½ÃÀ庸°í¼
»óÇ°ÄÚµå
1372729
DNA ÁßÇÕÈ¿¼Ò ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) : À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº°, °æÀïDNA Polymerase Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Type, By Application, By End-use, By Region, By Competition |
DNA ÁßÇÕÈ¿¼Ò ¼¼°è ½ÃÀåÀº 2022³â 1¾ï 2,112¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç 2028³â±îÁö 4.66%ÀÇ ¾ÈÁ¤ÀûÀÎ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È °·ÂÇÑ ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
È¿¼Ò ±×·ìÀÎ DNA ÁßÇÕÈ¿¼Ò´Â º¹Á¦ °úÁ¤¿¡¼ DNA ÇÕ¼º¿¡ Ã˸Š¿ªÇÒÀ» ÇÕ´Ï´Ù. ÁÖ¿ä ±â´ÉÀº ¼¼Æ÷ ºÐ¿ ½Ã ¼¼Æ÷ÀÇ DNA¸¦ º¹Á¦ÇÏ´Â °ÍÀÔ´Ï´Ù. ´ºÅ¬·¹¿ÀƼµå´Â DNA »ç½½ÀÇ 3'OH ±×·ì¿¡ Ãß°¡µÇ¾î À¯Àü ¹°ÁúÀÇ ¼¼´ë °£ Àü´ÞÀ» ÃËÁøÇÏ´Â Áß¿äÇÑ ´Ü°èÀÔ´Ï´Ù.
ÁßÇÕÈ¿¼Ò¿¬¼â¹ÝÀÀ(PCR) ¹× DNA ½ÃÄö½Ì ±â¼úÀº ¿¬±¸ ¹× ÀÓ»ó ÀÀ¿ë ºÐ¾ß¿¡¼ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ÀÌ ½ÃÀåÀ» ÁÖµµÇÏ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ¿¬±¸°¡ ¹ßÀüÇÏ°í °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, °¨¿°¼º Áúȯ°ú À¯Àü¼º ÁúȯÀÇ ¹ßº´·üÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
½ÃÀå ±Ô¸ð 2022³â | 1¾ï 2,112¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 1¾ï 5,888¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 4.66% |
±Þ¼ºÀå ºÎ¹® | Á¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷ |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
ºÐÀÚ»ý¹°ÇÐ ¿¬±¸ÀÇ ¹ßÀü°ú ÇÔ²² DNA ½ÃÄö½Ì, À¯Àüü ºÐ¼®, À¯ÀüüÇÐ ¿¬±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÏ°í ÀÖÀ¸¸ç, DNA ÁßÇÕÈ¿¼Ò´Â DNA ÁõÆø ¹× ¿°±â¼¿ ºÐ¼®¿¡ »ç¿ëµÇ´Â DNA ÁßÇÕÈ¿¼Ò´Â ÀÌ·¯ÇÑ °úÁ¤¿¡ ÇʼöÀûÀÎ È¿¼ÒÀÔ´Ï´Ù. Á¤È®ÇÏ°í ³ôÀº 󸮷®ÀÇ ½ÃÄö½Ì ±â¼ú¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼ Ư¼ö DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇØ ½ÃÀåÀÌ È°¼ºÈµÇ°í ÀÖ½À´Ï´Ù. ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(PCR)Àº ºÐÀÚ»ý¹°ÇÐ ¿¬±¸ÀÇ ±âÃÊ ±â¼úÀÔ´Ï´Ù. ƯÁ¤ DNA ¼¿À» ÁõÆøÇϱâ À§ÇØ DNA ÁßÇÕÈ¿¼Ò¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. Á¤·®Àû PCR(qPCR) ¹× µðÁöÅÐ PCRÀ» Æ÷ÇÔÇÑ PCR ±â¼úÀÇ ¹ßÀüÀº DNA ÁßÇÕÈ¿¼ÒÀÇ Àû¿ë ¹üÀ§¸¦ ³ÐÈ÷°í ÀÖ½À´Ï´Ù. CRISPR-Cas9¸¦ ºñ·ÔÇÑ À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ µîÀåÀº ºÐÀÚ»ý¹°ÇÐ ¿¬±¸¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×À¸¸ç, DNA ÁßÇÕÈ¿¼Ò´Â À¯ÀüÀÚ ÆíÁý °úÁ¤¿¡¼ ¹ß»ýÇÑ DNA Àý´ÜÀ» º¹±¸ÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. DNA ÁßÇÕÈ¿¼Ò´Â À¯ÀüÀÚ ÆíÁý °úÁ¤¿¡¼ ¹ß»ýÇÑ DNA Àý´ÜÀ» º¹±¸ÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¬±¸ÀÚµéÀº Á¾Á¾ ÀÌ·¯ÇÑ ±â¼úÀÇ Á¤È®µµ¸¦ ³ôÀ̱â À§ÇØ °íÈ¿À² ¹× ¿À·ù ¼öÁ¤°ú °°Àº °íÀ¯ÇÑ Æ¯¼ºÀ» °¡Áø DNA ÁßÇÕÈ¿¼Ò¸¦ ã°í ÀÖ½À´Ï´Ù. ºÐÀÚ»ý¹°ÇÐ ¿¬±¸¸¦ ÅëÇØ È¿¼ÒÀÇ ±¸Á¶¿Í ±â´É¿¡ ´ëÇÑ ÀÌÇصµ°¡ ³ô¾ÆÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ Áö½ÄÀº ¸ÂÃãÇü Ư¼ºÀ» °¡Áø DNA ÁßÇÕÈ¿¼ÒÀÇ ¼³°è¸¦ ¿ëÀÌÇÏ°Ô Çß½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ƯÁ¤ ¿ëµµ¿¡ ¸Â´Â DNA ÁßÇÕÈ¿¼Ò¸¦ ¼³°èÇÏ°í ÇÕ¼ºÇÒ ¼ö ÀÖ°Ô µÇ¾ú°í, ÀÌ´Â ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀåÀ» È®´ëÇÏ°í ÀÖ½À´Ï´Ù. ºÐÀÚ»ý¹°ÇÐÀÇ ¹ßÀüÀº ÇÕ¼º»ý¹°ÇÐ, ¸ÞŸ°Ô³ðÇаú °°Àº »õ·Î¿î ºÐ¾ßÀÇ ÃâÇöÀ¸·Î À̾îÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼´Â Àΰø DNA ±¸Á¶¹°ÀÇ ÇÕ¼ºÀ̳ª º¹ÀâÇÑ ¹Ì»ý¹° ±ºÁý ºÐ¼®¿¡ Æ¯ÈµÈ DNA ÁßÇÕÈ¿¼Ò°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß·Î ÀÎÇØ DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖÀ¸¸ç, DNA ÁßÇÕÈ¿¼Ò´Â ½Å¾à °³¹ß, ƯÈ÷ DNA º¹Á¦ ¹× º¹±¸¿¡ ´ëÇÑ ÀáÀçÀû ¾à¹° Èĺ¸¹°ÁúÀÇ ¿µÇâÀ» ¿¬±¸ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¦¾àȸ»çµéÀÌ ¿¬±¸¸¦ °ÈÇÔ¿¡ µû¶ó ½ºÅ©¸®´× ¹× °ËÁõ ¿¬±¸¸¦ À§ÇÑ DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù.
DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä´Â Àü¿°º´ Áø´Ü ºÐ¾ß¿¡¼ ±ÞÁõÇÏ°í ÀÖ½À´Ï´Ù. ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(PCR)Àº ¹ÙÀÌ·¯½º, ¹ÚÅ׸®¾Æ µî º´¿øü °ËÃâ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ½ÅÁ¾ º´¿øü¸¦ Æ÷ÇÔÇÑ °¨¿°¼º Áúȯ¿¡ ´ëÇÑ ½Å¼ÓÇÏ°í ¹Î°¨Çϸç Á¤¹ÐÇÑ Áø´Ü °Ë»ç¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿ä±¸°¡ DNA ÁßÇÕÈ¿¼Ò ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ°í ÀÖ½À´Ï´Ù. DNA ÁßÇÕÈ¿¼Ò´Â À¯Àü¼º ÁúȯÀÇ ½ºÅ©¸®´× ¹× º¸±ÕÀÚ °Ë»ç¿¡ ÇʼöÀûÀ̸ç, °ËÃâÀÇ Á¤È®µµ¿Í ¼Óµµ¸¦ ³ôÀ̱â À§ÇØ ¼º´É Ư¼ºÀÌ °³¼±µÈ »õ·Î¿î DNA ÁßÇÕÈ¿¼Ò°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ½ºÅ©¸®´× ÇÁ·Î±×·¥ÀÇ È®´ë¿Í Â÷¼¼´ë ¿°±â¼¿ ºÐ¼®(NGS) ±â¼úÀÇ ¹ß´Þ·Î ƯÁ¤ À¯Àüü ¿µ¿ªÀ» Á¤È®ÇÏ°Ô ÁõÆøÇÏ°í ¿°±â¼¿À» ºÐ¼®ÇÒ ¼ö ÀÖ´Â °íÃæ½Çµµ DNA ÁßÇÕÈ¿¼ÒÀÇ Çʿ伺ÀÌ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁßÇÕÈ¿¼Ò´Â À¯Àü¼º Áúȯ°ú °ü·ÃµÈ À¯ÀüÀÚ µ¹¿¬º¯À̸¦ ½Äº°ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¾Ï Áø´ÜÇÐÀº ´Ù¾çÇÑ ¾ÏÁ¾°ú °ü·ÃµÈ À¯ÀüÀÚ µ¹¿¬º¯ÀÌ ¹× º¯È¸¦ °¨ÁöÇϱâ À§ÇØ DNA ÁßÇÕÈ¿¼Ò¿¡ Å©°Ô ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. ¼øȯ Á¾¾ç DNA(ctDNA)¸¦ ºÐ¼®ÇÏ´Â ¾×ü »ý°Ë ±â¼úÀº Èñ±ÍÇÑ µ¹¿¬º¯À̸¦ °ËÃâÇϱâ À§ÇØ °í°¨µµÀÇ DNA ÁßÇÕÈ¿¼Ò°¡ ÇÊ¿äÇÕ´Ï´Ù. ¾ÏÀÇ Á¶±â ¹ß°ß°ú ¸ÂÃã Ä¡·á°¡ Áß¿äÇØÁö¸é¼ ÀÌ ºÐ¾ß¿¡¼ DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. Æĸ¶ÄÚÀ¯ÀüüÇÐ ºÐ¾ß´Â °³ÀÎÀÇ À¯ÀüÀÚ ÇÁ·ÎÇÊ¿¡ ¸Â°Ô ¾à¹° Ä¡·á¸¦ Á¶Á¤ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϸç, DNA ÁßÇÕÈ¿¼Ò´Â ¾à¹° ¹ÝÀÀ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â À¯ÀüÀû º¯À̸¦ ½Äº°Çϱâ À§ÇØ È¯ÀÚÀÇ DNA¸¦ ½ÃÄö½ÌÇÏ°í ºÐ¼®ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¸ÂÃãÀÇ·á°¡ ÁÖ¸ñ¹ÞÀ¸¸é¼ ¾à¸®À¯Àüü Áø´Ü¿¡¼ DNA ÁßÇÕÈ¿¼ÒÀÇ Çʿ伺Àº ´õ¿í Ä¿Áú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºñħ½ÀÀû »êÀü °Ë»ç(NIPT)¸¦ Æ÷ÇÔÇÑ »êÀü Áø´ÜÀº »ê¸ðÀÇ Ç÷¾×¿¡¼ ÅÂ¾Æ DNA¸¦ ºÐ¼®Çϱâ À§ÇØ DNA ÁßÇÕÈ¿¼Ò¿¡ ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ °Ë»ç´Â žÆÀÇ À¯ÀüÀû ÀÌ»ó ¿©ºÎ¸¦ ¼±º°ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. »êÀü °Ë»çÀÇ °¡¿ë¼º°ú ¼ö¿ëÀÌ È®´ëµÊ¿¡ µû¶ó Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â °á°ú¸¦ Á¦°øÇÒ ¼ö ÀÖ´Â DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ¹ýÀÇÇÐ ºÐ¾ß¿¡¼´Â DNA ÇÁ·ÎÆÄÀϸµ°ú ¹üÁË ÇöÀå ºÐ¼®¿¡ DNA ÁßÇÕÈ¿¼Ò°¡ »ç¿ëµÇ°í ÀÖÀ¸¸ç, miniSTR ºÐ¼®À̳ª Àúº¹Á¦¼ö DNA ºÐ¼®°ú °°Àº ¹ýÀÇÇÐ DNA ±â¼úÀÇ ¹ßÀüÀº ¹Ì·®ÀÇ DNA¸¦ ÁõÆøÇÒ ¼ö Àִ Ư¼öÇÑ DNA ÁßÇÕÈ¿¼Ò¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä´Â ¹ýÁýÇà±â°ü°ú ¹üÁË ¿¬±¸¼Ò°¡ ÁÖµµÇÏ°í ÀÖ½À´Ï´Ù.
