![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1370776
Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) - ÄÄÆ÷³ÍÆ®º°, ±â¼úº°, ÃÖÁ¾ »ç¿ëº°, Áö¿ªº°, °æÀﺰ ºÐ¼®Generative AI Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F Segmented By Component, By Technology, By End-Use, By Region, Competition |
¼¼°èÀÇ Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀº ¿¹Ãø ±â°£ Áß º¸´Ù ºü¸¥ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á¦³×·¹ÀÌÆ¼ºê AI´Â »ý¼ºÀû Àû´ëÀû ³×Æ®¿öÅ©(GAN)¶ó°íµµ Çϸç, ÁÖ¾îÁø ÇнÀ µ¥ÀÌÅÍ ¼¼Æ®¿Í À¯»çÇÑ »õ·Î¿î µ¥ÀÌÅÍ »ùÇÃÀ» »ý¼ºÇϵµ·Ï ¼³°èµÈ ÀΰøÁö´É ¾Ë°í¸®Áò°ú ¸ðµ¨ÀÇ ÁýÇÕÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº µ¥ÀÌÅÍ ¼¼Æ®¿¡¼ ÇнÀÇÏ¿© À̹ÌÁö, À½¾Ç, ÅØ½ºÆ® ¶Ç´Â µ¿¿µ»ó µî ¿ø·¡ÀÇ ÇнÀ µ¥ÀÌÅÍ¿Í À¯»çÇÑ Æ¯¼ºÀ» °¡Áø »õ·Î¿î ÄÁÅÙÃ÷¸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.
Á¦³×·¹ÀÌÆ¼ºê AI´Â ÄÁÅÙÃ÷¿Í µ¥ÀÌÅ͸¦ ´Ü¼øÈ÷ ó¸®ÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó »ý¼ºÇÏ´Â µ¥ ÁßÁ¡À» µÐ ÀΰøÁö´ÉÀÇ ÇÏÀ§ ÁýÇÕÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ À¯ÇüÀÇ AI´Â ÀÚ¿¬¾î ó¸®, À̹ÌÁö ¹× µ¿¿µ»ó »ý¼º, À½¾Ç ¹× ¿¹¼ú âÀÛ µî ´Ù¾çÇÑ ¿ëµµ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¦³×·¹ÀÌÆ¼ºê AI´Â Á¾Á¾ µö·¯´× ±â¼úÀ» ±â¹ÝÀ¸·Î Çϸç, ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅÍ¿¡ ´ëÇØ ´ë±Ô¸ð ½Å°æ¸ÁÀ» ÇнÀ½ÃÄÑ ¿ø·¡ÀÇ µ¥ÀÌÅÍ¿Í ½ºÅ¸Àϰú Çü½ÄÀÌ À¯»çÇÑ »õ·Î¿î ÄÁÅÙÃ÷¸¦ »ý¼ºÇÕ´Ï´Ù. ¿¹¸¦ µé¾î »ý¼ºÀû ¾ð¾î ¸ðµ¨Àº ´ë±Ô¸ð ÅØ½ºÆ® µ¥ÀÌÅÍ ÄÚÆÛ½º¿¡¼ ÇнÀµÇ¾î ¿ø·¡ÀÇ ÅØ½ºÆ®¿Í Åæ°ú ±¸Á¶°¡ À¯»çÇÑ »õ·Î¿î ¹®ÀåÀ̳ª ´Ü¶ôÀ» »ý¼ºÇÏ´Â µ¥ »ç¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. Á¦³×·¹ÀÌÆ¼ºê AIÀÇ °¡Àå À¯¸íÇÑ ¿¹ Áß Çϳª´Â GPT-3 ¾ð¾î ¸ðµ¨·Î, ´Ù¾çÇÑ ÁÖÁ¦¿Í ½ºÅ¸ÀÏ¿¡ °ÉÃÄ ³î¶øµµ·Ï »ç½ÇÀûÀ̰í Àϰü¼º ÀÖ´Â ÅØ½ºÆ®¸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ¿¹·Î´Â ÅØ½ºÆ® ÇÁ·ÒÇÁÆ®¸¦ ±â¹ÝÀ¸·Î »ç½ÇÀûÀÎ À̹ÌÁö¸¦ »ý¼ºÇÒ ¼ö ÀÖ´Â DALL-E À̹ÌÁö »ý¼º ¸ðµ¨°ú ´Ù¾çÇÑ ½ºÅ¸ÀÏÀÇ ¿À¸®Áö³Î °îÀ» ÀÛ°îÇÒ ¼ö ÀÖ´Â MuseNet À½¾Ç »ý¼º ¸ðµ¨ µîÀÌ ÀÖ½À´Ï´Ù. Á¦³Ê·¹ÀÌÆ¼ºê AI´Â ÇÕ¼º ÇнÀ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ°í ½ÇÁ¦ ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹À̼ÇÇÏ¿© ÀÚÀ² ½Ã½ºÅÛ ¹× ·Îº¿ °³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷, µå·Ð, ·Îº¿ °øÇÐ ¿ëµµ¿¡¼ ÀνÄ, Á¦¾î ¹× ÀÇ»ç °áÁ¤À» À§ÇÑ ¸ðµ¨À» ÈÆ·ÃÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.
Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀº ÀΰøÁö´É, ¸Ó½Å·¯´×, µö·¯´× ±â¼úÀÇ ¹ßÀüÀ¸·Î ÃÖ±Ù ¼ö³â°£ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå¿¡´Â Á¦³×·¹ÀÌÆ¼ºê AI ±â¼úÀ» Ȱ¿ëÇÏ¿© »õ·Î¿î ÄÁÅÙÃ÷¸¦ »ý¼ºÇϰí, âÀÇÀûÀÎ ÇÁ·Î¼¼½º¸¦ °³¼±Çϰí, »ç¿ëÀÚ °æÇèÀ» Çâ»ó½ÃŰ´Â ´Ù¾çÇÑ »ê¾÷°ú ¿ëµµÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
½ÃÀå ±Ô¸ð | 306¾ï 7,000¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 3,034¾ï 1,000¸¸ ´Þ·¯ |
CAGR 2023-2028 | 45.33% |
±Þ¼ºÀå ºÎ¹® | ÇコÄɾî |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
ÃÖ±Ù ¼ö³â°£ ±â¾÷°ú °³ÀÎÀÌ ÄÁÅÙÃ÷ Á¦ÀÛÀ» ÀÚµ¿ÈÇϰí ÀΰǺñ¸¦ Àý°¨Çϱâ À§ÇØ Á¦³Ê·¹ÀÌÆ¼ºê AI ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ±¤°í, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ÀÌÄ¿¸Ó½º, °ÔÀÓ µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ´Ù¾çÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¦³Ê·¹ÀÌÆ¼ºê AI ½ÃÀå¿¡´Â ±âÁ¸ ±â¾÷°ú Çõ½ÅÀûÀÎ ½ºÅ¸Æ®¾÷ÀÌ ¸ðµÎ ÁøÃâÇØ ÀÖ½À´Ï´Ù. ±¸±Û, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, IBM, ¿£ºñµð¾Æ¿Í ¾îµµºñ µî ÁÖ¿ä ±â¼ú ±â¾÷Àº Á¦³Ê·¹ÀÌÆ¼ºê AI ¿¬±¸¿¡ ÅõÀÚÇϰí, ±× äÅÃÀ» ÃËÁøÇϱâ À§ÇÑ Ç÷§Æû, Åø, ÇÁ·¹ÀÓ¿öÅ©¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ¯Á¤ Á¦³Ê·¹ÀÌÆ¼ºê AI ¿ëµµ¿¡ ÃÊÁ¡À» ¸ÂÃß°í »õ·Î¿î ÀÌ¿ë »ç·Ê¸¦ ¸ð»öÇÏ¸ç °¡´É¼ºÀÇ ÇѰ踦 ³ÐÇô°¡°í ÀÖ´Â ½Å»ý ±â¾÷µµ ¸¹ÀÌ ÀÖ½À´Ï´Ù.
