![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1371494
Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü ½ÃÀå : °Ë»ç À¯Çüº°, °¨¿° À¯Çüº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº°, °æÀï ¿¹Ãø ¹× ±âȸ(2018-2028³â)Chlamydia Infection Diagnostics Market, By Test Type, By Type of Infections, By End User, By Region, By Competition Forecast & Opportunities, 2018-2028F. |
Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü(Chlamydia Infection Diagnostics) ½ÃÀåÀº 2022³â¿¡ 6¾ï 7,856¸¸ ´Þ·¯¿´À¸¸ç, 2028³â±îÁö CAGR 6.06%·Î ÃßÀÌÇÏ¸ç ¼ºÀå ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2028³â¿¡´Â 9¾ï 6,318¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¾î, ¿¹Ãø ±â°£ µ¿¾È ÇöÀúÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.
Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀº Ŭ¶ó¹Ìµð¾Æ Æ®¶óÄÚ¸¶Æ¼½º ¹ÚÅ׸®¾Æ¿¡ ÀÇÇØ ¹ß»ýÇÏ´Â Àü ¼¼°èÀûÀ¸·Î °¡Àå ³Î¸® ÆÛÁø ¼ºº´(STI) Áß ÇϳªÀÔ´Ï´Ù. Ä¡·áÇÏÁö ¾Ê°í ¹æÄ¡ÇÏ¸é °ñ¹Ý ¿°Áõ¼º Áúȯ, ºÒÀÓ, ´Ù¸¥ ¼ºº´¿¡ ´ëÇÑ °¨¼ö¼º Áõ°¡ µî ½É°¢ÇÑ °Ç°»óÀÇ ÇÕº´ÁõÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Ã±âÀûÀýÇϰí Á¤È®ÇÑ Áø´ÜÀº ÀÌ·¯ÇÑ ºÎÀÛ¿ëÀ» ¿¹¹æÇÏ´Â µ¥ ÁßÃßÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ °¨¿°Áõ Áø´Ü ½ÃÀåÀº ÃÖ±Ù ÁÖ¸ñÇÒ ¸¸ÇÑ ¹ßÀüÀ» °ÅµìÇÏ¿© ÀÇ·á ¼ºñ½º Á¦°øÀÚ¿Í °³ÀÎÀÌ ÀÌ Àº¹ÐÇÑ Àü¿°º´¿¡ ´ëóÇÒ ¼ö ÀÖµµ·Ï º¸´Ù È¿À²ÀûÀÌ°í »ç¿ëÀÚ Ä£ÈÀûÀÎ Áø´Ü µµ±¸¸¦ ¼±º¸À̰í ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
2022³â ½ÃÀå ±Ô¸ð | 6¾ï 7,856¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 9¾ï 6,318¸¸ ´Þ·¯ |
CAGR(2023-2028³â) | 6.06% |
±Þ¼ºÀå ºÎ¹® | º´¿ø |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