È¿¼Ò °øÇÐÀÇ ±â¼ú ¹ßÀüÀ¸·Î °úÇÐÀÚµéÀº DNA ÁßÇÕÈ¿¼Ò¸¦ ƯÁ¤ ¿ëµµ¿¡ ¸Â°Ô º¯ÇüÇÏ°í ÃÖÀûÈÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú, DNA ÁßÇÕÈ¿¼Ò´Â ´õ ³ôÀº Ãæ½Çµµ, ´õ ³ôÀº ó¸® ´É·Â, ¾ïÁ¦Á¦¿¡ ´ëÇÑ ³»¼º µî ´õ ³ªÀº Ư¼ºÀ» °¡Áø DNA ÁßÇÕÈ¿¼Ò°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁßÇÕÈ¿¼Ò´Â ¿¬±¸ ¹× Áø´Ü ÀÀ¿ë ºÐ¾ß¿¡¼ ³ôÀº ¼ö¿ä¸¦ º¸ÀÌ¸ç ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ°í ÀÖÀ¸¸ç, NGS ±â¼úÀº °í󸮷® DNA ½ÃÄö½ÌÀ» °¡´ÉÇÏ°ÔÇÔÀ¸·Î½á °Ô³ð ¿¬±¸¸¦ º¯È½ÃÄ×°í, DNA ÁßÇÕÈ¿¼Ò´Â NGSÀÇ ¶óÀ̺귯¸® Áغñ ¹× ½ÃÄö½Ì ¹ÝÀÀ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù. NGS°¡ À¯ÀüüÇÐ, Àü»çüÇÐ, ¸ÞŸ°Ô³ðÇÐ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ¸é¼ °í¼º´É DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀ¸·Î DNA ÁßÇÕÈ¿¼Ò¿¡ ÀÇÁ¸ÇÏ¿© °³º° DNA °¡´ÚÀ» ½Ç½Ã°£À¸·Î Àо´Â ´ÜÀÏ ºÐÀÚ ½ÃÄö½Ì Ç÷§ÆûÀÌ µîÀåÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº Á¤È®µµ¿Í ±¸Á¶Àû º¯ÀÌ °ËÃâ Ãø¸é¿¡¼ ÀåÁ¡ÀÌ ÀÖÀ¸¸ç, ´ÜÀÏ ºÐÀÚ ½ÃÄö½Ì¿¡ ´ëÀÀÇÏ´Â DNA ÁßÇÕÈ¿¼Ò´Â ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ°í ÀÖ½À´Ï´Ù. ÇÕ¼º »ý¹°ÇÐÀÇ ¹ßÀüÀ¸·Î ´ºÅ¬·¹¿ÀƼµå À¯»çü ¹× ¿°±â ÆíÁý ±â¼úÀÌ °³¹ßµÇ°í ÀÖÀ¸¸ç, DNA ÁßÇÕÈ¿¼Ò´Â ÀÌ·¯ÇÑ º¯ÇüµÈ ´ºÅ¬·¹¿ÀƼµå¸¦ DNA »ç½½¿¡ ÅëÇÕÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº À¯ÀüÀÚ Ä¡·á, °Ô³ð ÆíÁý, ÀǾàÇ° °³¹ß¿¡ Àû¿ëµÇ¾î DNA ÁßÇÕÈ¿¼Ò ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. ¼ÒÇüÈ ¹× È޴뼺Àº ºÐÀÚ»ý¹°ÇÐ ¹× Áø´ÜÇп¡¼ Áß¿äÇÑ Æ®·»µå°¡ µÇ°í ÀÖÀ¸¸ç, PCR, ÇöÀå °Ë»ç ¹× ÇöÀå ÀÛ¾÷¿ë ¼ÒÇü ±â±â´Â DNA ÁßÇÕÈ¿¼ÒÀÇ ±â´É¿¡ ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â±âÀÇ ¼ÒÇüÈ ¹× ÃÖÀûÈ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ÈÞ´ë¿ë ¾ÖÇø®ÄÉÀ̼ǿ¡¼ DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ½Å¾à °³¹ß ¹× À¯ÀüüÇÐ ¿¬±¸¿¡¼ÀÇ °í󸮷® ½ºÅ©¸®´×Àº Á¾Á¾ DNA ÁßÇÕÈ¿¼Ò È¿¼Ò¸¦ ±â¹ÝÀ¸·Î ÇÏ´Â ºü¸£°í ½Å·ÚÇÒ ¼ö ÀÖ´Â DNA ÁõÆø ¹æ¹ýÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¸¶ÀÌÅ©·ÎÇ÷çÀ̵å, ÀÚµ¿È ¹× HTS Ç÷§ÆûÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ, ÇÏÀ̽º·çDz ¿öÅ©Ç÷ο츦 Áö¿øÇÒ ¼ö ÀÖ´Â DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù.
¸¹Àº Á¦Á¶¾÷ü¿Í °ø±Þ¾÷ü°¡ ´Ù¾çÇÑ DNA ÁßÇÕÈ¿¼Ò¸¦ Á¦°øÇϱ⠶§¹®¿¡ °æÀïÀº °¡°Ý °æÀïÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. °¢ ȸ»ç´Â ½ÃÀå Á¡À¯À²À» È®º¸Çϱâ À§ÇØ °æÀïÇÏ°í °í°´À» È®º¸Çϱâ À§ÇØ °¡°ÝÀ» ³·Ã߱⵵ ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °¡°Ý ¾Ð·ÂÀº ¼öÀÍ·üÀ» ³·Ãß°í Á¦Á¶¾÷ü°¡ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰųª Á¦Ç° Ç°ÁúÀ» À¯ÁöÇÏ´Â °ÍÀ» ¾î·Æ°Ô ¸¸µì´Ï´Ù. Ä¡¿ÇÑ °æÀïÀº DNA ÁßÇÕÈ¿¼ÒÀÇ »óǰȸ¦ ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. °í°´ÀÌ ÀÌ·¯ÇÑ È¿¼Ò¸¦ ±³È¯ °¡´ÉÇÑ »óÇ°À¸·Î ÀνÄÇϸé Ç°Áúº¸´Ù ºñ¿ëÀ» ¿ì¼±½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ç°í¹æ½ÄÀº ¼º´É°ú Çõ½Å¼ºÀ» ±â¹ÝÀ¸·Î Á¦Ç°À» Â÷º°ÈÇÏ·Á´Â ³ë·ÂÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº È¥ÀâÇÑ ½ÃÀå¿¡¼ DNA ÁßÇÕÈ¿¼Ò Á¦Ç°À» Â÷º°ÈÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀϺΠ±â¾÷Àº ±â´ÉÀÌ °ÈµÈ µ¶ÀÚÀûÀÎ È¿¼Ò º¯Á¾ °³¹ß¿¡ ÅõÀÚÇÏ´Â ¹Ý¸é, ´Ù¸¥ ±â¾÷Àº ´«¿¡ ¶ç´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â °í°´µé »çÀÌ¿¡¼ µ¶Ã¢¼º°ú °¡Ä¡¸¦ ÀÎÁ¤¹ÞÁö ¸øÇÏ´Â °á°ú·Î À̾îÁý´Ï´Ù. °¡°Ý °æÀï ¾Ð·Â°ú ½ÃÀå Æ÷È »óÅ´ R&D ÅõÀÚ¸¦ ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ±â¼ú Çõ½Åº¸´Ù ºñ¿ë Àý°¨À» ¿ì¼±½ÃÇÏ¿© Ãæ½Çµµ, °¡°ø¼º ¹× ¾ïÁ¦Á¦ ³»¼º°ú °°Àº È¿¼Ò Ư¼ºÀÇ ÁøÀüÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀÌ Æ÷È »óÅÂÀ̱⠶§¹®¿¡ ½Å±Ô ÁøÀÔÀÚ°¡ DNA ÁßÇÕÈ¿¼Ò ½ÃÀå¿¡¼ ¹ßÆÇÀ» ¸¶·ÃÇϱ⠾î·Æ½À´Ï´Ù. ±âÁ¸ ±â¾÷µéÀº ºê·£µå ÀÎÁöµµ, °í°´ °ü°è, ±Ô¸ðÀÇ °æÁ¦ µî °æÀï ¿ìÀ§¸¦ °¡Áö°í ÀÖ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ´Â ÀáÀçÀûÀÎ Çõ½Å°¡µéÀÌ ½ÃÀå¿¡ ÁøÀÔÇÏ´Â °ÍÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ °ø±Þ¾÷ü´Â °í°´°úÀÇ ¿À·£ °ü°è¸¦ ÅëÇØ ÀÌÀÍÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °ü°è´Â Çõ½ÅÀûÀÎ Á¦Ç°ÀÌ µîÀåÇÏ´õ¶óµµ °í°´ÀÌ »õ·Î¿î °ø±Þ¾÷ü·Î ÀüȯÇÏ´Â °ÍÀ» ¾î·Æ°Ô ¸¸µå´Â Ã漺µµ¸¦ Çü¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. °ø±Þ¾÷ü º¯°æ¿¡ µû¸¥ ºñ¿ë°ú ³ë·ÂÀº »ó´çÇÒ ¼ö ÀÖ½À´Ï´Ù.