»õ·Î¿î ±â¼ú ¿ëµµÀÇ µîÀåÀ¸·Î ¼¼°è Á¦³Ê·¹ÀÌÆ¼ºê AI ½ÃÀåÀÇ ¼ºÀåÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. µö·¯´×, ÀÚ¿¬¾î ó¸®(NLP), ÄÄÇ»ÅÍ ºñÀü, ½Å°æ¸Á°ú °°Àº ±â¼úÀÇ ¹ßÀüÀº º¸´Ù Á¤±³ÇÑ Á¦³×·¹ÀÌÆ¼ºê AI ½Ã½ºÅÛ °³¹ßÀÇ ±æÀ» ¿¾îÁÖ°í ÀÖ½À´Ï´Ù.
»ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ¿öÅ©Ç÷ο츦 Çö´ëÈÇÏ·Á´Â ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ Á¦³Ê·¹ÀÌÆ¼ºê AI ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Á¦³Ê·¹ÀÌÆ¼ºê AI´Â ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© µ¶Ã¢ÀûÀÎ ÄÁÅÙÃ÷¿Í µðÀÚÀÎÀ» »ý¼ºÇÏ´Â ÀΰøÁö´ÉÀÇ ÇÏÀ§ ÁýÇÕÀ» ¸»ÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ±âÁ¸¿¡ »ç¶÷ÀÌ ¼öÇàÇÏ´ø âÀÇÀûÀÎ ÀÛ¾÷À» Æ÷ÇÔÇÏ¿© ¾÷¹«ÀÇ ´Ù¾çÇÑ Ãø¸éÀ» ÀÚµ¿ÈÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.
Á¦³×·¹ÀÌÆ¼ºê AIÀÇ ÁÖ¿ä ÀåÁ¡ Áß Çϳª´Â ºñÁî´Ï½º ¿öÅ©Ç÷ο츦 °£¼ÒÈÇÏ°í ¼öÀÛ¾÷À» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÈ´Ù´Â Á¡ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î ±×·¡ÇÈ µðÀÚÀÎ ºÐ¾ß¿¡¼´Â Á¦³Ê·¹ÀÌÆ¼ºê AI¸¦ »ç¿ëÇÏ¿© ·Î°í, À¥»çÀÌÆ® µðÀÚÀÎ ¹× ±âŸ ºê·£µù ÀÚ·áÀÇ Á¦ÀÛÀ» ÀÚµ¿ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷¿¡¼´Â Á¦³Ê·¹ÀÌÆ¼ºê AI¸¦ »ç¿ëÇÏ¿© Á¦Ç° ¼³°è¸¦ ÃÖÀûÈÇÏ°í »ý»ê °øÁ¤ÀÇ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀº ÀÚµ¿È¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ¾÷°è Àü¹ÝÀÇ ¿öÅ©Ç÷ο츦 Çö´ëÈÇÒ Çʿ伺¿¡ µû¶ó ÇâÈÄ ¼ö³â°£ Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿ä¾àÇÏÀÚ¸é, Á¦³×·¹ÀÌÆ¼ºê AI¿¡ ´ëÇÑ ¼ö¿ä´Â ±â¾÷ÀÌ ¿öÅ©Ç÷ο츦 Çö´ëÈÇϰí, ¼öÀÛ¾÷À» ÁÙÀ̰í, È¿À²¼ºÀ» ³ô¿©¾ß ÇÒ Çʿ伺¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, °¢ »ê¾÷ ºÐ¾ß¿¡¼ °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ÀÌ ±â¼úÀ» äÅÃÇÏ´Â ±â¾÷ÀÌ ´Ã¾î³ª¸é¼ Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀº ¸Ó½Å·¯´×, µö·¯´×, ½Å°æ¸Á µî ÀΰøÁö´É ±â¼úÀ» Ȱ¿ëÇØ À̹ÌÁö, µ¿¿µ»ó, ÅØ½ºÆ® µî »õ·Î¿î ÄÁÅÙÃ÷¸¦ »ý¼ºÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÌ ±â¼úÀº Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖÁö¸¸, ¼÷·ÃµÈ Àη ºÎÁ·°ú ³ôÀº µµÀÔ ºñ¿ë µî ¼ºÀåÀ» °¡·Î¸·´Â ¹®Á¦µµ ºÐ¸í Á¸ÀçÇÕ´Ï´Ù.
Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀÇ ¼ºÀåÀ» °¡·Î¸·´Â ÁÖ¿ä Àå¾Ö¹° Áß Çϳª´Â ¼÷·ÃµÈ Àη ºÎÁ·ÀÔ´Ï´Ù. Á¦³×·¹ÀÌÆ¼ºê AI ¸ðµ¨À» ±¸ÃàÇϱâ À§Çؼ´Â ¸Ó½Å·¯´×, µ¥ÀÌÅÍ °úÇÐ, ÄÄÇ»ÅÍ ÇÁ·Î±×·¡¹Ö°ú °°Àº ºÐ¾ßÀÇ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª ÇöÀç ÀÌ·¯ÇÑ ºÐ¾ßÀÇ ¼÷·ÃµÈ Àü¹®°¡°¡ ºÎÁ·ÇÏ¿© ±â¾÷Àº Á¦³×·¹ÀÌÆ¼ºê AI ¼Ö·ç¼ÇÀ» ±¸ÃàÇÏ°í ¹èÆ÷ÇÏ´Â µ¥ ÇÊ¿äÇÑ ÀηÂÀ» È®º¸ÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
¼÷·ÃµÈ ÀÎÀç ºÎÁ·°ú ´õºÒ¾î ¼¼°è Á¦³Ê·¹ÀÌÆ¼ºê AI ½ÃÀåÀÌ Á÷¸éÇÑ ¶Ç ´Ù¸¥ °úÁ¦´Â ³ôÀº µµÀÔ ºñ¿ëÀÔ´Ï´Ù. Á¦³×·¹ÀÌÆ¼ºê AI ¸ðµ¨À» ±¸ÃàÇÏ°í µµÀÔÇÏ´Â °ÍÀº Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ÈÆ·Ã µ¥ÀÌÅÍ¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÊ¿ä·Î ÇÏ´Â º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â °úÁ¤ÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ ¿¹»êÀÌ ÇÑÁ¤µÈ Áß¼Ò±â¾÷ÀÌ Á¦³Ê·¹ÀÌÆ¼ºê AI¸¦ ½ÃÀÛÇÏ´Â °ÍÀÌ ¾î·Á¿ö Àüü ½ÃÀåÀÇ ¼ºÀåÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ¹®Á¦¿¡µµ ºÒ±¸Çϰí Á¦³Ê·¹ÀÌÆ¼ºê AI ½ÃÀåÀº °è¼Ó ¼ºÀåÇϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¹®Á¦µéÀ» ÇØ°áÇϱâ À§ÇÑ ³ë·Âµµ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀÌ ºÐ¾ßÀÇ ¼÷·ÃµÈ Àü¹®°¡ ºÎÁ·À» ÇØ°áÇϱâ À§ÇÑ ±³À° ¹× ÈÆ·Ã ÇÁ·Î±×·¥À» Á¦°øÇϱâ À§ÇÑ ³ë·ÂÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀϺΠ±â¾÷Àº º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ Åø°ú Ç÷§ÆûÀ» °³¹ßÇÏ¿© Á¦³Ê·¹ÀÌÆ¼ºê AI ¸ðµ¨À» ±¸Ãà ¹× ¹èÆ÷Çϱâ À§ÇÑ ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù.
½ÃÀåÀÇ ÁÖ¿ä ±â¾÷¿¡´Â OpenAI, L.L.C., NVIDIA Corporation, Google LLC, Microsoft Corporation, Meta Platforms, Inc., Adobe Inc., Intel Corporation, International Business Machines Corp., Amazon Web Services, Inc., MOSTLY AI Inc. µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ ±â¾÷Àº ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ß, ÀÎÇÁ¶ó °ü¸®, Ŭ¶ó¿ìµå¡¤ÄÄÇ»ÆÃ, »çÀ̹ö º¸¾È, µ¥ÀÌÅÍ ºÐ¼® µîÀÇ Æø³ÐÀº ÄÄÆ÷³ÍÆ®¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù.
¼¼°èÀÇ Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀº °æÀïÀÌ Ä¡¿Çϰí, °¢»ç´Â Ç×»ó Àü¹® Áö½Ä, ÄÄÆ÷³ÍÆ® ǰÁú, ºñ¿ë È¿°ú·Î Â÷º°È¸¦ µµ¸ðÇϰí ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó È®´ëÇÏ´Â °¡¿îµ¥ ¼¼°èÀÇ Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀº ÇâÈÄ ¼ö³âÀ¸·Î ÇÑÃþ ´õ È®´ëÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°èÀÇ Á¦³×·¹ÀÌÆ¼ºê AI ½ÃÀåÀ» ¾Æ·¡ »ó¼úÇÑ ¾÷°è µ¿Çâ°ú ÇÔ²² ÀÌÇÏ Ä«Å×°í¸®·Î ºÐ·ùÇϰí ÀÖ½À´Ï´Ù. :
(ÁÖ : ±â¾÷ ¸®½ºÆ®´Â °í°´ ¿ä±¸¿¡ µû¶ó Ä¿½ºÅ͸¶ÀÌÁî °¡´ÉÇÕ´Ï´Ù.)
KSA 23.11.06Global Generative AI Market is expected to register a faster CAGR during the forecast period. Generative AI, also known as generative adversarial networks (GANs), refers to a class of artificial intelligence algorithms and models that are designed to generate new data samples that resemble a given training dataset. These models learn from a dataset and can generate new content, such as images, music, text, or even video, that has similar characteristics to the original training data.
Generative AI refers to a subset of artificial intelligence that focuses on generating content or data, rather than simply processing it. This type of AI is used in a variety of applications, including natural language processing, image and video generation, and music and art creation. Generative AI is often based on deep learning techniques, which involve training large neural networks on vast amounts of data to generate new content that is similar in style or form to the original data. For example, a generative language model might be trained on a large corpus of text data, and then used to generate new sentences or paragraphs that are similar in tone and structure to the original text. One of the most famous examples of generative AI is the GPT-3 language model, which can generate incredibly realistic and coherent text across a wide range of topics and styles. Other examples include the DALL-E image generation model, which can create realistic images based on textual prompts, and the MuseNet music generation model, which can compose original pieces of music in a variety of styles. Generative AI plays a role in developing autonomous systems and robots by generating synthetic training data and simulating real-world scenarios. It aids in training models for perception, control, and decision-making in autonomous vehicles, drones, and robotics applications.
The generative AI market has been experiencing significant growth in recent years, driven by advancements in artificial intelligence, machine learning, and deep learning technologies. The market encompasses a wide range of industries and applications that leverage generative AI techniques to generate new content, improve creative processes, and enhance user experiences.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 30.67 Billion |
Market Size 2028 | USD 303.41 Billion |
CAGR 2023-2028 | 45.33% |
Fastest Growing Segment | Healthcare |
Largest Market | North America |
In recent years, the generative AI market has seen significant growth as businesses and individuals look to automate content creation and reduce costs associated with human labor. Technology has numerous applications across various industries, including advertising, entertainment, e-commerce, and gaming. The generative AI market is inhabited by both established companies and innovative startups. Major technology players like Google, Microsoft, IBM, NVIDIA, and Adobe are investing in generative AI research and developing platforms, tools, and frameworks to facilitate its adoption. Additionally, there are numerous startups focused on specific generative AI applications, exploring new use cases and pushing the boundaries of what is possible.
The rising applications of novel technologies are indeed driving the growth of the global generative AI market. The advancements in technologies such as deep learning, natural language processing (NLP), computer vision, and neural networks have paved the way for the development of more sophisticated generative AI systems.
One of the main applications of generative AI is natural language generation, which is being used to automate content creation for a variety of industries, such as journalism, e-commerce, and marketing. For example, generative AI systems can be used to write product descriptions, news articles, and social media posts.
Another application of generative AI is image generation, which is being used in the fields of fashion, interior design, and architecture. Generative AI systems can be used to create unique designs and generate new product ideas.
Moreover, the entertainment industry is also leveraging the benefits of generative AI for applications such as video creation and music composition. These technologies are being used to automate the content creation process, reduce costs, and improve efficiency.
As more industries recognize the potential of generative AI and invest in its development, the market is expected to grow significantly in the coming years.
The growing demand to modernize workflows across industries is driving the generative AI market. Generative AI refers to a subset of artificial intelligence that involves the use of algorithms to create original content or designs. This technology can help automate various aspects of business operations, including creative tasks that were previously done by humans.
One key benefit of generative AI is that it can help businesses streamline their workflow and reduce manual labor. For example, in the field of graphic design, generative AI can be used to automate the creation of logos, website designs, and other branding materials. In manufacturing, generative AI can be used to optimize product design and improve the efficiency of the production process.
The generative AI market is expected to grow significantly in the coming years, driven by the increasing demand for automation and the need to modernize workflows across industries.
In summary, the demand for generative AI is being driven by the need for businesses to modernize their workflows, reduce manual labor, and increase efficiency. As a result, there is expected to be continued growth in the generative AI market as more businesses adopt this technology to stay competitive in their respective industries.
The Generative AI market refers to the use of artificial intelligence techniques such as machine learning, deep learning, and neural networks to generate new content such as images, videos, and text. While there is great potential for this technology, there are indeed some challenges that could hamper its growth, including the lack of skilled workforce and high implementation costs.
One of the primary obstacles to the growth of the Generative AI market is the lack of skilled workforce. Building Generative AI models requires a significant amount of expertise in areas such as machine learning, data science, and computer programming. However, there is currently a shortage of skilled professionals in these areas, which means that companies may struggle to find the talent they need to build and deploy Generative AI solutions.
In addition to the lack of skilled workforce, another challenge facing the Global Generative AI market is the high implementation costs. Building and deploying Generative AI models can be a complex and time-consuming process that requires significant investments in hardware, software, and training data. This can make it difficult for smaller companies with limited budgets to get started with Generative AI, which could limit the overall growth of the market.
Despite these challenges, the Generative AI market is still growing, and there are efforts underway to address these issues. For example, there are initiatives aimed at providing training and education programs to help address the shortage of skilled professionals in the field. Additionally, there are companies that are working to develop more efficient and cost-effective tools and platforms for building and deploying Generative AI models.
Based on Component, the market is segmented into Software, and Services. Based on Technology, the market is segmented into Generative Adversarial Networks (GANs), Transformers, Variational Auto-encoders, and Diffusion Networks. Based on End-Use, the market is segmented into Media & Entertainment, BFSI, IT & Telecommunication, Healthcare, Automotive & Transportation, Others.
Some of the key players in the market include OpenAI, L.L.C., NVIDIA Corporation, Google LLC, Microsoft Corporation, Meta Platforms, Inc, Adobe Inc., Intel Corporation, International Business Machines Corp., Amazon Web Services, Inc., MOSTLY AI Inc. These companies offer a wide range of components, including application development, infrastructure management, cloud computing, cybersecurity, and data analytics.
The Global Generative AI market is highly competitive, with companies constantly seeking to differentiate themselves through their expertise, quality of components, and cost-effectiveness. As the demand for innovative products continues to grow, the Global Generative AI market is expected to expand further in the coming years.
In this report, the global Generative AI market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
(Note: The companies list can be customized based on the client requirements.)