ÃÖ±Ù ¼¼°èÀÇ °Ç° °ü¸® »çÁ¤Àº Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ ±Þ°ÝÇÑ Áõ°¡¸¦ °üÂûÇϰí ÀÖÀ¸¸ç Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ´Â ¼¼°è¿¡¼ °¡Àå À¯ÇàÇÏ´Â ¼ºº´(STI) Áß ÇϳªÀÌ¸ç ¸Å³â ¼ö¹é¸¸ ¸í¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °¨¿°ÀÇ ±ÞÁõÀº Á¤È®ÇÏ°í ½Ã±â ÀûÀýÇÑ Áø´ÜÀÇ Á߿伺À» °Á¶Çϰí Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀ» Áß½ÉÀ¸·Î Áø´Ü ½ÃÀåÀÇ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ ¿øÀαÕÀΠŬ¶ó¹Ìµð¾Æ Æ®¶óÄÚ¸¶Æ¼½º(Chlamydia trachomatis)´Â ÁÖ·Î »ý½Ä±â¿¡ °¨¿°µÇ¾î ´«°ú È£Èí±â°è¿¡µµ Áõ»óÀ» º¸ÀÔ´Ï´Ù. ÀÌ °¨¿°Àº ÀϹÝÀûÀ¸·Î ¹«Áõ»óÀ¸·Î ³²¾Æ Àֱ⠶§¹®¿¡ Á¶±â ¹ß°ß°ú Áø´ÜÀÌ ¾î·Æ½À´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀ» ¹æÄ¡ÇÏ¸é ¿©¼ºÀº °ñ¹Ý³» ¿°Áõ¼º Áúȯ(PID)°ú °°Àº ½É°¢ÇÑ ÇÕº´ÁõÀ» À¯¹ßÇÏ¿© ºÒÀÓ, ÀÚ±Ã¿Ü ÀÓ½Å, ¸¸¼º ÅëÁõÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ³²¼º¿¡¼´Â Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀ» Ä¡·áÇÏÁö ¾ÊÀ¸¸é °íȯ »óü¿°À» ÀÏÀ¸ÄÑ °íȯ ÅëÁõÀ̳ª µå¹°°Ô ºÒÀÓÀÇ ¿øÀÎÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü ½ÃÀå È®ÀåÀÇ ¿øµ¿·ÂÀº ¸ðµç ¿¬·É´ë¿¡¼ Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ ¿ì·ÁÇÒ ¸¸ÇÑ À¯º´·ü Áõ°¡ÀÔ´Ï´Ù. û³â ¼ºÀΰú û¼Ò³âÀº À§ÇèÇÑ ¼ºÇàÀ§¸¦ ÇÏ´Â °æÇâÀÌ °Çϰí, ¾ÈÀüÇÑ ¼ºÇàÀ§¿Í Á¤±âÀûÀÎ ½ºÅ©¸®´×¿¡ ´ëÇÑ ÀνÄÀÌ ³·±â ¶§¹®¿¡ ƯÈ÷ Ãë¾àÇÕ´Ï´Ù. °Ô´Ù°¡, ¼º°ú Àΰ£ °ü°è¿¡ ´ëÇÑ ¹®ÈÀû »ç°í ¹æ½ÄÀÌ º¯ÈÇϰí ÀÖ´Â °Í ¿Ü¿¡µµ STI¿¡ ´ëÇØ À̾߱âÇÏ°í °Ë»çÇÏ´Â °Í¿¡ ½ºÆ¼±×¸¶°¡ °ü¿©ÇÏ´Â °ÍÀÌ Å¬¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ °ú¼Ò Áø´ÜÀ̳ª °ú¼Ò º¸°íÀÇ ¿øÀÎÀÌ µÇ°í ÀÖ´Ù ÇÕ´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ ¸¸¿¬À» ¸·±â À§ÇØ °Ç° °ü¸® ½Ã½ºÅÛ°ú Á¶Á÷Àº ƯÈ÷ ¼ºÀûÀ¸·Î Ȱ¹ßÇÑ »ç¶÷°ú ¿©·¯ ÆÄÆ®³Ê°¡ÀÖ´Â »ç¶÷µé¿¡°Ô Á¤±âÀû ÀÎ ½ºÅ©¸®´×ÀÇ Á߿伺À» °Á¶ÇÕ´Ï´Ù. ÀÌ¿Í °°ÀÌ Á¶±â ¹ß°ß¡¤Á¶±â Ä¡·á°¡ Á߽õǰí Àֱ⠶§¹®¿¡ ½Å·Ú¼ºÀÌ ³ô°í Á¤È®ÇÑ Å¬¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ½ÃÀåÀº È¿À²ÀûÀÌ°í Æí¸®ÇÑ °Ë»ç¸¦ ÃËÁøÇÏ´Â Çõ½ÅÀûÀÎ Áø´Ü ±â¼ú°ú µµ±¸ÀÇ °³Ã´À» ½ÃÀÛÇß½À´Ï´Ù.