ƯÈ÷ Áø´Ü ¹× ÀÓ»ó ÀÀ¿ë ºÐ¾ß¿¡ »ç¿ëµÇ´Â DNA ÁßÇÕÈ¿¼ÒÀÇ °æ¿ì, ´Ù¾çÇÑ ±ÔÁ¦ ±âÁØ°ú ÀÎÁõÀ» ÁؼöÇÏ´Â °ÍÀº ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ÀÛ¾÷ÀÔ´Ï´Ù. ±ÔÁ¦ ÇöȲÀ» ÆľÇÇÏ´Â °ÍÀº ½ÃÀå ÁøÀÔ°ú ½ÃÀå È®´ë¿¡ º¹À⼺À» ÃÊ·¡ÇÏ°í ¹®¼È ¹× Å×½ºÆ®¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÊ¿ä·Î Çϸç, DNA ÁßÇÕÈ¿¼Ò Á¦Ç°ÀÇ ¼º´É°ú Ç°ÁúÀÇ ÀÏ°ü¼ºÀ» À¯ÁöÇÏ´Â °ÍÀº ƯÈ÷ ½Å·Ú¼ºÀÌ °¡Àå Áß¿äÇÑ ¿¬±¸ ¹× Áø´Ü ÀÀ¿ë ºÐ¾ß¿¡¼ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. È¿¼Ò ¼º´ÉÀÇ ÀÏ°ü¼ºÀÌ ¾øÀ¸¸é ½Å·ÚÇÒ ¼ö ¾ø´Â ½ÇÇè °á°ú¿Í Áø´Ü ¿À·ù·Î À̾îÁ® Á¦Ç°¿¡ ´ëÇÑ ½Å·Úµµ°¡ ¶³¾îÁú ¼ö ÀÖÀ¸¸ç, DNA ÁßÇÕÈ¿¼Ò´Â »ý¹°ÇÐÀû Á¦Ç°À̱⠶§¹®¿¡ ¹èÄ¡ °£ ÆíÂ÷°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹èÄ¡ °£ ÆíÂ÷¸¦ ÃÖ¼ÒÈÇÏ´Â °ÍÀº ¾î·ÆÁö¸¸ °í°´ÀÇ ±â´ë¿¡ ºÎÀÀÇϱâ À§Çؼ´Â ÇʼöÀûÀÔ´Ï´Ù. °ø±Þ¾÷ü´Â ÀÌ·¯ÇÑ ÆíÂ÷¸¦ ÁÙÀ̱â À§ÇØ °ß°íÇÑ Ç°Áú °ü¸® ÇÁ·Î¼¼½º¸¦ µµÀÔÇØ¾ß ÇÕ´Ï´Ù. ¾ö°ÝÇÑ Ç°Áú °ü¸® ¹× Ç°Áú º¸Áõ ÇÁ·Î¼¼½º¸¦ µµÀÔÇÏ°í À¯ÁöÇÏ´Â µ¥´Â ºñ¿ëÀÌ µì´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë¿¡´Â ¼³ºñ ÅõÀÚ, Àη ±³À°, ±ÔÁ¤ Áؼö ¹®¼È µîÀÌ Æ÷ÇÔµÇ¸ç ¼öÀÍ·üÀ» ³·Ãâ ¼ö ÀÖ½À´Ï´Ù. °í°´µéÀº Á¾Á¾ DNA ÁßÇÕÈ¿¼ÒÀÇ Æ¯Á¤ ¿ëµµ¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ °ËÁõ°ú °ËÁõÀ» ¿ä±¸Çϴµ¥, ÀÌ´Â ÀÚ¿ø Áý¾àÀûÀÌ°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµË´Ï´Ù. °ø±Þ¾÷ü´Â °í°´ÀÇ °ËÁõ ÀÛ¾÷À» Áö¿øÇϱâ À§ÇØ Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ¿Í ¹®¼¸¦ Á¦°øÇØ¾ß ÇÕ´Ï´Ù.
¸ÂÃãÇü DNA ÁßÇÕÈ¿¼Ò´Â ¿¬±¸ÀÚ¿¡°Ô ³ôÀº À¯¿¬¼ºÀ» Á¦°øÇϸç, DNA ÁßÇÕÈ¿¼Ò´Â ½ÇÇè ¿ä±¸ »çÇ׿¡ µû¶ó °íÃæ½Çµµ, °¡°ø¼º, ¾ïÁ¦Á¦ ³»¼º µî ƯÁ¤ Ư¼ºÀ» °®µµ·Ï ¼³°èÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀ¸·Î ÀÎÇØ ¿¬±¸ÀÚµéÀº »õ·Î¿î ¿¬±¸ ºÐ¾ß¸¦ °³Ã´ÇÒ ¼ö ÀÖ¾î ÀÌ È¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ¸ÂÃãÇü DNA ÁßÇÕÈ¿¼Ò´Â ƯÁ¤ ÀÀ¿ë ºÐ¾ß¿¡¼ Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â °á°ú¸¦ ¾òÀ» ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¿¬±¸ÀÚµéÀº DNA º¹Á¦ Áß ¿À·ù¸¦ ÃÖ¼ÒÈÇϰųª »ý¼ºµÈ µ¥ÀÌÅÍÀÇ Ç°ÁúÀ» Çâ»ó½ÃÅ°´Â °íÀ¯ÇÑ Æ¯¼ºÀ» °¡Áø È¿¼Ò¸¦ ¼±ÅÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃÖÀûÈ´Â ½ÇÇè °á°úÀÇ Çâ»óÀ¸·Î À̾îÁ® ºÐÀÚ»ý¹°ÇÐÀÇ ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ÀÌ È¿¼ÒµéÀÌ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ À¯ÀüüÇÐ, CRISPR-Cas9 À¯Àüü ÆíÁý, Â÷¼¼´ë ½ÃÄö½Ì°ú °°Àº »õ·Î¿î ±â¼úÀº Á¾Á¾ ƯÁ¤ Ư¼ºÀ» °¡Áø DNA ÁßÇÕÈ¿¼Ò¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¸ÂÃãÇü È¿¼Ò´Â ÇÊ¿äÇÑ Á¤¹Ðµµ¿Í È¿À²¼ºÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±â¼úÀ» °¡´ÉÇÏ°Ô ÇÏ°í ¼ºÀåÀ» ÃËÁøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù. ¸ÂÃãÇü DNA ÁßÇÕÈ¿¼Ò´Â Á¦¾à, »ý¸í°øÇÐ, Áø´Ü, Çмú ¿¬±¸ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ±× ´ÙÀç´Ù´ÉÇÔÀ¸·Î ÀÎÇØ ±âÃÊ ¿¬±¸ºÎÅÍ ÀÓ»ó Áø´Ü±îÁö ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ¸ç ½ÃÀå ¹üÀ§°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¸ÂÃãÀÇ·á¿Í Á¤¹ÐÀÇ·áÀÇ ¼ºÀåÀº °³ÀÎ À¯ÀüÀÚ Á¤º¸ÀÇ Á¤È®ÇÑ ºÐ¼®¿¡ ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. ¸ÂÃãÇü DNA ÁßÇÕÈ¿¼Ò´Â ºÐÀÚÁø´Ü ¹× ¾à¸®À¯ÀüüÇп¡¼ ÇʼöÀûÀ̸ç, ƯÁ¤ Áúº´°ú °ü·ÃµÈ À¯ÀüÀÚ º¯ÀÌ ¹× µ¹¿¬º¯À̸¦ ½Äº°ÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. À̴ ǥÀû Ä¡·á¹ý °³¹ßÀ» Áö¿øÇÏ°í ½ÃÀå ¼ö¿ä¸¦ °ßÀÎÇÒ °ÍÀÔ´Ï´Ù.
ÃÊ°íÃæ½Çµµ ÁßÇÕÈ¿¼Ò´Â DNA º¹Á¦¿¡¼ Àü·Ê ¾ø´Â ¼öÁØÀÇ Á¤È®¼ºÀ» Á¦°øÇϸç, DNA ÇÕ¼º ½Ã ¿À·ù¸¦ ÃÖ¼ÒÈÇÏ´Â ´É·ÂÀº Á¤È®¼º°ú ½Å·Ú¼ºÀÌ °¡Àå Áß¿äÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ÇʼöÀûÀÔ´Ï´Ù. ƯÈ÷ À¯ÀüüÇÐ ¹× Áø´Ü ¿¬±¸ÀÚµéÀº °íÇ°Áú µ¥ÀÌÅ͸¦ ¾ò±â À§ÇØ ÀÌ È¿¼Ò¿¡ ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. À¯ÀüüÇÐ ¿¬±¸ ºÐ¾ß¿¡¼ ÃÊ°íÃæ½Çµµ ÁßÇÕÈ¿¼Ò´Â Å« ÇýÅÃÀ» °¡Á®¿Ô½À´Ï´Ù. À¯ÀüüÇÐ ÇÁ·ÎÁ§Æ®´Â Àüü °Ô³ðÀ» Á¤È®ÇÏ°Ô Çص¶ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ È¿¼Ò´Â ¿°±â¼¿ ¿À·ù¸¦ ÃÖ¼ÒÈÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ Æ¯¼ö ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© DNA ÁßÇÕÈ¿¼Ò ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ À¯ÀüüÇÐ ±â¼úÀº °³º° ¼¼Æ÷ÀÇ °Ô³ðÀ» ºÐ¼®ÇÏ´Â ±â¼úÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼´Â DNA º¹Á¦ÀÇ Á¤È®¼ºÀÌ Áß¿äÇÕ´Ï´Ù. ÃÊ°íÃæ½Çµµ ÁßÇÕÈ¿¼Ò´Â ¿¬±¸ÀÚµéÀÌ ´ÜÀÏ ¼¼Æ÷¿¡¼ ½Å·ÚÇÒ ¼ö ÀÖ´Â °Ô³ð µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ÀÌ Ã·´Ü ºÐ¾ßÀÇ È®ÀåÀ» µÞ¹ÞħÇÏ°í ÀÖ½À´Ï´Ù. ¾Ï À¯ÀüüÇп¡¼ ü¼¼Æ÷ µ¹¿¬º¯ÀÌ ¹× À¯ÀüÀÚ º¯È¸¦ ½Äº°ÇÏ´Â °ÍÀº Á¾¾çÀÇ »ý¹°ÇÐÀ» ÀÌÇØÇÏ°í Ä¡·á ¹æħÀ» °áÁ¤ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÃÊ°íÃæ½Çµµ ÁßÇÕÈ¿¼Ò´Â Èñ±Í µ¹¿¬º¯ÀÌÀÇ Á¤È®ÇÑ °ËÃâ¿¡ ±â¿©ÇÏ¿© ¾Ï ¿¬±¸¿Í Áø´Ü¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù. °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ ¹ßÀüÀº °³ÀÎÀÇ °Ç° »óÅ ¹× ¾à¹° ¹ÝÀÀ°ú °ü·ÃµÈ À¯ÀüÀÚ µ¹¿¬º¯À̸¦ Á¤È®ÇÏ°Ô ½Äº°ÇÏ´Â µ¥ ´Þ·Á ÀÖ½À´Ï´Ù. ÃÊ°íÃæ½Çµµ ÁßÇÕÈ¿¼Ò´Â ¿À·ù ¾ø´Â À¯ÀüÀÚ Á¤º¸¸¦ ¾òÀ» ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ¸ç, ¸ÂÃãÇü Ä¡·á Àü·«ÀÇ °³¹ßÀ» Áö¿øÇÕ´Ï´Ù.
À¯Çüº°·Î´Â Taq ÁßÇÕÈ¿¼Ò ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È »ó´çÇÑ ½ÃÀå ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, Taq ÁßÇÕÈ¿¼Ò´Â DNA ºÎ¹®À» ÁõÆøÇϴ ȹ±âÀûÀÎ ¹æ¹ýÀÎ PCR ±â¼ú¿¡ »ç¿ëµÈ ÃÖÃÊÀÇ È¿¼ÒÀ̸ç, PCRÀÇ °í¿ÂÀ» °ßµô ¼ö ÀÖ´Â ³»¿¼ºÀº ȹ±âÀûÀ̾ú½À´Ï´Ù. PCRÀº ºÐÀÚ»ý¹°ÇÐ, À¯ÀüÇÐ, ¹ýÀÇÇÐ, Áø´ÜÇÐÀÇ ±âÃÊ ±â¼úÀÌ µÇ¾úÀ¸¸ç, Taq ÁßÇÕÈ¿¼Ò´Â À¯ÀüÀÚ ÁõÆø, À¯ÀüÀÚÇü ºÐ¼®, DNA ¿°±â¼¿ ºÐ¼®, µ¹¿¬º¯ÀÌ ºÐ¼®°ú °°Àº PCR ÀÀ¿ë ºÐ¾ß¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Taq ÁßÇÕÈ¿¼Ò´Â ÀüÅëÀûÀÎ PCR, ¿ªÀü»ç PCR(RT-PCR), Á¤·®Àû PCR(qPCR), µðÁöÅÐ PCR(dPCR) µî ´Ù¾çÇÑ PCR Çü½Ä¿¡ Àû¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ´Ù¾çÇÑ °úÇÐ ºÐ¾ß¿¡ °ÉÃÄ ½ÃÀåÀ» È®´ëÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ÙÀç´Ù´ÉÇÔÀº ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇϸç, ´Ù¾çÇÑ PCR ±â¼ú¿¡¼ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù. ÈÞ´ë¿ë Áø´Ü ±â±â ¹× ÇöÀå Áø´Ü ±â±â °³¹ßÀº Taq ÁßÇÕÈ¿¼Ò¿Í °°Àº È¿¼Ò¿Í ·çÇÁ ¸Å°³ µî¿ÂÁõÆø¹ý(LAMP)°ú °°Àº µî¿ÂÁõÆø¹ý°úÀÇ È£È¯¼º¿¡ ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¼ºÀå ½ÃÀåÀÎ ½Å¼ÓÇÑ ÇöÀå Áúº´ °ËÃâ¿¡ ÇʼöÀûÀ̸ç, Taq ÁßÇÕÈ¿¼ÒÀÇ ¸ÖƼÇ÷º½º PCR ¹× ÇÏÀ̽º·çDz ½ºÅ©¸®´× ±â¼ú°úÀÇ È£È¯¼ºÀº ¿©·¯ °³ÀÇ DNA Ç¥ÀûÀ» µ¿½Ã¿¡ ÁõÆøÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ´É·ÂÀº º´¿øü °ËÃâ, ¹ýÀÇÇÐ ºÐ¼®, ½Å¾à °³¹ß µîÀÇ ÀÀ¿ë ºÐ¾ß¿¡¼ °¡Ä¡°¡ ÀÖ½À´Ï´Ù.
