![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1370817
ºÎ½º¹Ù º¸È£ ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) - À¯Çüº°(Àú, Áß, °í), ÀÓÇÇ´ø½ºº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°, °æÀïBusbar Protection Market- Global Industry Size, Share, Trends, Opportunities, and Forecast, 2018-2028 Segmented By Type (Low, Medium, and High ), By Impedance, By End User, By Region and Competition |
¼¼°èÀÇ ºÎ½º¹Ù º¸È£ ½ÃÀåÀº Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ ÅõÀÚÀÇ Áõ°¡¿Í ³ëÈÄÈÇÑ ¼Û¹èÀü ÀÎÇÁ¶óÀÇ ±³È¯À» ÇâÇÑ Á¤ºÎ ±¸»óÀÇ Áõ°¡¿¡ ÀÇÇØ ¿¹Ãø ±â°£ Áß ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
ºÎ½º¹Ù´Â ¹èÀü¹Ý, º¯Àü¼Ò, ¹èÅ͸® ¹ðÅ©¿¡¼ Àü±â¸¦ Åë°ú½ÃŰ´Â ±¸¸®, Ȳµ¿, ¾Ë·ç¹Ì´½ ½ºÆ®¸³ ¶Ç´Â ¹Ù¸¦ ¸»ÇÕ´Ï´Ù. ÁÖ·Î Àü·Â¸Á¿¡¼ Å« Àü·ù¸¦ Àü´ÞÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. »ó ºÐ¸® ´Ü¶ô º¸È£ ¹× Á¦¾î¸¦ À§ÇØ ¼³°èµÇ¾ú½À´Ï´Ù. ºÎ½º¹Ù º¸È£ °èÀü±â´Â À¯Æ¿¸®Æ¼ º¯Àü¼Ò ¹× »ê¾÷¿ë Àü·Â ½Ã½ºÅÛ ³»ÀÇ °í ÀÓÇÇ´ø½º ±â¹Ý ¿ëµµ¿¡ »ç¿ëÇϱâÀ§ÇÑ °ÍÀÔ´Ï´Ù.
¶ÇÇÑ ºÎ½º¹Ù ±â¼úÀÇ ¹ßÀü°ú ½ÅÈï °æÁ¦±¹¿¡¼ °í¾ÐÁ÷·ù¼ÛÀü(HVDC) ±â¼úÀÇ Ã¤Åà Ȯ´ë´Â ¿¹Ãø ±â°£ Áß ºÎ½º¹Ù º¸È£ ½ÃÀåÀÇ ¼¼°è ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù. ±×·¯³ª Àü·Â¸Á È®Àå ¹× °³º¸¼ö ÇÁ·ÎÁ§Æ®ÀÇ Áö¿¬°ú ÁÖ¿ä Àü·Â¸Á¿¡ ºÎ½º¹Ù º¸È£ »ç¿ë°ú °ü·ÃµÈ ³ôÀº ºñ¿ëÀº ¼¼°è ºÎ½º¹Ù º¸È£ ½ÃÀåÀÇ ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
½ÃÀå ±Ô¸ð | 16¾ï ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 25¾ï 5,000¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 7.2% |
±Þ¼ºÀå ºÎ¹® | »ê¾÷¿ë |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
½º¸¶Æ® ±×¸®µå´Â ÃÖ±Ù ¼ö³â°£ °¡Àå Å« ±â¼ú Çõ½Å Áß ÇϳªÀÔ´Ï´Ù. ±âÁ¸ Àü·Â¸Á¿¡ ºñÇØ ½º¸¶Æ® ±×¸®µå´Â ÀÚµ¿È, °íµµ·Î ÅëÇյǰí, ±â¼ú ÁÖµµÀûÀ̸ç, Àü·Â ÀüÀÚ°øÇÐÀ» »ç¿ëÇÏ¿© Çö´ëȵǾî ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±×¸®µå´Â Àü·Â¸Á ¿î¿µ°ú ÇÔ²² Àü±â ³×Æ®¿öÅ©ÀÇ Çõ½Å¿¡ Å« ¿ªÇÒÀ»ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÎ½º¹Ù º¸È£ Àåºñ´Â °íÀü·ù ¹× ÀúÀü¾Ð ¹× ÁßÀü¾Ð ¹èÀü ¹× Á¦¾î Àåºñ·Î ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ »ê¾÷ ¹× »ó¾÷¿ë °Ç¹°ÀÇ ÁßÀü±â±â¿ë ÇÇ´õ ½Ã½ºÅÛ ¹× µµ±Ý ¼¿·Îµµ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ ¹ßÀü±â, ¸ðÅÍ, º¯¾Ð±â ¹× ¿øÀڷδ ºÎ½º¹Ù º¸È£°¡ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â Áß¿äÇÑ µµÃ¼ À¯Çü Áß ÀϺÎÀÔ´Ï´Ù.
Àü±âÀÚµ¿Â÷°¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÇöÀç ÀÚµ¿Â÷ ¸ðºô¸®Æ¼¸¦ Áö¼Ó°¡´ÉÇÑ ¿î¼Û ¼ö´ÜÀ¸·Î ÀüȯÇÏ·Á´Â °ÇÑ ÀÇÁö¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¾÷°è ¼±µÎ ±â¾÷Àº Àü±âÀÚµ¿Â÷ °³¹ß¿¡ ÀÚ±ÝÀ» Áö¿øÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù ¼ö³â°£ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ÇÏÀÌÅ×Å© ±â¾÷ °£ ±â¼úÀûÀ¸·Î °¡Àå Áøº¸µÈ Àü±âÀÚµ¿Â÷¸¦ °³¹ßÇϱâ À§ÇØ ¸¹Àº Á¦ÈÞ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀϹÝÀûÀ¸·Î ±â¾÷ Àü·«Àº ½Ã´ë¿¡ µû¶ó º¯ÈÇÏ°í »õ·Î¿î ±â¼úÀ» ÃßÁøÇϱ⠶§¹®¿¡ ½ÃÀåÀº Àü±âÀÚµ¿Â÷ äÅÃÀ» ÇâÇØ ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ³»¿¬±â°ü(ICE) ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº °íÀü¾Ð ÀÛµ¿ Àåºñ¸¦ žÀçÇÑ Àü±âÀÚµ¿Â÷¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ Æø¹ßÀûÀ¸·Î ¼ºÀåÇÔ¿¡ µû¶ó ¹èÅ͸® °ü·Ã »ç°í¸¦ ¹æÁöÇϱâ À§ÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ¿¡³ÊÁö ºÐ¹è ±â¼úÀ» ¼±ÅÃÇÏ´Â µ¥ ½ÅÁßÀ» ±âÇϰí ÀÖ½À´Ï´Ù.
Àü±âÀÚµ¿Â÷ ¹èÅ͸® ±â¼ú °³¹ß¿¡´Â Àü·Â ¿ë·® »ý»ê, ¼¿ »ý»ê, ¸ðµâ »ý»ê, ¸ðµâÀ» ¹èÅ͸® ÆÑ¿¡ Á¶¸³ÇÏ´Â °úÁ¤ÀÌ Æ÷ÇԵ˴ϴÙ. ÇöÀç ¼¼°è ±³Åë ¿À¿°À» ÁÙÀ̱â À§ÇØ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¹Á¦Ã»Á¤±³ÅëÀ§¿øÈ¸(ICCT)¿¡ µû¸£¸é ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº 2025³â±îÁö 1,300¸¸ ´ëÀÇ Àü±âÀÚµ¿Â÷ »ý»êÀ» ´Þ¼ºÇϱâ À§ÇØ 1,500¾ï ´Þ·¯ ÀÌ»óÀÇ ÅõÀÚ¸¦ ¹ßÇ¥ÇÏ¿´½À´Ï´Ù. ±âÁ¸ ÀÚµ¿Â÷¿¡¼ Àü±âÀÚµ¿Â÷·ÎÀÇ Àüȯ Ãß¼¼´Â ºÎ½º¹Ù º¸È£ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌó·³ ÀÚµ¿Â÷ »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¼ºÀå°ú Àü±âÀÚµ¿Â÷ »ý»ê¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ºÎ½º¹Ù º¸È£ ½ÃÀå ¼ºÀåÀÇ ±âȸ°¡ µÉ ¼ö ÀÖ½À´Ï´Ù.
ÀΰøÁö´É(AI)°ú »ç¹°ÀÎÅͳݰú °°Àº ±â¼úÀº ½ÃÀå »ýŰ迡 »õ·Î¿î ¼ºÀåÀÇ ±æÀ» ¿¾îÁÙ °ÍÀ¸·Î ¿¹»óµÇ¸ç, IoT ¾ÆÅ°ÅØÃ³´Â Àü·Â ÄÄÆ÷³ÍÆ®¿Í ÄÄÆ÷³ÍÆ®ÀÇ °íÀå µ¥ÀÌÅÍ ÀÌ·ÂÀ» Àß °ü¸®ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ AI´Â Àü·Â °ü¸® ÄÁ¹öÅÍ¿¡¼ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¹Ãø°ú ºÎǰÀÇ ±â´É ¸ð´ÏÅ͸µÀ» °³¼±ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¥ÀÌÅͺ£À̽º ±â¼úÀº µ¥ÀÌÅÍ °úÇÐ, ¸ÅĪ ÇнÀ ¹æ¹ýÀ» äÅÃÇÏ¿© Àåºñ ¹× ½Ã½ºÅÛ ÀÌ»óÀ» ½Äº°ÇÕ´Ï´Ù. ÀÌ ¾ÆÅ°ÅØÃ³´Â Àü·Â ¿ä±¸ »çÇ×À» °ü¸®ÇÏ¿© Àü·Â ¼Õ½ÇÀ» ÁÙÀÌ°í °ü·Ã ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ¾à 80-90%ÀÇ ½ºÀ§Äª ¼Õ½ÇÀ» Á¦°ÅÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌó·³ Àü·Â ¸ðµâ¿¡¼ AI¿Í IoTÀÇ ÀÌ·¯ÇÑ ÀÌÁ¡Àº ºÎ½º¹Ù º¸È£ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀº ȼ®¿¬·áÀÇ ¿¬¼Ò·Î ÀÎÇÑ ÀÌ»êÈź¼Ò(CO2) ¹èÃâ·Î ÀÎÇÑ È¯°æÀû ¾Ç¿µÇâ¿¡ ´ëÀÀÇϱâ À§ÇØ ÇÊ¿äÇÕ´Ï´Ù. ¿¬·áÀüÁö, dz·Â Åͺó ¶Ç´Â žçÀüÁöÆÇ¿¡ »ç¿ëµÇ´Â Á÷·ù(DC) ¿¡³ÊÁö´Â ÀúÀδöÅϽº ºÎ½º¹Ù º¸È£ Àåºñ¸¦ ÅëÇØ Àý¿¬ °ÔÀÌÆ®Çü ¹ÙÀÌÆú¶ó Æ®·£Áö½ºÅÍ(IGBT)¿Í Ä¿ÆÐ½ÃÅÍ È¸·Î¿¡ Á÷Á¢ µé¾î°¡ ¾ÈÁ¤ÀûÀÎ Àü·ÂÀ» °ø±ÞÇÕ´Ï´Ù. ºÎ½º¹Ù º¸È£ ¼³°è´Â Ź¿ùÇÑ Æ÷Àå È¿°ú¸¦ Á¦°øÇÕ´Ï´Ù. Àüü ½Ã½ºÅÛÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í ÃÖÀûÀÇ Àü±âÀû ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ IGBT, Ä¿ÆÐ½ÃÅÍ, I/O(ÀÔÃâ·Â) ¹× ¸ð´ÏÅ͸µ ÀåºñÀÇ ¸ðµç Àü±âÀû ¿¬°á ÁöÁ¡Àº ÇϳªÀÇ ±ú²ýÇÑ ºÎ½º¹Ù¿¡ ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ÁÖ°Å¿ë ¿ëµµ¿¡ »ç¿ëµÇ´Â ºÎ½º¹Ù º¸È£ ¹èÅ͸®ÀÇ ³·Àº ¹èÃâ·®µµ ÇâÈÄ ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. "±¹Á¦ ¿¡³ÊÁö±â±¸"¿¡ µû¸£¸é ž籤¹ßÀü ½Ã½ºÅÛÀº dz·Â, ¼ö·Â, ¹ÙÀÌ¿À¿¬·á¿Í ÇÔ²² Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ ¼¼°è ¹ßÀü·®ÀÇ ¾à 70%¸¦ Â÷ÁöÇÕ´Ï´Ù. ÁÖ¿ä Àç»ý ¿¡³ÊÁö¿øÀº ¼ö·Â ¹ßÀü(21%), dz·Â 16%, ž籤 6%, ¹ÙÀÌ¿À¿¬·á 3% ¼øÀ¸·Î, 2018-2028³âÀÇ ¿¹Ãø ±â°£ Áß Åë½Å, Ç×°ø¿ìÁÖ, ¿î¼Û µî ´Ù¾çÇÑ »ê¾÷¿¡¼ ¹èÅ͸®¿Í Àü·ÂÀÇ »ç¿ë Áõ°¡·Î ½ÃÀå È®´ë°¡ ÃËÁøµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
ºÎ½º¹Ù º¸È£´Â ÁÖ·Î Àü·Â, »ê¾÷ ¹× ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ±×·¯³ª Àü·Â ½Ã½ºÅÛÀÌ ¼ÒÇüÈ, °í¼ÓÈ ¹× º¹ÀâÇØÁü¿¡ µû¶ó ¿ ¹× Àü·Â Àü¼Û ¼Õ½Ç·Î À̾îÁö´Â ºÎ½º¹Ù¸¦ È¿À²ÀûÀ¸·Î ÅëÇÕÇϰí Àü¼± ¹× Ä¿ÆÐ½ÃÅÍ¿¡ ¼³Ä¡µÈ Ç÷¹ÀÌÆ®ÀÇ Ç°ÁúÀ» À¯ÁöÇÏ´Â µîÀÇ °úÁ¦´Â Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. µû¶ó¼ ºÎ½º¹Ù¿¡ º¼Æ® ü°á, ¿ëÁ¢, Ŭ·¥ÇÁ ¿¬°á°ú °°Àº ÀüÅëÀûÀÎ ºÎ½º¹Ù ¼³Ä¡ ¹æ¹ýÀº ´ë±Ô¸ð Àü·Â ¿ëµµ¿¡¼ ¹Ýµå½Ã ½ÇÇö °¡´ÉÇÑ °ÍÀº ¾Æ´Õ´Ï´Ù. ¶ÇÇÑ ¿¬±¸°³¹ß Ȱµ¿ÀÇ ºÎÁ·°ú ¿øÀÚÀç °¡°Ý º¯µ¿µµ ½ÃÀå ¼ºÀåÀ» ÀúÇØ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ³·Àº ½ºÆ®·¹ÀÌ ÀδöÅϽº ºÎ½º¹Ù º¸È£°¡ ¿À¹ö ½´Æ® Àü¾Ð°ú ÀüÀڱ⠰£¼·À» È¿°úÀûÀ¸·Î ¾ïÁ¦ ÇÒ ¼ö ÀÖµµ·Ï ºÎ½º¹Ù º¸È£¸¦À§ÇÑ º¹ÀâÇÑ ±¸µ¿ ȸ·Î¿Í Á¦¾î Àü·«À» ¼³°èÇØ¾ßÇÕ´Ï´Ù. À§»ó ºÎ½º¹Ù¿Í ¹ö½º ´öÆ® ½Ã½ºÅÛ ÀÎŬ·ÎÀú »çÀÌ¿¡´Â ³ôÀº ¼öÁØÀÇ ÀüÀڱ⠰áÇÕÀÌ Á¸ÀçÇÕ´Ï´Ù.
º´·Ä µµÃ¼ ½Ã½ºÅÛ¿¡¼ Ç¥ÇÇ È¿°ú¿Í ±ÙÁ¢ È¿°ú´Â ÀڽŰú ¼·ÎÀÇ ÀÓÇÇ´ø½º¿¡ ¿µÇâÀ» ¹ÌÃÄ Àü·ù ¹Ðµµ°¡ °í¸£Áö ¾Ê°Ô ºÐÆ÷ÇÏ´Â ¿øÀÎÀÌ µË´Ï´Ù. Ç¥ÇÇ È¿°ú¿Í ±ÙÁ¢ È¿°ú·Î ÀÎÇØ ºÎ½º¹Ù º¸È£ ÀúÇ×°ú ÀδöÅϽº°¡ Áõ°¡Çϰųª °¨¼Ò ÇÒ ¼ö ÀÖ½À´Ï´Ù. ´ÜÀÏ Àüµµ¼º ºÎ½º¹Ù¿¡¼ ´ÙÃþ ºÎ½º¹Ù·Î ÀüȯÇÏ´Â °ÍÀÌ ´õ ºñ½Î°í º¹ÀâÇÏ´Ù´Â °ÍÀº ÀǽÉÀÇ ¿©Áö°¡ ¾ø½À´Ï´Ù. ±×·¯³ª ´ÙÃþ ¼³°è ¹× ¾Ë·ç¹Ì´½°úÀÇ °áÇÕ°ú °ü·ÃÇÏ¿© »ý¼ºµÇ´Â Áß¿äÇÑ ¼³°è °í·Á »çÇ× Áß Çϳª´Â ºÎ½º¹Ù µµÃ¼ °£ÀÇ Àü±âÀû Àý¿¬À» È®ÀÎÇϱâÀ§ÇÑ ³ôÀº ÀüÀ§ Å×½ºÆ® ÀÎ ÇÏÀÌÆÌ Å×½ºÆ®ÀÔ´Ï´Ù. ºÎ½º¹Ù º¸È£¿¡ »ç¿ëµÇ´Â µµÃ¼´Â Áú·® °¨¼Ò Ãø¸é¿¡¼ ÀÌÁ¡ÀÌ ÀÖÁö¸¸, ±× ´ë°¡·Î ¼Õ½ÇÀÌ Ä¿Áý´Ï´Ù. µû¶ó¼ ¿¹Ãø ±â°£ Áß ºÎ½º¹Ù º¸È£ÀÇ º¹À⼺Àº ½ÃÀå È®´ë¸¦ ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¼¼°èÀÇ ºÎ½º¹Ù º¸È£ ½ÃÀåÀ» ÀÌÇÏ Ä«Å×°í¸®·Î ºÐ·ùÇϰí, ¾÷°è µ¿Çâ¿¡ ´ëÇØ¼µµ »ó¼úÇϰí ÀÖ½À´Ï´Ù. :
(ÁÖ : ±â¾÷ ¸®½ºÆ®´Â °í°´ ¿ä¸Á¿¡ µû¶ó Ä¿½ºÅ͸¶ÀÌÁî °¡´ÉÇÕ´Ï´Ù.)
KSA 23.11.08Global busbar protection market is expected to grow during the forecast period, owing to the increasing investments into renewable energy, coupled with the increasing government initiatives for the replacement of aging transmissions & distribution infrastructure.
A busbar is a strip or bar of copper, brass, or aluminium that conducts electricity within a switchboard, a substation, or a battery bank. It is primarily used to conduct a substantial current of electricity in the electrical grid. It is designed for phase-segregated short-circuit protection and control. The busbar protection relay is intended for use in the high-impedance-based applications within utility substations and industrial power systems.
In addition, the advancements in busbar technologies and increasing adoption of high voltage direct current (HVDC) technologies across developed economies are another essential factor expected to boost the growth of the global busbar protection market over the forecast period. However, the delays in electric grid expansion and refurbishing projects, coupled with the high costs associated with use of busbar protection for major electrical grids might hamper the growth of the global busbar protection market.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 1.6 Billion |
Market Size 2028 | USD 2.55 Billion |
CAGR 2023-2028 | 7.2% |
Fastest Growing Segment | Industrial |
Largest Market | North America |
The smart grid has become one of the biggest technological revolutions in the past years. Compared to the conventional grid, the smart grid is automated, highly integrated, technology-driven, and modernized due to the usage of power electronics. The smart grid is expected to play a major role in transforming the electrical networks, along with power system operations. Busbar protections are widely used as the distribution and control equipment of high current and low-medium voltage. They are also used as a feeder systems and plating cells for heavy electric uses in various industries and commercial buildings. Also, generators, motors, transformers, and reactors are some of the significant types of conductors where busbar protection are commonly used.
Smart grids facilitate the quicker restoration of electricity after power disturbances and help reduce management and operational costs of utilities; this ultimately lowers the power costs for consumers. Moreover, various initiatives taken to advance the technological landscape of the energy sector are also likely to drive the market growth during the forecast period. The U.S. electrical system announced its "Grid 2030" vision in collaboration with the electric utility industry, equipment suppliers, IT operators, federal and state governments, advocacy organizations, colleges, and national laboratories of several countries. This vision encompasses the following aspects related to the power sector: generation, transmission, delivery, storage, and final use. It describes the fundamental problems and obstacles in grid modernization, followed by providing recommendations for policymakers and industries to assist them in development of the electric distribution infrastructure of the future, such as busbar protection.
To reduce electric vehicle's environmental effect, automakers are now highly motivated to turn vehicle mobility into a sustainable source of transportation. The top automobile industry firms are contemplating their efforts on funding the creation of electric vehicles. There have been significant partnerships in recent years between automakers and tech firms to create technologically cutting-edge electric vehicles. The market is turning towards EVs adoption as corporate strategies generally change with time to promote novel technology. This has caused ICE (Internal Combustion Engine Vehicle) car makers to move their attention towards EVs with a high voltage operational device. Automobile manufacturers are becoming more cautious when choosing energy distribution technologies because of the automobile industry's explosive expansion to prevent battery-related accidents.
The development of electric car battery technology includes power capacity production, cell production, module production, and assembly of modules into the battery pack. At present, the demand for an energy-efficient electric vehicle is constantly increasing, so as to reduce transportation pollutions across the globe. Also, as stated by the International Council on Clean Transportation (ICCT), auto manufacturers have announced more than USD 150 billion investment to achieve 13 million electric vehicle production by 2025. The shifting trend of vehicles from old conventional-based automotive vehicles to electric vehicles is expected to drive the growth of the busbar protection market. Thus, the rapid growth in the automotive industry and increasing investment in the production of electric vehicles can prove to be opportunistic for the growth of busbar protection market.
The technologies such as artificial intelligence (AI) and the internet of things are expected to bring new growth avenues in the market's ecosystem. IoT architecture is projected to manage the power components and data history of component failure firmly. Additionally, in power management converters, AI is expected to improve dependable predictions and monitoring the function of the components. The data-driven technique employs data science, matching learning methods, and identifies anomalies in devices and systems. This architecture is expected to reduce power losses by managing power requirements, which in turn decreases the costs associated with it. These technologies are expected to eliminate around 80% to 90% switching losses. Thus, these benefits of AI and IoT in the power module are expected to fuel the growth of the busbar protection market.
A sustainable energy system is necessary to tackle the negative environmental impacts caused by burning fossil fuels in the form of CO2 petrol emissions. Whether used in fuel cells, wind turbines, or solar panels, direct current (DC) energy enters an insulated-gate bipolar transistor (IGBT) and capacitor circuit directly through low-inductance busbar safeguards, supplying reliable amount of power. The busbar protection's design demonstrates exceptional packing effectiveness. To increase overall system dependability and guarantee optimal electrical performance, all the electrical connection points for the IGBTs, capacitors, I/O (Input/Output), and monitoring devices are designed in one clean busbar. Low emissions from busbar protection batteries used in various residential applications, might also fuel market expansion in the future. According to the "International Energy Agency," solar PV system, along with wind, hydropower, and biofuels, account for approximately 70% of the world's electricity generation in the renewable energy system. The main renewable energy source is hydropower (21%), which is followed by wind at 16%, solar photovoltaic at 6%, and biofuel at 3%. During the anticipated period of 2018-2028, the increased usage of batteries and electricity from various industries, such as telecommunications, aerospace, and transportation, is propelling the market's expansion.
Busbar protection plays a vital role, mainly in the power, industrial, and automotive sectors. However, as it leads to loss of heat and transmission, the challenges such as, efficiently integrating busbars, maintaining quality of electrical wire and plates installed at the capacitor have become increasingly relevant as power systems have become smaller, faster, and more complex to deal with. As such, conventional methods for busbar attachment, such as bolting, welding, or clamping connections to busbars, are not always feasible in larger power applications. Additionally, the lack of R&D activities and the volatile pricing of raw materials might also hamper the market growth. Furthermore, there is a need to design complex drive circuits and control strategies for the busbar protection so that the low stray inductance busbar protection can effectively restrain the over-shoot voltage and electromagnetic interference. There is a sophisticated electromagnetic coupling between phase busbars and the bus duct system enclosure.
In a parallel conductor system, skin effect and proximity effect, which have an impact on their own and one another's impedances, are to blame for the unequal distribution of current density. The busbar protection resistance and inductance may both rise and decrease because of the effect on the skin and the closeness. It is without a doubt more expensive and also complicated to go from a single conductive to a multilayer busbar. However, one of the key design considerations to be created around coupling multilayer designs with aluminium is the hi-pot test, which is a high-potential test to confirm the electrical insulation between the busbar conductors. The conductor used in busbar protection can benefit in terms of mass reduction but at the expense of higher losses. Therefore, over the projection period, the busbar protection's complexity may restrain market expansion.
The global busbar protection market is segmented into type, impedance, end user, company, and region. Based on type, the market is segmented into low (up to 125 A), medium (126 A to 800 A), and high (above 801 A). Based on impedance, the market is segmented into high impedance and low impedance. Based on end user, the market is segmented into utilities, industrial, residential, others. Based on region, the market is segmented into North America, Asia-Pacific, Europe, South America, and Middle East & Africa.
Some of the major market players in the global busbar protection market are Hitachi Energy Ltd., ABB Ltd., Schneider Electric Global, GE Grid Solution, Siemens AG, Mitsubishi Electric Corporation, NR Electric Co., Ltd., Toshiba Energy Systems & Solutions Corporation, Eaton Corporation, and ZIV Automation.
In this report, the global busbar protection market has been segmented into following categories, in addition to the industry trends which have also been detailed below:
(Note: The companies list can be customized based on the client requirements)