ÃÖ±Ù ¸î ³âµ¿¾È ¿©¼ºÀÇ °Ç°¿¡ ´ëÇÑ °ü½ÉÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ º¯È´Â ¿©¼ºÀÌ ¸¸³ª´Â ƯÀ¯ÀÇ °Ç° ¿ä±¸¿Í µµÀü¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ ÀÌÇØ°¡ ±í¾îÁ³±â ¶§¹®ÀÔ´Ï´Ù. ÀÇÇÐÀû Á¶»ç¿Í È«º¸ Ȱµ¿Àº °Ç° °ü¸®¿¡¼ ³²¼º°ú ¿©¼º °£ÀÇ °á°ú °ÝÂ÷¸¦ ¹àÇô³»°í °Ç° °ü¸® ½Ã½ºÅÛÀº ¿©¼ºÀÇ °Ç° ¹®Á¦¸¦ ¿ì¼±ÀûÀ¸·Î ´Ù·ç°í ÀÖ½À´Ï´Ù. ±× °á°ú ¿©¼ºÀÇ Àå±âÀûÀÎ °Ç° ÇÕº´ÁõÀ» ¿¹¹æÇϱâ À§ÇØ Å¬¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ Á¶±â ¹ß°ß°ú °ü¸®°¡ Áß¿äÇÏ´Ù´Â ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. °øÁß º¸°Ç Ä·ÆäÀΰú ±³À° ÀÌ´Ï¼ÅÆ¼ºê´Â Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ°ú ±× ÀáÀçÀû ¿µÇâ¿¡ ´ëÇÑ ÀǽÄÀ» ³ôÀÌ´Â µ¥ ¼º°øÇÏ¸ç °Ë»ç¿Í Ä¡·á¸¦ ¹Þ´Â µ¿±âºÎ¿©°¡ µÇ°í ÀÖ½À´Ï´Ù. Áø´Ü ±â¼úÀÇ Áøº¸·Î Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀ» °ËÃâÇÏ´Â ¼ö´ÜÀº º¸´Ù Á¤È®Çϰí ÀÌ¿ëÇϱ⠽¬¿öÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Á¶±â ¹ß°ß°ú È¿°úÀûÀÎ °³ÀÔ¿¡ µµ¿òÀÌ µË´Ï´Ù. Ŭ¶ó¹Ìµð¾ÆÀÇ Á¤±âÀû ÀÎ ½ºÅ©¸®´×Àº ƯÈ÷ ¼ºÀûÀ¸·Î Ȱ¹ßÇÑ ¿©¼º¿¡°Ô ¿¹¹æ ÀÇ·áÀÇ Áß¿äÇÑ Ãø¸éÀÔ´Ï´Ù. °Ç° °ü¸® Á¦°ø¾÷ü´Â ÇöÀç Á¤±âÀûÀÎ ½ºÅ©¸®´×À» ±ÇÀåÇÏ´Â Àû±ØÀûÀÎ ÀÚ¼¼¸¦ ÃëÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ Á¤Ã¥°ú ÁöħÀº ƯÈ÷ ÀþÀº ¿©¼º°ú ÀÓ»êºÎ¿Í °°Àº Ãë¾àÇÑ Áý´Ü¿¡¼ STI °Ë»çÀÇ Á߿伺À» Á¡Á¡ °Á¶Çϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ¿¡ ´ëÇÑ ²÷ÀÓ¾ø´Â Á¶»ç´ÂÀÌ Áúº´¿¡ ´ëÇÑ ÀÌÇØ¸¦ ±í°ÔÇÏ°í »õ·Î¿î Áø´Ü µµ±¸¿Í Ä¡·á ¿É¼ÇÀ» ¸¸µé¾î ³Â½À´Ï´Ù.
Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀº ¸¸¿¬Çϰí ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, Áõ»óÀÌ ¸¹Áö ¾Ê°Å³ª ºÒÃæºÐÇÑ ÀÎÁö·Î ÀÎÇØ ´«¿¡ ¶çÁö ¾Ê´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ƯÈ÷ ÀþÀº ¼ºÀÎÀÇ °æ¿ì, ¸¹Àº »ç¶÷ÀÌ Áõ»óÀ» ³ªÅ¸³»Áö ¾Ê±â ¶§¹®¿¡ °Ë»ç¸¦ ¹ÞÀ¸·Á°í ÇÏÁö ¾Ê½À´Ï´Ù. °Ô´Ù°¡ Á¾ÇÕÀûÀÎ ¼º±³À°ÀÌ ÀÌ·ç¾îÁöÁö ¾Ê¾Ò°Å³ª STI¿¡ °ü·ÃµÈ ½ºÆ¼±×¸¶°¡ Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÀúÇϽÃŰ´Â ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ» Á¾ÇÕÇϸé, Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ¿¡ ÀÇÇÑ ÁøÁ¤ÇÑ ºÎ´ãÀ» Á¤È®ÇÏ°Ô ÃøÁ¤ÇÏ·Á°í ÇÏ´Â ³ë·ÂÀÌ ¹æÇصǾî, °øÁß º¸°Ç»óÀÇ °³ÀÔÀÌ ¼Õ»óµÇ°í ÀÖ½À´Ï´Ù.
±âÁ¸ÀÇ Å¬¶ó¹Ìµð¾Æ °ËÁø ÇÁ·Î±×·¥Àº ÀϹÝÀûÀ¸·Î ¼ºÀûÀ¸·Î Ȱµ¿ÀûÀÎ ÀþÀº ¼ºÀΰú °°Àº °íÀ§Çè Áý´ÜÀ» ´ë»óÀ¸·Î ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº °¡Ä¡°¡ ÀÖÁö¸¸ ¸ðµç °æ¿ì, ƯÈ÷ ´ú ¸íÈ®ÇÑ À§Çè ±×·ìÀÇ °æ¿ì¸¦ ´Ù·ç´Â °ÍÀº ¾Æ´Õ´Ï´Ù. °¨¿°À» ½Å¼ÓÇÏ°Ô È®ÀÎÇϰí Ä¡·áÇϱâ À§Çؼ´Â º¸´Ù ±¤¹üÀ§ÇÑ ÃþÀ» ´ë»óÀ¸·Î ÇÏ´Â ½ºÅ©¸®´× ÇÁ·Î±×·¥ÀÇ È®Àå°ú ÃÖÀûȰ¡ ÇʼöÀûÀÔ´Ï´Ù.
Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ Á¤È®ÇÑ Áø´ÜÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â ½Ã·á äÃë¿Í °Ë»ç ±â¹ý¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ Á¢±Ù¹ýÀº ħ½ÀÀûÀÎ Ä¡·á°¡ ÇÊ¿äÇÏ¸ç °Ë»ç¸¦ ¹Þ´Â °ÍÀ» ¸Á¼³ÀÏ ¼ö ÀÖ½À´Ï´Ù. ¼Òº¯À» ÀÌ¿ëÇÑ °Ë»ç¿Í °°Àº ºñħ½ÀÀûÀÎ ¹æ¹ýµµ µîÀåÇϰí ÀÖÁö¸¸, ¼¼½ÉÇÑ Ãë±Þ°ú °Ë»ç ½Ã¼³À» ÇÊ¿ä·Î ÇÏ´Â °Í¿¡´Â º¯ÇÔÀÌ ¾ø½À´Ï´Ù. Æí¸®ÇÏ°í »ç¿ëÇϱ⠽±°í Á¤È®ÇÑ »ùÇà äÃë¿Í °Ë»ç¸¦ º¸ÀåÇÏ´Â °ÍÀº ¿©ÀüÈ÷ ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù.
Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü¿¡¼ °¡Àå µÎµå·¯Áø Áøº¸ Áß Çϳª´Â ÇÙ»ê ÁõÆø ¹æ¹ý(NAAT)ÀÇ µµÀÔÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀº Ŭ¶ó¹Ìµð¾Æ¿¡ ƯÀÌÀûÀÎ ÇÙ»ê(DNA ¶Ç´Â RNA)À» ÁõÆø½Ã۰í ÃÖ¼Ò ³óµµ¿¡¼µµ ¹ÚÅ׸®¾ÆÀÇ Á¸À縦 °ËÃâÇÏ´Â °ÍÀÔ´Ï´Ù. ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(PCR), ¸®°¡¾ÆÁ¦ ¿¬¼â¹ÝÀÀ(LCR), ·çÇÁ ¸Å°³ µî¿ÂÁõÆø¹ý(LAMP)À» Æ÷ÇÔÇÑ NAAT´Â °¨µµ¿Í ƯÀ̼ºÀ» ³ô¿© Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ Á¶±â ¹× Á¤È®ÇÑ °ËÃâÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Áø´Ü Á¤È®µµ¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ À§À½¼ºÀ» ÃÖ¼ÒÈÇϰí ȯÀÚÀÇ ¿¹Èĸ¦ Çâ»ó ½ÃÄ×½À´Ï´Ù. ÃÖ±Ù¿¡´Â ½º¸¶Æ®ÆùÀÇ º¸±ÞÀÌ Å¬¶ó¹Ìµð¾Æ°¨¿°ÁõÀÇ Áø´ÜÀ» ÀüÁø½Ã۱â À§ÇØ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¬±¸ °³¹ßÀÚµéÀº °Ë»ç °á°ú¸¦ ºÐ¼®Çϱâ À§ÇØ ½º¸¶Æ®Æù Ä«¸Þ¶ó¿Í ó¸® ´É·ÂÀ» ÀÌ¿ëÇÑ ½º¸¶Æ®Æù ±â¹Ý Áø´Ü Ç÷§ÆûÀ» °³¹ßÇß½À´Ï´Ù. »ç¿ëÀÚ´Â Áø´Ü Å×½ºÆ® ½ºÆ®¸³°ú ÀåÄ¡ÀÇ À̹ÌÁö¸¦ ĸóÇÒ ¼ö ÀÖÀ¸¸ç Àü¿ë ¼ÒÇÁÆ®¿þ¾î°¡ °á°ú¸¦ ÇØ¼®ÇÕ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº Á¢±Ù¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Àü¹®ÀûÀÎ Àåºñ¿Í ÈÆ·ÃÀÇ Çʿ伺À» °¨¼Ò½Ãŵ´Ï´Ù. ½º¸¶Æ®Æù ±â¹Ý Áø´Ü ¹æ¹ýÀº °³ÀÎÀÌ Áý¿¡ ÀÖ´Â µ¿¾È °Ç° »óŸ¦ ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÇÙ»ê ±â¹Ý Áø´Ü ¹æ¹ýÀº ¹Î°¨ÇÏÁö¸¸, ÁַΠȰµ¿ Áß °¨¿°À» È®ÀÎÇÕ´Ï´Ù. Ç÷ûÇÐÀû ¹× Ç×ü-±â¹Ý ºÐ¼®Àº Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ¿¡ ´ëÇÑ ½ÅüÀÇ ¸é¿ª ¹ÝÀÀÀ» °¨ÁöÇÏ¿©, °¨¿°À» °¨ÁöÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù.
ÀÌ·¯ÇÑ °Ë»ç ¹æ¹ýÀº °¨¿°¿¡ ¹ÝÀÀÇÏ¿© »ý¼ºµÇ´Â Ç×üÀÇ Á¸À縦 ÃøÁ¤ÇÔÀ¸·Î½á ÇöÀç ¹× °ú°Å °¨¿°¿¡ ´ëÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. Ç÷ûÇÐÀû °Ë»ç´Â ¿ªÇÐÀû ¿¬±¸¿Í Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ·ÂÀÌ ÀÖ´Â »ç¶÷À» È®ÀÎÇϴµ¥ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ÇÙ»ê ±â¹Ý Á¢±Ù¹ý°ú Ç÷ûÇÐÀû Á¢±Ù¹ýÀ» °áÇÕÇÏ¸é °³ÀÎÀÇ °¨¿°·Â°ú °¨¿° »óŸ¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.
2022³â, ÇÙ»ê ÁõÆø °Ë»ç(NAAT) ºÎ¹®Àº Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü ½ÃÀå¿¡¼ Áö¹èÀûÀÎ ¼¼·ÂÀ¸·Î ºÎ»óÇØ ÇâÈÄ ¼ö³â°£ È®´ë¸¦ À¯ÁöÇÒ °èȹÀÔ´Ï´Ù. ÇÙ»ê ÁõÆø °Ë»ç(NAAT)´Â »ý¹°ÇÐÀû »ùÇÿ¡¼ DNA ¶Ç´Â RNAÀÇ Æ¯Á¤ ¼¿À» ÁõÆø ¹× °ËÃâÇϵµ·Ï Á¶ÀýµÈ °·ÂÇÑ ºÐÀÚ ±â¼úÀÔ´Ï´Ù. NAATÀÇ ÁÖ¿ä ¸ñÀûÀº ¹ÚÅ׸®¾Æ, ¹ÙÀÌ·¯½º, °õÆÎÀÌ¿Í °°Àº º´¿øÃ¼ÀÇ Á¸À縦 Çö´ë ½ÇÇè½Ç¿¡¼ ½Äº° °¡´ÉÇÑ ¼öÁØÀ¸·Î À¯Àü ¹°ÁúÀ» ÁõÆø½ÃÅ´À¸·Î½á È®ÀÎÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ ¹æ¹ýÀÇ Å¹¿ùÇÑ °¨µµ´Â Ç¥Àû ÇÙ»ê ¼¿ÀÇ ¹Ì·® ÈçÀûÁ¶Â÷µµ °ËÃâÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.
2022³â Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü ½ÃÀåÀº »ý½Ä±â Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ ºÐ¾ß°¡ ÁÖµµ±ÇÀ» Àâ°í ¾ÕÀ¸·Îµµ È®´ë°¡ °è¼ÓµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ Æ®¶óÄÚ¸¶Æ¼½º ¹ÚÅ׸®¾Æ¿¡ ÀÇÇØ ¾ß±âµÇ´Â »ý½Ä±â Ŭ¶ó¹Ìµð¾Æ°¨¿°ÁõÀº ¼¼°èÀûÀ¸·Î °¡Àå ³Î¸® ÆÛÁø ¼º°¨¿°(STI) Áß ÇϳªÀÔ´Ï´Ù. ÀÌ °¨¿°Àº ³²³à ¸ðµÎ ¹ßº´ ÇÒ ¼ö ÀÖÀ¸¸ç Ãʱ⿡´Â Áõ»óÀÌ °¡º±°Å³ª ÀüÇô¾ø´Â °æ¿ì°¡ ¸¹Áö¸¸ ¹æÄ¡ÇÏ¸é ½É°¢ÇÑ °Ç° ÇÕº´ÁõÀ» ÀÏÀ¸Å³ ¼ö ÀÖ½À´Ï´Ù. »ý½Ä±â Ŭ¶ó¹Ìµð¾ÆÀÇ ¿øÀÎ, Áõ»ó, °Ë»ç, Ä¡·á ¹× ¿¹¹æ¿¡ ´ëÇØ °³ÀÎÀ» ±³À°ÇÏ´Â °ÍÀº ±× È®»êÀ» ¾ïÁ¦ÇÏ°í °øÁß º¸°Ç¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
ºÏ¹Ì´Â ¼¼°èÀÇ Å¬¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü ½ÃÀå¿¡¼ Åé ·¯³Ê·Î¼ÀÇ ÁöÀ§¸¦ ±»È÷°í ÀÖ½À´Ï´Ù. Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü¿¡¼ ºÏ¹ÌÀÇ ¿ìÀ§¼ºÀº ÀÌ Áö¿ªÀÇ ¼±±¸ÀûÀÎ ±â¼ú Áøº¸·Î ÀÎÇÑ °Íµµ Å®´Ï´Ù. ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(PCR)°ú ÇÙ»ê ÁõÆø °Ë»ç(NAAT)´Â Áø´Ü Á¤È®µµ¸¦ ÀçÁ¤ÀÇÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °Ë»ç ¹æ¹ýÀº ¹ÚÅ׸®¾ÆÀÇ À¯Àü ¹°ÁúÀ» ÁõÆøÇϱ⠶§¹®¿¡ °¨¿°ÀÇ ÀÛÀº ÈçÀûÁ¶Â÷µµ °ËÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ °Ë»ç±â°ü°ú ¿¬±¸±â°üÀº ÀÌ·¯ÇÑ Áø´Ü±â¼úÀÇ °³¼±À» ¼±µµÇÏ¿© °¨µµ, ƯÀ̼º, ½Å¼Ó¼ºÀ» Çâ»ó½ÃÄÑ ¿Ô½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Ã·´Ü °Ç° °ü¸® ÀÎÇÁ¶óµµ Ŭ¶ó¹Ìµð¾Æ°¨¿°Áõ Áø´Ü¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ºÏ¹Ì´Â ÀÇ·á ½Ã¼³, °Ë»ç ¼¾ÅÍ, ¼÷·ÃµÈ ÀÇ·á Á¾»çÀÚ¿¡ ´ëÇÑ Á¢±ÙÀÌ ³Î¸® º¸±ÞµÇ¾î ÀÖ´Â È®¸³µÈ °Ç° °ü¸® ½Ã½ºÅÛÀ» ÀÚ¶ûÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±ÙÀÇ ÀåÁ¡À¸·Î ÀÇ·á±â°üÀ» ÁøÂûÇÏ°í ½Å¼ÓÇÏ°Ô °Ë»ç¸¦ ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °øÁß º¸°Ç Ȱµ¿°ú ±³À° Ä·ÆäÀÎÀº Á¤±âÀû ÀÎ °Ë»çÀÇ Á߿伺¿¡ ´ëÇÑ ÀνÄÀ» ³ôÀ̰í Á¶±â ¹ß°ß ¹× Á¶±â Áø´Ü¿¡ ´õ¿í ±â¿©ÇÕ´Ï´Ù.
The Global Chlamydia Infection Diagnostics Market achieved a valuation of USD 678.56 Million in 2022, and it is poised for remarkable growth in the forecast period, with an expected Compound Annual Growth Rate (CAGR) of 6.06% through 2028 and expected to reach USD 963.18 Million in 2028. Chlamydia infection ranks among the most widespread sexually transmitted infections (STIs) globally, caused by the bacterium Chlamydia trachomatis. When left untreated, it can result in severe health complications, including pelvic inflammatory disease, infertility, and heightened susceptibility to other STIs. Timely and precise diagnosis plays a pivotal role in averting these adverse consequences. The Chlamydia Infection Diagnostics Market has undergone notable advancements in recent times, presenting more efficient and user-friendly diagnostic tools that equip healthcare providers and individuals to combat this covert epidemic.
Chlamydia operates as a concealed infection, often manifesting without apparent symptoms. This attribute, coupled with the stigma linked to STIs, contributes to underdiagnosis and undertreatment. According to the World Health Organization (WHO), around 131 million new instances of chlamydia were recorded globally in 2020, positioning it as one of the most frequently reported bacterial STIs. This burden is particularly pronounced among sexually active young individuals, with those aged 15 to 24 experiencing the highest impact. Conventionally, nucleic acid amplification tests (NAATs), such as polymerase chain reaction (PCR) and transcription-mediated amplification (TMA), have served as the gold standard for diagnosing chlamydia infections. These tests amplify and detect the genetic material of the bacteria, yielding heightened sensitivity and specificity. Nonetheless, these methods often necessitate specialized laboratories and skilled personnel, leading to limited accessibility and delayed results.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 678.56 Million |
Market Size 2028 | USD 963.18 Million |
CAGR 2023-2028 | 6.06% |
Fastest Growing Segment | Hospitals |
Largest Market | North America |
In recent years, the global healthcare landscape has observed a substantial rise in the prevalence of chlamydia infections, fueling the expansion of the Chlamydia infection diagnostics market. Chlamydia stands as one of the most prevalent sexually transmitted infections (STIs) on a global scale, impacting millions of individuals annually. The surge in these infections has underscored the critical requirement for precise and timely diagnostics, spurring the growth of the diagnostics market centered on chlamydia infections. The bacterium Chlamydia trachomatis, responsible for causing chlamydia infections, predominantly affects the genital tract while also exhibiting manifestations in the eyes and respiratory system. The infection commonly remains asymptomatic, rendering early detection and diagnosis challenging. Unaddressed chlamydia infections can lead to grave complications, such as pelvic inflammatory disease (PID) in women, which may lead to infertility, ectopic pregnancy, and chronic pain. In men, untreated chlamydia infections can lead to epididymitis, potentially causing testicular pain and, in rare cases, infertility. The driving impetus behind the Chlamydia infection diagnostics market's expansion rests upon the alarming increase in the prevalence of chlamydia infections across all age groups. Young adults and adolescents, due to their greater propensity for engaging in risky sexual behaviors and limited awareness about safe sex practices and regular screening, remain particularly vulnerable. Additionally, evolving cultural perspectives on sex and relationships, alongside the stigma attached to discussing and testing for STIs, further contribute to the underdiagnosis and underreporting of chlamydia infections. To counteract the mounting prevalence of chlamydia infections, healthcare systems and organizations underscore the significance of regular screening, especially for sexually active individuals and those with multiple partners. This emphasis on early detection and treatment has spurred a surge in demand for dependable and accurate chlamydia infection diagnostics. Consequently, the market has borne witness to the development of innovative diagnostic technologies and tools that facilitate efficient and convenient testing.
The past years have witnessed a substantial elevation in the focus on women's health. This shift has been driven by an increasingly holistic understanding of the distinctive health needs and challenges encountered by women. Medical research and advocacy endeavors have illuminated the disparities in healthcare outcomes between genders, compelling healthcare systems to accord priority to women's health concerns. Consequently, there exists a heightened awareness of the significance of early detection and management of chlamydia infections in forestalling long-term health complications in women. Public health campaigns and educational initiatives have succeeded in elevating consciousness regarding chlamydia infections and their potential ramifications, motivating individuals to seek testing and treatment. Progress in diagnostic technologies has yielded more precise and accessible means of detecting chlamydia infections. These techniques are instrumental for early detection and effective intervention. Routine screenings for chlamydia have emerged as a pivotal facet of preventive care, particularly for sexually active women. Healthcare providers now adopt a proactive stance in recommending regular screenings. Government policies and guidelines increasingly underscore the importance of STI testing, especially among vulnerable populations such as young women and pregnant women. Persistent research into chlamydia infections has engendered an enhanced comprehension of the ailment, culminating in the creation of novel diagnostic tools and treatment options.
Despite its prevalence, chlamydia infections often go unnoticed due to asymptomatic cases and inadequate awareness. Numerous individuals, especially young adults, might not exhibit symptoms, translating to a failure to seek testing. Additionally, the absence of comprehensive sexual education and the stigma associated with STIs contribute to a diminished demand for diagnostics. Collectively, these factors impede endeavors to accurately gauge the genuine burden of chlamydia infection, undermining public health interventions.
Existing chlamydia screening programs typically target high-risk populations, such as sexually active young adults. While these initiatives are valuable, they might not encompass all cases, particularly those within less apparent risk groups. The expansion and optimization of screening programs to encompass a wider demographic are imperative to promptly identify and treat infections.
Precise diagnosis of chlamydia infection hinges on dependable sample collection and testing methodologies. Traditional approaches involve invasive procedures, which could deter individuals from undergoing testing. Emerging non-invasive methods, like urine-based tests, have surfaced; however, they still require meticulous handling and laboratory facilities. Ensuring convenient, accessible, and precise sample collection and testing remains a persistent challenge.
One of the most remarkable strides in Chlamydia infection diagnostics is the introduction of nucleic acid amplification techniques (NAATs). These methods encompass the amplification of Chlamydia-specific nucleic acids (DNA or RNA) to detect the presence of the bacterium even at minimal concentrations. NAATs, including polymerase chain reaction (PCR), ligase chain reaction (LCR), and loop-mediated isothermal amplification (LAMP), proffer heightened sensitivity and specificity, enabling early and accurate detection of chlamydia infections. These techniques have revolutionized diagnostic accuracy, minimizing false negatives and enhancing patient outcomes. In recent times, the ubiquity of smartphones has been harnessed to propel Chlamydia infection diagnostics forward. Researchers have developed smartphone-based diagnostic platforms that utilize the phone's camera and processing capabilities to analyze test results. Users can capture images of diagnostic test strips or devices, and specialized software interprets the results. This approach not only amplifies accessibility but also diminishes the requirement for specialized equipment and training. Smartphone-based diagnostics hold the potential to empower individuals to monitor their health within the confines of their residences. While nucleic acid-based diagnostics exhibit heightened sensitivity, they predominantly identify active infections. Serological and antibody-based assays center on detecting the body's immune response to chlamydia
infection. These assays gauge the presence of antibodies generated in reaction to the infection, offering insights into both current and past infections. Serological tests prove particularly valuable for epidemiological studies and identifying individuals with a history of chlamydia exposure. The amalgamation of nucleic acid-based and serological approaches affords a comprehensive perspective of an individual's infection history and status.
In 2022, the Nucleic Acid Amplification Test (NAAT) segment emerged as the dominant force in the Chlamydia Infection Diagnostics market, poised to sustain expansion in the forthcoming years. Nucleic Acid Amplification Test (NAAT) stands as a potent molecular technique tailored to amplify and detect specific sequences of DNA or RNA within a biological sample. The core purpose of NAAT involves identifying the presence of pathogens, such as bacteria, viruses, and fungi, through the amplification of their genetic material to levels discernible via contemporary laboratory equipment. This method's exceptional sensitivity permits the detection of even minute traces of the target nucleic acid sequence.
In 2022, the Genital chlamydia infection segment took the reins in the Chlamydia Infection Diagnostics market, projected to sustain expansion in the ensuing years. Genital chlamydia infection, triggered by the Chlamydia trachomatis bacterium, ranks among the most widespread sexually transmitted infections (STIs) globally. This infection can impact both men and women, frequently materializing with mild or no symptoms initially; however, if neglected, it can result in severe health complications. Educating individuals about the causes, symptoms, testing, treatment, and prevention of genital chlamydia is imperative for controlling its spread and mitigating its repercussions on public health.
The North America region has solidified its position as the frontrunner in the Global Chlamydia Infection Diagnostics Market. North America's prominence in chlamydia infection diagnostics can be attributed, in part, to the region's pioneering technological progress. Polymerase chain reaction (PCR) and nucleic acid amplification tests (NAATs) have redefined diagnostic precision. These methodologies amplify the genetic material of the bacteria, permitting the detection of even minimal traces of infection. North American laboratories and research institutions have led the way in refining these diagnostic techniques, augmenting their sensitivity, specificity, and speed. The region's advanced healthcare infrastructure also plays a pivotal role in chlamydia infection diagnostics. North America boasts a well-entrenched healthcare system, characterized by widespread access to medical facilities, testing centers, and skilled healthcare providers. This accessibility empowers individuals to seek medical attention and undergo testing expediently. Furthermore, public health initiatives and educational campaigns elevate awareness about the significance of regular testing, further contributing to early detection and diagnosis.