ÀÀ¿ë ºÐ¾ßº°·Î º¸¸é ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(Polymerase Chain Reaction) ºÐ¾ß°¡ ½ÃÀåÀ» µ¶Á¡ÇÏ°í ÀÖÀ¸¸ç, 1980³â´ë¿¡ °³¹ßµÈ PCRÀº DNAÀÇ ±âÇϱ޼öÀû ÁõÆøÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ºÐÀÚ»ý¹°Çп¡ Çõ¸íÀ» ÀÏÀ¸Ä×À¸¸ç, DNA ÁßÇÕÈ¿¼Ò, ƯÈ÷ Taq PCRÀº À¯ÀüÇÐ, À¯ÀüüÇÐ, ¹Ì»ý¹°ÇÐ, ¹ýÀÇÇÐ, Áø´ÜÇÐÀÇ ±âº» ±â¼úÀ̸ç, PCRÀº PCRÀÇ Áß½ÉÀÌ µÇ¾î ÀÌ·¯ÇÑ È¿¼ÒÀÇ ¼ö¿ä¸¦ ÃËÁøÇß½À´Ï´Ù. ´Ù¾çÇÑ °úÇÐ ºÐ¾ß¿¡¼ PCRÀÌ ±¤¹üÀ§ÇÏ°Ô Ã¤ÅõǾî DNA ÁßÇÕÈ¿¼Ò ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÁÖµµÇÏ°í ÀÖÀ¸¸ç, PCRÀº À¯ÀüüÇÐ, ±â´É À¯ÀüüÇÐ, À¯ÀüÀÚ ¹ßÇö ºÐ¼®, µ¹¿¬º¯ÀÌ °ËÃâ ¹× DNA ½ÃÄö½Ì¿¡ ´ëÇÑ ¿¬±¸¸¦ °¡¼ÓÈÇß½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ PCRÀ» ¼öÇàÇϱâ À§ÇØ DNA ÁßÇÕÈ¿¼Ò¿¡ ÀÇÁ¸ÇÏ°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ö¿ä¸¦ Áö¼ÓÀûÀ¸·Î Áõ°¡½ÃÅ°°í ÀÖÀ¸¸ç, PCRÀº ºÐÀÚ Áø´ÜÀÇ ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. º´¿øü °ËÃâ(°¨¿° µî), À¯Àü¼º Áúȯ °Ë»ç, ¾Ï Áø´Ü, ¾à¹° ³»¼º ¸ð´ÏÅ͸µ µî¿¡ »ç¿ëµË´Ï´Ù. Áø´Ü ½ÃÀåÀÇ ¼ºÀåÀº DNA ÁßÇÕÈ¿¼ÒÀÇ Áß¿äÇÑ ¼ºÀå µ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, PCR ±â¹Ý ÇöÀåÁø´Ü(POC) Àåºñ°¡ µîÀåÇÏ¿© ÇöÀå¿¡¼ ½Å¼ÓÇÏ°Ô Áúº´À» °¨ÁöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Àåºñ´Â µî¿ÂÁõÆø ±â¼ú¿¡ ÀûÇÕÇÑ DNA ÁßÇÕÈ¿¼Ò°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ POC Áø´ÜÀ¸·Î ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì, ƯÈ÷ ¹Ì±¹Àº »ý¸í°øÇÐ ¹× Á¦¾à »ê¾÷ÀÌ È°¹ßÇϱ⠶§¹®¿¡ DNA ÁßÇÕÈ¿¼Ò ½ÃÀåÀÌ 2022³â ½ÃÀåÀ» Àå¾ÇÇß½À´Ï´Ù. ÀÌµé »ê¾÷Àº ¿¬±¸, ½Å¾à °³¹ß ¹× °³¹ßÀ» À§ÇØ DNA ÁßÇÕ È¿¼Ò¿¡ Å©°Ô ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. ¼ö¸¹Àº »ý¸í°øÇÐ ¹× Á¦¾à ȸ»çÀÇ Á¸Àç´Â ÀÌ Áö¿ª¿¡¼ DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡´Â ºÐÀÚ»ý¹°ÇÐ, À¯ÀüüÇÐ, À¯ÀüÇÐ ¿¬±¸¿¡ Á¾»çÇÏ´Â ±ÇÀ§ ÀÖ´Â Çмú ¿¬±¸±â°üÀÌ ¸¹ÀÌ ÀÖ½À´Ï´Ù. ÀÌµé ±â°üÀº À¯ÀüüÇÐ, ¾Ï ¿¬±¸, ±â´ÉÀ¯ÀüüÇÐ µî ´Ù¾çÇÑ ¿¬±¸¿¡ DNA ÁßÇÕÈ¿¼Ò¸¦ ¸¹ÀÌ È°¿ëÇÏ°í ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ ¿¬±¸±â°üµéÀº À¯ÀüüÇÐ ¹× »ý¸í°úÇÐ ¿¬±¸¸¦ À§ÇØ ¸¹Àº ÀÚ±ÝÀ» Áö¿ø¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ ÀÚ±Ý Áö¿øÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº ÷´Ü ±â¼úÀ» È°¿ëÇÏ°í ½ÇÇè¿¡ »ç¿ëÇÒ °íÇ°Áú DNA ÁßÇÕÈ¿¼Ò¸¦ ±¸ÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ÀÓ»ó Áø´Ü ºÐ¾ß°¡ ¹ß´ÞÇØ ÀÖ¾î ºÐÀÚ Áø´Ü¿¡¼ DNA ÁßÇÕÈ¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô½À´Ï´Ù. ÀÌ·¯ÇÑ È¿¼Ò´Â Á¤È®ÇÑ Áúº´ Áø´Ü, ¸ð´ÏÅ͸µ ¹× À¯ÀüÀÚ °Ë»ç¿¡ ÇʼöÀûÀÌ¸ç ½ÃÀå ¼ºÀå¿¡ Å©°Ô ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Á¦¾à¾÷°è´Â DNA ÁßÇÕÈ¿¼Ò¸¦ ½Å¾à Ÿ±ê °ËÁõ, À¯ÀüÇü ºÐ¼®, À¯ÀüÀÚ ¹ßÇö ºÐ¼®, Ä¡·á¹ý °³¹ß¿¡ È°¿ëÇÏ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì Á¦¾à»çµéÀº ÀÌ·¯ÇÑ ¿ëµµ·Î DNA ÁßÇÕÈ¿¼Ò ¼ö¿ä¸¦ ÁÖµµÇÏ°í ÀÖ½À´Ï´Ù.
The Global DNA Polymerase Market, valued at USD 121.12 million in 2022, is poised for robust growth in the forecast period, expected to exhibit a steady CAGR of 4.66% through 2028. DNA polymerase, a group of enzymes, plays a catalytic role in DNA synthesis during the process of replication. Its primary function is to duplicate the DNA of a cell during cell division. Nucleotides are added to the developing DNA strand's 3'OH group, a crucial step that facilitates the transmission of genetic material from one generation to the next.
The market is a driving force behind the increasing demand for Polymerase Chain Reaction (PCR) and DNA sequencing technologies in both research and clinical applications. As genetic research continues to advance and the demand for personalized medicine grows, the need for DNA polymerases is expected to rise even further. Furthermore, the market is expanding due, in part, to the increasing incidence of infectious diseases and genetic disorders.
The Global DNA Polymerase Market serves as a vital component in the field of molecular biology and genetics, ensuring the accurate replication and transmission of genetic information, thereby contributing to advancements in healthcare and scientific research.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 121.12 Million |
Market Size 2028 | USD 158.88 Million |
CAGR 2023-2028 | 4.66% |
Fastest Growing Segment | Pharmaceutical & Biotechnology Companies |
Largest Market | North America |
As molecular biology research has progressed, there has been a surge in the demand for DNA sequencing, genotyping, and genomics studies. DNA polymerases are essential enzymes in these processes, used for DNA amplification and sequencing reactions. The growing need for accurate and high-throughput sequencing technologies has driven the demand for specialized DNA polymerases, boosting the market. Polymerase Chain Reaction (PCR) is a cornerstone technique in molecular biology research. It relies on DNA polymerases to amplify specific DNA sequences. Advancements in PCR technology, including quantitative PCR (qPCR) and digital PCR, have broadened the scope of applications for DNA polymerases. Researchers require polymerases with specific properties, such as high fidelity and thermostability, to cater to their evolving needs. The advent of CRISPR-Cas9 and other gene editing technologies has revolutionized molecular biology research. DNA polymerases play a role in repairing DNA breaks generated during gene editing. Researchers often seek DNA polymerases with unique properties, such as high efficiency and error correction, to improve the precision of these techniques. Molecular biology research has led to a better understanding of enzyme structure and function. This knowledge has facilitated the engineering of DNA polymerases with customized properties. Researchers can now design and synthesize DNA polymerases tailored for specific applications, thus driving innovation and expanding the market. Advancements in molecular biology have led to the emergence of new fields such as synthetic biology and metagenomics. These fields require specialized DNA polymerases to synthesize artificial DNA constructs and analyze complex microbial communities. This diversification of applications contributes to the growing demand for DNA polymerases. DNA polymerases are crucial in drug discovery and development, particularly in studying the effects of potential drug candidates on DNA replication and repair. As pharmaceutical companies intensify their research efforts, the demand for DNA polymerases for screening and validation studies has increased.
The demand for DNA polymerases has surged in the field of infectious disease diagnostics. Polymerase Chain Reaction (PCR) is widely used for the detection of pathogens like viruses and bacteria. The ongoing need for rapid, sensitive, and accurate diagnostic tests for infectious diseases, including emerging pathogens, has driven the growth of the DNA polymerase market. Novel DNA polymerases with improved performance characteristics are sought after to enhance the accuracy and speed of detection. DNA polymerases are essential for genetic disease screening and carrier testing. The expansion of genetic screening programs and the development of next-generation sequencing (NGS) technologies have led to an increased need for high-fidelity DNA polymerases that can accurately amplify and sequence specific genomic regions. These polymerases play a pivotal role in identifying genetic mutations associated with inherited diseases. Cancer diagnostics rely heavily on DNA polymerases for the detection of genetic mutations and alterations associated with various cancer types. Liquid biopsy techniques, which involve analyzing circulating tumor DNA (ctDNA), require sensitive DNA polymerases to detect rare mutations. The growing emphasis on early cancer detection and personalized treatment has fueled the demand for DNA polymerases in this area. The field of pharmacogenomics aims to tailor drug treatments to an individual's genetic profile. DNA polymerases are used to sequence and analyze patient DNA to identify genetic variations that may affect drug responses. As personalized medicine gains prominence, the need for DNA polymerases in pharmacogenomic diagnostics is expected to grow. Prenatal diagnostics, including non-invasive prenatal testing (NIPT), rely on DNA polymerases to analyze fetal DNA in maternal blood. These tests are used to screen for genetic abnormalities in the developing fetus. The expanding availability and acceptance of prenatal testing has driven the demand for DNA polymerases that can provide accurate and reliable results. The forensic science community relies on DNA polymerases for DNA profiling and crime scene analysis. Advancements in forensic DNA techniques, such as miniSTR analysis and low-copy-number DNA analysis, require specialized DNA polymerases that can amplify trace amounts of DNA. The demand for these polymerases is driven by law enforcement agencies and crime laboratories.
Technological advancements in enzyme engineering have allowed scientists to modify and optimize DNA polymerases for specific applications. This has led to the development of DNA polymerases with enhanced properties such as higher fidelity, greater processivity, and increased resistance to inhibitors. These engineered polymerases are in high demand for research and diagnostic purposes, thereby driving market growth. NGS technologies have transformed genomics research by enabling high-throughput DNA sequencing. DNA polymerases play a critical role in NGS library preparation and sequencing reactions. As NGS becomes more widespread in applications like genomics, transcriptomics, and metagenomics, the demand for high-performance DNA polymerases has grown significantly. Technological innovations have led to single-molecule sequencing platforms that rely on DNA polymerases to read individual DNA strands in real-time. These platforms offer advantages in terms of accuracy and detection of structural variations. DNA polymerases compatible with single-molecule sequencing have become essential components, driving market growth. Advances in synthetic biology have led to the development of nucleotide analogs and base editing technologies. DNA polymerases are crucial in incorporating these modified nucleotides into DNA strands. These technologies have applications in gene therapy, genome editing, and drug development, contributing to the growth of the DNA polymerase market. Miniaturization and portability have become key trends in molecular biology and diagnostics. Compact instruments for PCR, point-of-care testing, and fieldwork rely on DNA polymerases to function. Technological advancements in miniaturizing and optimizing these instruments have increased the demand for DNA polymerases in portable applications. High-throughput screening in drug discovery and genomics research requires fast and reliable DNA amplification methods, often based on DNA polymerase enzymes. Technological advancements in microfluidics, automation, and HTS platforms have increased the need for DNA polymerases capable of supporting high-throughput workflows.
With numerous manufacturers and suppliers offering a wide array of DNA polymerase variants, competition can lead to price wars. As companies compete to secure market share, they may lower prices to attract customers. This price pressure can erode profit margins, making it challenging for manufacturers to invest in research and development or maintain product quality. Intense competition can lead to the commoditization of DNA polymerases. When customers perceive these enzymes as interchangeable commodities, they may prioritize cost over quality. This mindset can hinder efforts to differentiate products based on performance and innovation. Manufacturers face difficulties in differentiating their DNA polymerase products in a crowded market. While some companies invest in developing proprietary enzyme variants with enhanced features, others may struggle to stand out. This can lead to a lack of perceived uniqueness and value among customers. The pressure to compete on price and the saturation of the market can discourage investments in research and development. Companies may prioritize cost-cutting measures over innovation, resulting in fewer advancements in enzyme properties, such as fidelity, processivity, and resistance to inhibitors. Market saturation makes it challenging for new entrants to gain a foothold in the DNA polymerase market. Established players often have a competitive advantage, including brand recognition, customer relationships, and economies of scale. This can deter potential innovators from entering the market. Established suppliers may benefit from long-standing relationships with customers. These relationships can create a sense of loyalty that makes it difficult for customers to switch to new suppliers, even if innovative products become available. The costs and effort associated with changing suppliers can be substantial.
Ensuring compliance with various regulatory standards and certifications, particularly for DNA polymerases used in diagnostic and clinical applications, can be time-consuming and costly. Navigating the regulatory landscape adds complexity to market entry and expansion, requiring substantial investments in documentation and testing. Maintaining consistency in the performance and quality of DNA polymerase products is crucial, especially for research and diagnostic applications where reliability is paramount. Inconsistent enzyme performance can lead to unreliable experimental results or diagnostic errors, eroding trust in the product. DNA polymerases are biological products, and variations can occur from one batch to another. Ensuring minimal batch-to-batch variability is challenging but essential to meet customer expectations. Suppliers must implement robust quality control processes to mitigate these variations. Implementing and maintaining stringent quality control and quality assurance processes can be expensive. These costs may include investments in equipment, personnel training, and compliance documentation, which can reduce profit margins. Customers often require extensive validation and verification of DNA polymerases for specific applications, which can be resource-intensive and time-consuming. Suppliers must provide comprehensive data and documentation to support customers in their validation efforts.
Customized DNA polymerases provide researchers with a high degree of flexibility. They can be engineered to possess specific properties, such as high fidelity, processivity, or resistance to inhibitors, depending on the experimental requirements. This flexibility encourages researchers to explore new avenues of investigation, fueling demand for these enzymes. Customized DNA polymerases are designed to deliver precise and reliable results in particular applications. Researchers can choose enzymes that minimize errors during DNA replication or exhibit unique characteristics that enhance the quality of data generated. This optimization leads to improved experimental outcomes, making these enzymes indispensable in various fields of molecular biology. Emerging technologies, such as single-cell genomics, CRISPR-Cas9 genome editing, and next-generation sequencing, often require DNA polymerases with specific attributes. Customized enzymes play a pivotal role in enabling these technologies by offering the required precision and efficiency, thus fostering their growth. Customized DNA polymerases find applications across a wide spectrum of industries, including pharmaceuticals, biotechnology, diagnostics, and academic research. Their versatility allows them to be used in diverse applications, from basic research to clinical diagnostics, expanding their market reach. The growth of personalized and precision medicine relies on the accurate analysis of individual genetic information. Customized DNA polymerases are essential in molecular diagnostics and pharmacogenomics, enabling the identification of genetic variations and mutations associated with specific diseases. This supports the development of targeted therapies and drives market demand.
Ultra-high fidelity polymerases offer an unprecedented level of accuracy in DNA replication. Their ability to minimize errors during DNA synthesis makes them indispensable in applications where precision and reliability are paramount. Researchers, particularly in genomics and diagnostics, rely on these enzymes to generate high-quality data. The genomics research field benefits significantly from ultra-high-fidelity polymerases. As genomics projects aim to decipher entire genomes with precision, these enzymes are crucial for minimizing sequencing errors. This drives demand for these specialized polymerases and fosters growth in the DNA polymerase market. Single-cell genomics techniques involve analyzing the genomes of individual cells. The accuracy of DNA replication is critical in these applications. Ultra-high-fidelity polymerases enable researchers to obtain reliable genomic data from single cells, supporting the expansion of this cutting-edge field. In cancer genomics, identifying somatic mutations and genetic alterations is essential for understanding tumor biology and guiding treatment decisions. Ultra-high-fidelity polymerases contribute to the accurate detection of rare mutations, making them invaluable in cancer research and diagnostics. The growth of personalized medicine relies on the accurate identification of genetic variations associated with individual health conditions and drug responses. Ultra-high fidelity polymerases are instrumental in obtaining error-free genetic information, supporting the development of tailored treatment strategies.
Based on the Type, the Taq Polymerase segment is anticipated to witness substantial market growth throughout the forecast period. Taq polymerase was the first enzyme used in the PCR technique, a revolutionary method that amplifies DNA segments. Its heat-resistant nature, which allows it to withstand the high temperatures of PCR, was a breakthrough. The widespread adoption of PCR in research, diagnostics, and various industries has driven demand for Taq polymerase. PCR has become a cornerstone technology in molecular biology, genetics, forensics, and diagnostics. Taq polymerase's crucial role in PCR applications, including gene amplification, genotyping, DNA sequencing, and mutation analysis, has expanded its market reach across diverse scientific disciplines. Taq polymerase can be adapted to various PCR formats, including traditional PCR, reverse transcription PCR (RT-PCR), quantitative PCR (qPCR), and digital PCR (dPCR). Its versatility makes it suitable for a wide range of applications, fostering market growth across different PCR techniques. The development of portable and point-of-care diagnostic devices relies on the compatibility of enzymes like Taq polymerase with isothermal amplification methods, such as loop-mediated isothermal amplification (LAMP). These technologies are integral to rapid and on-site disease detection, which is a growing market segment. Taq polymerase's compatibility with multiplex PCR and high-throughput screening techniques is essential for simultaneously amplifying multiple DNA targets. This capability is valuable in applications such as pathogen detection, forensic analysis, and drug discovery.
Based on the Application segment, the Polymerase Chain Reaction segment has been the dominant force in the market. PCR, which was developed in the 1980s, revolutionized molecular biology by enabling the exponential amplification of DNA. DNA polymerases, especially Taq polymerase, became central to PCR, spurring the demand for these enzymes. PCR is a fundamental technique in genetics, genomics, microbiology, forensics, and diagnostics. The broad adoption of PCR across various scientific disciplines has been a driving force behind the sustained growth of the DNA polymerase market. PCR has accelerated research in genomics, functional genomics, gene expression analysis, mutation detection, and DNA sequencing. Researchers rely on DNA polymerases to perform PCR for these applications, continuously fueling market demand. PCR has become a cornerstone in molecular diagnostics. It is used for pathogen detection (e.g., infectious diseases), genetic disease screening, cancer diagnosis, and monitoring drug resistance. The growth of the diagnostic market has been a significant driver for DNA polymerases. PCR-based point-of-care (POC) devices have emerged, enabling rapid and on-site disease detection. These devices require DNA polymerases compatible with isothermal amplification techniques, expanding the market's reach into POC diagnostics.
North America, specifically the DNA Polymerase Market, dominated the market in 2022, primarily due to North America, particularly the United States, is home to a thriving biotechnology and pharmaceutical industry. These industries rely heavily on DNA polymerases for research, drug discovery, and development. The presence of numerous biotech and pharma companies fuels the demand for DNA polymerases in the region. North America hosts a multitude of prestigious academic and research institutions involved in molecular biology, genomics, and genetics research. These institutions are prolific users of DNA polymerases for various studies, including genomics, cancer research, and functional genomics. North American research institutions benefit from substantial funding for genomics and life sciences research. This financial support enables researchers to access advanced technologies and purchase high-quality DNA polymerases for their experiments. North America has a robust clinical diagnostics sector, with a high demand for DNA polymerases in molecular diagnostics. These enzymes are essential for accurate disease diagnosis, monitoring, and genetic testing, contributing significantly to market growth. The region's pharmaceutical industry relies on DNA polymerases for drug target validation, genotyping, gene expression analysis, and therapeutic development. North American pharmaceutical companies drive the demand for DNA polymerases in these applications.
In this report, the Global DNA Polymerase Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: