advantages. Microturbines are well-suited for CHP applications due to their compact size, high efficiency, and fuel flexibility, making them a pivotal component in decentralized energy generation. CHP finds particular favor in industries, commercial buildings, healthcare facilities, and district heating applications that require simultaneous electricity and thermal energy supply.
North America plays a significant role in the global microturbine market, with the United States and Canada being the primary contributors to industry growth. The region's robust industrial base, advanced technology adoption, and increasing focus on clean energy solutions drive the demand for microturbines across various applications. Moreover, the extensive use of natural gas, availability of renewable fuels, and supportive government policies further enhance the adoption of microturbine systems. The North American microturbine market is characterized by the presence of well-established manufacturers, system integrators, and service providers. The region has witnessed a growing interest in distributed energy generation, fueled by the desire for energy independence, resilience, and sustainability. Microturbines, with their compact size, low emissions, and ability to operate on multiple fuels, are highly suitable for decentralized power generation in urban and remote areas. Various government incentives, tax credits, and grants provided by federal and state authorities encourage the deployment of microturbine systems. Additionally, renewable energy standards, emissions reduction targets, and net metering programs incentivize end-users to invest in microturbines for both clean energy generation and financial benefits.
In this report, the Global Microturbine Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Microturbine Market.
Global Microturbine Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report: