½ÃÀ庸°í¼­
»óǰÄÚµå
1372784

½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â) : ±â¼úº°, Á¦Ç°º°, ¿ëµµº°, Áö¿ªº°, °æÀï

Real-time PCR, Digital PCR & End-point PCR Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Technology, By Product, By Application, By Region, By Competition Forecast & Opportunities, 2018-2028F

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 172 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

2022³â ¼¼°è ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀåÀº 80¾ï 1,000¸¸ ´Þ·¯ ±Ô¸ð·Î 2028³â±îÁö 6.03%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ PCR(ÁßÇÕÈ¿¼Ò¿¬¼â¹ÝÀÀ) ½ÃÀåÀº ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCRÀÇ ¼¼ °¡Áö ±â¼úÀÌ Æ¯Â¡ÀÔ´Ï´Ù.

½Ç½Ã°£ PCRÀº ¾à 40¾ï ´Þ·¯ ±Ô¸ð·Î ÀÌ ½ÃÀå¿¡¼­ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ DNA ÁõÆøÀ» Á¤·®ÀûÀ¸·Î ÃøÁ¤ÇÒ ¼ö ÀÖ´Â ´ÙÀç´Ù´ÉÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ PCRÀº ÀÓ»ó Áø´Ü, À¯ÀüÀÚ ¹ßÇö ºÐ¼®, º´¿øÃ¼ °ËÃâ µî ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ¸ç, ½á¸ðÇǼŠ»çÀ̾ðƼÇÈ(Thermo Fisher Scientific), ¹ÙÀÌ¿À¶óµå(Biolad Laboratories) µî ¾÷°è ¼±µÎÁÖÀÚµéÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

µðÁöÅÐ PCRÀº ½ÃÀå ±Ô¸ð´Â 4¾ï 5,000¸¸ ´Þ·¯ Á¤µµ·Î ÀÛÁö¸¸ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ÇÙ»ê Á¤·®ÀÇ ³ôÀº Á¤È®µµ¿Í Èñ±Í µ¹¿¬º¯ÀÌ °ËÃâ¿¡ ´ëÇÑ ÀÀ¿ë¿¡ ±âÀÎÇÕ´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024-2028³â
2022³â ½ÃÀå ±Ô¸ð 80¾ï 1,000¸¸ ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 114¾ï 7,000¸¸ ´Þ·¯
CAGR 2023-2028³â 6.03%
±Þ¼ºÀå ºÎ¹® ÀÓ»ó
ÃÖ´ë ½ÃÀå ºÏ¹Ì

±â¼úÀÌ ¼º¼÷ÇÏ°í ½ÃÀå ±Ô¸ð°¡ ¾ÈÁ¤ÀûÀÎ ¿£µåÆ÷ÀÎÆ® PCRÀº À¯ÀüÀÚÇü ºÐ¼®, DNA ¿°±â¼­¿­ ºÐ¼®, °¨¿° Áø´Ü µî ´Ù¾çÇÑ ºÐÀÚ»ý¹°ÇÐÀû ÀÀ¿ëºÐ¾ß¿¡ ÇʼöÀûÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå ÃËÁø¿äÀÎ

¸¸¼ºÁúȯ, °¨¿°¼º, À¯Àü¼º Áúȯ ¹ß»ý·ü Áõ°¡

¸¸¼º Áúȯ, °¨¿°¼º Áúȯ, À¯Àü¼º ÁúȯÀÇ ¹ßº´·ü Áõ°¡´Â ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀåÀ» Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¾Ï, ½ÉÇ÷°ü Áúȯ, ´ç´¢º´°ú °°Àº ¸¸¼º ÁúȯÀÇ Àü ¼¼°è ºÎ´ãÀº Áõ°¡ÇÏ´Â Ãß¼¼ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Áúº´Àº Á¶±â ¹ß°ß°ú Á¤È®ÇÑ ¸ð´ÏÅ͸µÀÌ ÇÊ¿äÇÕ´Ï´Ù. ½Ç½Ã°£ PCRÀº ½Ç½Ã°£ Á¤·®È­ ±â´ÉÀ» ÅëÇØ ÀÌ·¯ÇÑ Áúº´°ú °ü·ÃµÈ À¯ÀüÀÚ ¸¶Ä¿¸¦ Àû½Ã¿¡ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¶º¸ÀûÀÎ Á¤È®µµ·Î ¾Ë·ÁÁø µðÁöÅÐ PCRÀº Èñ±Í µ¹¿¬º¯ÀÌ °ËÃâÀ» µ½°í Á¶±â °³ÀÔ ¹× °³º°È­ µÈ Ä¡·á Àü·«À» ÃËÁøÇÕ´Ï´Ù. ÃÖ±Ù À¯ÇິÀ» Æ÷ÇÔÇÑ Àü¿°º´ÀÇ ÃâÇöÀº Á¤È®ÇÑ Áø´ÜÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ PCRÀº ¹ÙÀÌ·¯½º, ¹ÚÅ׸®¾Æ ¹× °õÆÎÀÌ º´¿øÃ¼¸¦ ŽÁöÇÏ´Â µ¥ µµ¿òÀ̵Ǿú½À´Ï´Ù. ±× ¼Óµµ¿Í ¹Î°¨µµ´Â °¨¿°ÀÇ ½Å¼ÓÇÑ ½Äº°°ú ºÀ¼â¸¦ Áö¿øÇÕ´Ï´Ù. ÇÑÆí, µðÁöÅÐ PCRÀº °¨¿° °ü¸®ÀÇ ÇÙ½ÉÀÎ ¹ÙÀÌ·¯½º ¾çÀ» ¸ð´ÏÅ͸µÇÏ´Â µ¥ ÀÖ¾î ¹Î°¨µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

À¯Àü¼º ÁúȯÀº °³ÀÎÀÇ À¯ÀüÀÚ ÇÁ·ÎÇÊ¿¡ ´ëÇÑ ¿ÏÀüÇÑ ÀÌÇØ°¡ ÇÊ¿äÇÕ´Ï´Ù. ½Ç½Ã°£ PCR°ú µðÁöÅÐ PCRÀº À¯ÀüÀÚ °Ë»ç¿¡¼­ ¸Å¿ì Áß¿äÇϸç, À¯Àü¼º Áúȯ°ú °ü·ÃµÈ À¯ÀüÀÚ µ¹¿¬º¯À̸¦ °ËÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â Á¶±â Áø´Ü, ¸ÂÃãÇü Ä¡·á ¹× À¯Àü »ó´ã¿¡ µµ¿òÀÌ µË´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ Áúº´ÀÇ ±ÞÁõÀº °í±Þ Áø´Ü µµ±¸¸¦ ÇÊ¿ä·Î Çϸç, Real-time PCR, Digital PCR, Endpoint PCRÀº ±× Á¤È®¼º°ú ¹Î°¨¼ºÀ¸·Î ÀÌ·¯ÇÑ ÀÇ·á ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, Á¶±â ¹ß°ß, º¸´Ù Ç¥ÀûÈ­µÈ Ä¡·á ¹× ȯÀÚ °á°ú °³¼±À¸·Î À̾îÁý´Ï´Ù.

½Å¼ÓÁø´Ü°Ë»ç ¼ö¿ä Áõ°¡¿Í Qpcr ¹× DpcrÀÇ µµÀÔ È®´ë

Real-time PCR, Digital PCR, Endpoint PCR ½ÃÀåÀº µÎ °¡Áö Áß¿äÇÑ ¿äÀÎ, Áï ½Å¼ÓÇÑ Áø´Ü °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í qPCR(Á¤·®Àû PCR) ¹× dPCR(µðÁöÅÐ PCR) ±â¼úÀÇ Ã¤Åà Ȯ´ë¿¡ µû¶ó ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½Å¼ÓÇϰí Á¤È®ÇÑ Áø´Ü °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä´Â ƯÈ÷ °¨¿°¼º ÁúȯÀÇ °æ¿ì Àû½Ã¿¡ Áúº´À» °¨ÁöÇÏ°í ¸ð´ÏÅ͸µÇØ¾ß ÇÏ´Â Çʿ伺¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ PCRÀº ½Å¼ÓÇϰí Á¤È®ÇÑ °á°ú¸¦ Á¦°øÇÒ ¼ö ÀÖ¾î Áø´ÜÇÐÀÇ ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á Àü¹®°¡°¡ º´¿ø±ÕÀ» ½Å¼ÓÇÏ°Ô ½Äº°ÇÒ ¼ö ÀÖ¾î COVID-19 ÆÒµ¥¹Í°ú °°Àº »óȲ¿¡¼­ ¸Å¿ì À¯¿ëÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

Á¤·®Àû PCR(qPCR)°ú µðÁöÅÐ PCR(dPCR)Àº Ź¿ùÇÑ Á¤È®µµ¿Í ¹Î°¨µµ·Î ÀÎÇØ ¿¬±¸¿Í ÀÓ»ó ¸ðµÎ¿¡¼­ ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ÇÙ»êÀ» Á¤È®ÇÏ°Ô Á¤·®È­Çϱâ À§ÇØ Á¡Á¡ ´õ ÀÌ·¯ÇÑ ±â¼ú¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ½Å¼ÓÇÑ Áø´ÜÀÇ Çʿ伺°ú qPCR ¹× dPCR ±â¼ú äÅÃÀÇ À¶ÇÕÀº Real-time PCR, Digital PCR ¹× Endpoint PCR ½ÃÀåÀÇ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ½Å¼ÓÇϰí Á¤È®ÇÑ °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ãų »Ó¸¸ ¾Æ´Ï¶ó Áúº´À» ´õ »¡¸® ¹ß°ßÇϰí, ¸ÂÃãÇü Ä¡·á ¹× ȯÀÚ °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÇ·á°¡ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ PCR ±â¼úÀº Áø´Ü°ú ¿¬±¸ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

MIQE(Minimal Information for Publication of Quantitative Real-Time PCR Experiments) ½Ç½Ã

MIQE(Minimum Information for Publication of Quantitative Real-Time PCR Experiments) °¡À̵å¶óÀÎÀÇ µµÀÔÀº ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. MIQE´Â Á¤·®Àû PCR ½ÇÇèÀÇ ¼öÇà ¹× º¸°í¸¦ À§ÇÑ Ç¥ÁØÈ­µÈ ÇÁ·¹ÀÓ¿öÅ©¸¦ Á¦°øÇÏ¿© µ¥ÀÌÅÍÀÇ Á¤È®¼º, ÀçÇö¼º ¹× ½Å·Ú¼ºÀ» ÃËÁøÇÕ´Ï´Ù. »ý¼ºµÈ µ¥ÀÌÅÍÀÇ Á¤È®¼º°ú ¹«°á¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¿¬±¸ÀÚ¿Í ÀÓ»óÀÇ´Â Á¡Á¡ ´õ ³ôÀº ǰÁúÀÇ µ¥ÀÌÅ͸¦ ¿ì¼±½ÃÇÏ¿© °í±Þ PCR ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, MIQE Áؼö´Â PCR ±â¹Ý ¿¬±¸ÀÇ ½Å·Ú¼ºÀ» ³ôÀÌ°í °úÇа迡¼­ ´õ Å« ½Å·Ú¸¦ ÃËÁøÇÕ´Ï´Ù. ÀÌ´Â ´õ ¸¹Àº °øµ¿ ¿¬±¸·Î À̾îÁ® °úÇÐÀû ¹ß°ßÀÇ ¼Óµµ¸¦ °¡¼ÓÈ­ÇÏ°í ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µå Æ÷ÀÎÆ® PCR ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇÕ´Ï´Ù. ÀÓ»ó Áø´Ü¿¡¼­ MIQE ±ÔÁ¤ Áؼö´Â ȯÀÚ °Ë»ç °á°úÀÇ Á¤È®¼ºÀ» º¸ÀåÇϱâ À§ÇØ Áß¿äÇÕ´Ï´Ù. ±ÔÁ¦ ±â°ü°ú ÀÇ·á ±â°üÀº PCR ±â¹Ý Áø´Ü ºÐ¼®¿¡ MIQE Áؼö¸¦ ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â PCR Àåºñ¿Í ½Ã¾àÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, MIQE °¡À̵å¶óÀο¡ ÀÇÇØ ¼³Á¤µÈ ¾ö°ÝÇÑ ±âÁØÀº °íǰÁú PCR Àåºñ, ½Ã¾à ¹× ¼ÒÇÁÆ®¿þ¾î¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ÃÖ÷´Ü PCR ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÌ·¯ÇÑ PCR ¼Ö·ç¼ÇÀÇ ½ÃÀåÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.

µû¶ó¼­ MIQE °¡À̵å¶óÀÎÀÇ ½ÃÇàÀº PCR ½ÃÀå ¼ºÀåÀÇ Ã˸ÅÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚ, ÀÓ»óÀÇ ¹× ±ÔÁ¦ ±â°üÀº MIQE ÁؼöÀÇ Á߿伺À» Á¡Á¡ ´õ ÀνÄÇϰí ÀÖÀ¸¸ç, ±¤¹üÀ§ÇÑ °úÇÐ ¹× ÀÓ»ó ÀÀ¿ë ºÐ¾ß¿¡¼­ ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µå Æ÷ÀÎÆ® PCR ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

PCR(ÁßÇÕÈ¿¼Ò¿¬¼â¹ÝÀÀ)ÀÇ ±â¼úÀû ¹ßÀü

PCR(ÁßÇÕÈ¿¼Ò¿¬¼â¹ÝÀÀ)ÀÇ ±â¼ú ¹ßÀüÀº ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀåÀ» Á¤È®¼º, È¿À²¼º ¹× ´Ù¿ëµµ¼ºÀÇ »õ·Î¿î ½Ã´ë·Î À̲ø°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ´Ù¾çÇÑ »ê¾÷ ¹× ÀÀ¿ë ºÐ¾ß¿¡¼­ PCR ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ²÷ÀÓ¾ø´Â ¿¬±¸ °³¹ß ³ë·ÂÀº ´õ ³ôÀº °¨µµ¿Í Á¤È®µµ¸¦ °¡Áø PCR ½Ã½ºÅÛÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ƯÈ÷ Real-time PCR°ú Digital PCRÀº Àü·Ê ¾ø´Â Á¤È®µµ·Î ÇÙ»êÀ» °ËÃâÇϰí Á¤·®È­ÇÏ¿© À¯ÀüüÇÐ ¿¬±¸, ÀÓ»ó Áø´Ü, ¸ÂÃãÀÇ·á¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, PCR ±â¼úÀº ¸ÖƼÇ÷º½ÌÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ÇÑ ¹øÀÇ ¹ÝÀÀÀ¸·Î ¿©·¯ À¯ÀüÀÚ Ç¥ÀûÀ» µ¿½Ã¿¡ ºÐ¼®ÇÒ ¼ö ÀÖµµ·Ï ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ºÐ¼®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ´Â ½Ã°£À» Àý¾àÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀÚ¿øÀ» Àý¾àÇÒ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÓ»ó Áø´Ü ¹× ½Å¾à °³¹ß¿¡¼­ ½Å¼ÓÇÏ°í ´ë±Ô¸ð °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ °íó¸® PCR ½Ã½ºÅÛÀÌ µîÀåÇß½À´Ï´Ù.

PCR Àåºñ´Â Á¡Á¡ ´õ ÀÚµ¿È­ ½Ã½ºÅÛ°ú ÅëÇÕµÇ¾î ½ÇÇè½Ç ¿öÅ©Ç÷ο츦 °£¼ÒÈ­Çϰí ÀÎÀû ¿À·ù¸¦ ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ÀÌ´Â ½Å·Ú¼º°ú ¼Óµµ°¡ °¡Àå Áß¿äÇÑ ÀÓ»ó ÇöÀå¿¡¼­ ÇʼöÀûÀÔ´Ï´Ù. ¼ÒÇüÈ­ ¹× È޴뼺À¸·Î ÀÎÇØ ¿ø°ÝÁö³ª ÀÚ¿øÀÌ Á¦ÇÑµÈ Áö¿ª¿¡µµ ¹èÄ¡ÇÒ ¼ö ÀÖ´Â ÇöÀå Áø·á¿ë PCR Àåºñ°¡ µîÀåÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇü ½Ã½ºÅÛÀº °¨¿°¼º Áúȯ Áø´Ü ¹× ¸ð´ÏÅ͸µ¿¡ PCRÀÇ »ç¿ëÀ» È®´ëÇϰí ÀÖÀ¸¸ç, PCRÀº NGS ¿öÅ©Ç÷οìÀÇ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò°¡ µÇ¾î ½ÃÄö½Ì Àü Ÿ°Ù ÁõÆøÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº À¯ÀüüÇÐ ¹× ºÐÀÚ»ý¹°ÇÐ ¿¬±¸ÀÇ ¹ßÀüÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ±â¼úÀû Çõ½ÅÀº PCRÀÇ Àü¸ÁÀ» À籸¼ºÇÏ°í ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µåÆ÷ÀÎÆ® PCRÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº PCRÀÇ ÀÀ¿ë ¹üÀ§¸¦ ³ÐÇô Çö´ë °úÇÐ, ÀÇÇÐ ¹× Áø´Ü¿¡ ¾ø¾î¼­´Â ¾È µÉ µµ±¸°¡ µÇ¾ú½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå °úÁ¦

½Ç½Ã°£ PCR¿¡ µû¸¥ ³ôÀº Àåºñºñ¿ë

½Ç½Ã°£ PCR°ú °ü·ÃµÈ ³ôÀº Àåºñ ºñ¿ëÀº ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå¿¡ Áß¿äÇÑ µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ºñ±³ÇÒ ¼ö ¾ø´Â Á¤È®µµ¿Í ¹Î°¨µµ¸¦ Á¦°øÇÏÁö¸¸, Ãʱâ ÅõÀÚ ¹× Áö¼ÓÀûÀÎ ¿î¿µ ºñ¿ëÀÌ »ó´çÇÏ¿© ¸î °¡Áö Àå¾Ö¹°ÀÌ ÀÖ½À´Ï´Ù: Real-time PCR, Digital PCR, Endpoint PCR ÀåºñÀÇ ±¸¸Å¿¡´Â ¸·´ëÇÑ Ãʱ⠺ñ¿ëÀÌ µé±â ¶§¹®¿¡ ¼Ò±Ô¸ð ½ÇÇè½Ç ¼Ò±Ô¸ð ¿¬±¸¼Ò, Ŭ¸®´Ð, ÀÚ¿øÀÌ ºÎÁ·ÇÑ Áö¿ª¿¡¼­´Â ÀÌ·¯ÇÑ ±â¼úÀ» µµÀÔÇÏ´Â °ÍÀ» ÁÖÀúÇÏ°Ô µË´Ï´Ù. PCR Àåºñ´Â Ãʱ⠱¸¸Å ¿Ü¿¡µµ Á¤±âÀûÀÎ À¯Áöº¸¼ö ¹× ½Ã¾à, ¼Ò¸ðǰ µî Ư¼öÇÑ ¼Ò¸ðǰÀÇ »ç¿ëÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ °í±Þ ºÐÀÚ Áø´Ü ´É·Â¿¡ ´ëÇÑ Á¢±ÙÀ» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Áö¼ÓÀûÀÎ ÁöÃâÀº ƯÈ÷ ÀçÁ¤Àû Á¦¾àÀÌ ½ÉÇÑ ÀÇ·á ȯ°æ¿¡¼­ ¿¹»êÀ» ¾Ð¹ÚÇÒ ¼ö ÀÖÀ¸¸ç, PCR Àåºñ¸¦ ÀûÀýÈ÷ »ç¿ëÇÏ·Á¸é ºÐÀÚ »ý¹°ÇÐÀû ¹æ¹ý¿¡ ´ëÇÑ Àü¹® Áö½ÄÀ» °®Ãá ¼÷·ÃµÈ Á÷¿øÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á÷¿ø ±³À°¿¡ ÅõÀÚÇÏ´Â °ÍÀº PCR ±â¼ú µµÀÔ ¹× À¯Áö °ü¸®ÀÇ Àüü ºñ¿ë¿¡ Ãß°¡µË´Ï´Ù.

PCR ±â¹Ý ºÐ¼®Àº ´Ù¸¥ Áø´Ü ¹æ¹ý¿¡ ºñÇØ °Ë»ç ´ç ºñ¿ëÀÌ ³ôÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ÀÇ·á ¼­ºñ½º Á¦°øÀÚ¿Í È¯ÀÚ¿¡°Ô ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Å°°í ÀÌ·¯ÇÑ ±â¼úÀÇ º¸±ÞÀ» Á¦ÇÑÇÒ ¼ö ÀÖÀ¸¸ç, PCR ÀåºñÀÇ ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ ½ÃÀå °æÀïÀÌ Ä¡¿­ÇØÁ® °¢ Á¦Á¶¾÷ü´Â ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¼ÒºñÀÚ¿¡°Ô´Â ÀÌÀÍÀÌ µÇÁö¸¸ Á¦Á¶¾÷ü¿¡°Ô´Â ¼öÀͼº À¯Áö¶ó´Â Ãø¸é¿¡¼­ µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ Real-time PCR, Digital PCR, Endpoint PCRÀº ¶Ù¾î³­ Áø´Ü ´É·ÂÀ» Á¦°øÇÏ´Â ¹Ý¸é, ³ôÀº Àåºñ ºñ¿ëÀÌ Å« Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ Àå¾Ö¹°À» ±Øº¹ÇÏ°í º¸´Ù ±¤¹üÀ§ÇÑ º¸±ÞÀ» ÃËÁøÇϱâ À§ÇØ ¾÷°è´Â ºñ¿ë È¿À²ÀûÀÎ Çõ½ÅÀ» Áö¼ÓÀûÀ¸·Î ¸ð»öÇÏ°í ¿î¿µ ºñ¿ëÀ» ÇÕ¸®È­ÇÏ¸ç ´Ù¾çÇÑ ÀÇ·á ¹× ¿¬±¸ ȯ°æ¿¡¼­ ÀÌ·¯ÇÑ °í±Þ ºÐÀÚ Áø´Ü ±â¼ú¿¡ ´ëÇÑ Á¢±ÙÀ» ¿ëÀÌÇÏ°Ô ÇØ¾ß ÇÕ´Ï´Ù.

¾ö°ÝÇÑ ±ÔÁ¦ Á¤Ã¥

¾ö°ÝÇÑ ±ÔÁ¦ Á¤Ã¥Àº ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå¿¡ »ó´çÇÑ µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±ÔÁ¦´Â Áø´Ü ±â±âÀÇ ¾ÈÀü°ú ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÌÁö¸¸ Á¾Á¾ ¾÷°èÀÇ ¼ºÀå°ú Çõ½Å¿¡ ¸î °¡Áö Àå¾Ö¹°À» °¡Á®¿É´Ï´Ù. ÁÖ¿ä °úÁ¦ Áß Çϳª´Â ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀ» ¹Þ±â À§ÇÑ ±æ°í ÀÚ¿ø Áý¾àÀûÀÎ °úÁ¤ÀÔ´Ï´Ù. ±â¾÷µéÀº ¹Ì±¹ FDA ½ÂÀÎ, À¯·´ CE ¸¶Å© µî º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â ÀýÂ÷¸¦ °ÅÃÄ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½ÂÀÎ Áö¿¬Àº »õ·Î¿î PCR ±â¼úÀÇ ½ÃÀå µµÀÔÀ» Å©°Ô ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦ Áؼö ºñ¿ëµµ Å« ¹®Á¦ÀÔ´Ï´Ù. ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϱâ À§Çؼ­´Â Å×½ºÆ®, ¹®¼­È­ ¹× ǰÁú °ü¸® Á¶Ä¡¿¡ ¸¹Àº ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº PCR ±â¼úÀÇ ÃÑ ºñ¿ëÀ» Áõ°¡½ÃÄÑ ÀÇ·á ¼­ºñ½º Á¦°øÀÚ¿Í È¯ÀÚ¿¡°Ô Á¢±Ù¼ºÀ» ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ±î´Ù·Î¿î ±ÔÁ¦ ȯ°æÀº ¶ÇÇÑ ¼Ò±Ô¸ð Çõ½Å ±â¾÷ÀÇ ½ÃÀå ÁøÀÔÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. º¹ÀâÇÑ ±ÔÁ¦¸¦ ÁؼöÇϱâ À§Çؼ­´Â ¸·´ëÇÑ Àڱݰú ÀηÂÀÌ ÇÊ¿äÇϸç, ÀÌ´Â »õ·Î¿î PCR ±â¼ú °³¹ßÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Áö¿ª¸¶´Ù ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ ´Ù¸¥ °æ¿ì°¡ ¸¹À¸¸ç, ±× °á°ú ºÒÀÏÄ¡³ª ¸ð¼øÀÌ ¹ß»ýÇÕ´Ï´Ù. ´Ù¾çÇÑ ±ÔÁ¦¸¦ ÁؼöÇÏ´Â °ÍÀº Àü ¼¼°è¿¡ Á¦Ç°À» ÆÇ¸ÅÇÏ·Á´Â Á¦Á¶¾÷ü¿¡°Ô ºÎ´ãÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ±ÔÁ¦ Á¤Ã¥Àº ȯÀÚÀÇ ¾ÈÀü°ú Á¦Ç° ǰÁúÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÏÁö¸¸ ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå¿¡´Â Å« µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¾ö°ÝÇÑ ±ÔÁ¦¿Í Çõ½Å ¹× ½ÃÀå Á¢±ÙÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀº ¾÷°è¸¦ ¹ßÀü½Ã۰í ÀÇ·á Á¦°øÀÚ¿Í È¯ÀÚ¿¡°Ô °í±Þ Áø´Ü µµ±¸¸¦ Á¦°øÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå µ¿Çâ

À¯ÀüüÇÐ ¿¬±¸

À¯ÀüüÇÐ ¿¬±¸´Â ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¿¬±¸ ºÐ¾ß´Â »ý¹°ÀÇ Àüü À¯ÀüÀÚ(°Ô³ð)¸¦ ÀÌÇØÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, ¸¹Àº ÀÀ¿ë ºÐ¾ß¿¡¼­ ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(PCR) ±â¼ú¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù.

±× ÁÖ¿ä ¿øµ¿·Â Áß Çϳª´Â À¯Àüü ¿¬±¸ÀÇ ±âº» °úÁ¤ÀÎ DNA ÁõÆø°ú ¿°±â¼­¿­ ºÐ¼®ÀÇ Çʿ伺À̸ç, PCR ±â¼úÀº ¿¬±¸ÀÚ°¡ ƯÁ¤ DNA ¿µ¿ªÀ» ¼±ÅÃÀûÀ¸·Î ÁõÆøÇÏ¿© À¯ÀüÀû º¯ÀÌ, µ¹¿¬º¯ÀÌ ¹× À¯ÀüÀÚ ¹ßÇö ÆÐÅÏÀ» ½±°Ô ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, Â÷¼¼´ë ½ÃÄö¼­(NGS)ÀÇ ÃâÇöÀ¸·Î PCRÀÇ Á߿伺ÀÌ ´õ¿í ºÎ°¢µÇ°í Àִµ¥, NGS´Â ½ÃÄö½Ì Àü ´ë»ó ÁõÆøÀ» À§ÇØ PCR¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, PCRÀº À¯ÀüüÇÐ ¿öÅ©Ç÷ο쿡¼­ Áß¿äÇÑ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. »õ·Î¿î Â÷¿øÀ¸·Î ¹ßÀüÇϰí ÀÖÀ¸¸ç, ¿¬±¸ÀÚµéÀº º¹ÀâÇÑ »ý¹°ÇÐÀû Àǹ®À» ޱ¸ÇÏ°í °Ô³ð¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¶ÇÇÑ, À¯ÀüüÇÐ ¿¬±¸´Â ¸ÂÃãÀÇ·á, ³ó¾÷, ÁøÈ­»ý¹°ÇÐ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ ±¤¹üÀ§ÇÑ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. À¯Àüü ¿¬±¸ÀÇ ½Ã¾ß°¡ ³Ð¾îÁü¿¡ µû¶ó Á¤È®Çϰí 󸮷®ÀÌ ³ôÀ¸¸ç ºñ¿ë È¿À²ÀûÀÎ PCR ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ À¯Àüü ¿¬±¸ÀÇ DNA ºÐ¼®°ú ½ÃÄö½Ì¿¡ ´ëÇÑ ²÷ÀÓ¾ø´Â ¿å±¸´Â Real-time PCR, Digital PCR, Endpoint PCR ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ PCR ±â¼úÀº À¯ÀüüÇÐ ¿¬±¸ÀÚÀÇ ÅøÅ¶¿¡ ÇʼöÀûÀÎ µµ±¸·Î, À¯ÀüÇп¡ ´ëÇÑ ÀÌÇØ¿¡ Å©°Ô ±â¿©ÇÏ°í °úÇÐ, ÀÇÇÐ ¹× ±× ÀÌ»óÀÇ ºÐ¾ß¿¡¼­ Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

POCT(Point-of-Care Test)

POCT(Point-of-Care Testing)´Â ½Ç½Ã°£ PCR, µðÁöÅÐ PCR ¹× ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀåÀÇ µÎµå·¯Áø Æ®·»µå·Î ºÎ»óÇÏ¿© Áø´Ü ¹× ÀÇ·á °üÇàÀÇ ÁöÇüÀ» ¹Ù²Ù°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ °¨¿°º´ ¹ß»ý°ú °°ÀÌ ½Å¼ÓÇϰí Á¤È®ÇÑ °á°ú°¡ »ý»ç¸¦ °¡¸£´Â »óȲ¿¡¼­ ½Å¼ÓÇÑ ÇöÀå Áø´ÜÀÇ Çʿ伺ÀÌ ±× ¾î´À ¶§º¸´Ù Áß¿äÇØÁ³À¸¸ç, ½Ç½Ã°£ PCR°ú µðÁöÅÐ PCRÀ» Æ÷ÇÔÇÑ PCR ±â¼úÀº ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ ¹ßÀüÇØ ¿Ô½À´Ï´Ù. ÈÞ´ë¿ë ¼ÒÇü PCR Àåºñµµ µîÀåÇÏ¿© ÀÇ·á Àü¹®°¡°¡ ȯÀÚÀÇ Ä§´ë ¿·À̳ª ¿ø°ÝÁö¿¡¼­ ºÐÀÚ Áø´ÜÀ» ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µÑ°, COVID-19 ÆÒµ¥¹ÍÀº PCR ±â¼úÀ» ÀÌ¿ëÇÑ ÇöÀåÁø´Ü(POCT)ÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ƯÈ÷ ½Ç½Ã°£ PCRÀº ´ë·® °Ë»ç¿¡¼­ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ¼öÇàÇϸç ÀÌ ±â¼úÀÌ ½Å¼ÓÇÏ°í ±¤¹üÀ§ÇÑ Áø´Ü¿¡ ÀûÇÕÇÏ´Ù´Â °ÍÀ» °­Á¶Çß½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ºÐ¾ß´Â °Ë»ç ½Ã¼³ÀÇ ºÐ»êÈ­°¡ ÁøÇàµÇ°í ÀÖÀ¸¸ç, POCT´Â »ùÇÃÀ» Áß¾Ó °Ë»ç ½Ã¼³·Î º¸³¾ Çʿ並 ÁÙ¿© ½Ã°£°ú ÀÚ¿øÀ» Àý¾àÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ»êÈ­´Â ¶ÇÇÑ Á¶±â Áø´Ü°ú Ä¡·á¸¦ ÃËÁøÇϰí ȯÀÚ °á°ú¸¦ °³¼±ÇÕ´Ï´Ù. ¶ÇÇÑ, PCR ÀåºñÀÇ »ç¿ë ÆíÀǼºÀÌ Çâ»óµÇ°í ±â¼úÀû Àü¹® Áö½ÄÀÌ ÇÊ¿ä ¾ø¾îÁü¿¡ µû¶ó, POCT ȯ°æ¿¡¼­ÀÇ Ã¤ÅÃÀº ÀüÅëÀûÀÎ °Ë»ç½Ç ÀÌ¿ÜÀÇ ÀÇ·á ¼­ºñ½º Á¦°øÀÚ¿¡°Ôµµ ´õ¿í Çö½ÇÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î PCR ±â¼úÀ» ÀÌ¿ëÇÑ ÇöÀå °Ë»ç¿¡ ´ëÇÑ Ãß¼¼´Â ½Å¼ÓÇϰí Á¤È®Çϸç Á¢±Ù¼ºÀÌ ³ôÀº Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ÀÇ·á¿¡¼­ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÏ¿© Àû½Ã¿¡ ÀλçÀÌÆ®¸¦ Á¦°øÇϰí ȯÀÚ Ä¡·á¸¦ °³¼±ÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®º° ÀλçÀÌÆ®

Á¦Ç°º° ÀλçÀÌÆ®

¼Ò¸ðǰ ¹× ½Ã¾à ºÎ¹®Àº 2022³â ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå¿¡¼­ 56.51% ÀÌ»óÀÇ Á¡À¯À²À» Â÷ÁöÇÏ¸ç ¾ÐµµÀûÀÎ ¼öÀÍ ±â¿©ÀÚ·Î ºÎ»óÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ¼ºÀå ±Ëµµ¸¦ Çü¼ºÇÑ ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ±âÀÎÇϸç, COVID-19 ÆÒµ¥¹ÍÀº PCR ±â¼úÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â Áø´Ü Å×½ºÆ®¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ¼ö¿ä¸¦ âÃâÇß½À´Ï´Ù. ¼Ò¸ðǰ°ú ½Ã¾àÀº PCR ºÐ¼®ÀÇ ±âº» ±¸¼º¿ä¼ÒÀ̸ç, °Ë»ç ¼ö¿äÀÇ ±ÞÁõÀ¸·Î ÀÎÇØ ¼Òºñ°¡ Å©°Ô Áõ°¡Çß½À´Ï´Ù. Àü¿°º´ ±â°£ µ¿¾È Á¶±â ¹× Á¤È®ÇÑ Áúº´ °ËÃâÀÇ Çʿ伺ÀÌ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µÑ°, µðÁöÅÐ PCR ¼Ò¸ðǰ ¹× ½Ã¾à Á¦Á¶¿¡ Á¾»çÇÏ´Â ¼ö¸¹Àº ±â¾÷ÀÌ ÀÌ ºÎ¹®ÀÇ ¹ø¿µ¿¡ ±â¿©Çß½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­ÀÇ °æÀïÀº ´Ù¾çÇÑ ¿¬±¸ ¹× Áø´Ü ¿ä±¸¿¡ ºÎÀÀÇÏ´Â Á¦Ç° Çõ½Å°ú ´Ù¾çÇÑ Á¦Ç°±ºÀ» ¸¸µé¾î³Â½À´Ï´Ù.

¶ÇÇÑ, ÀÇ·á, ¿¬±¸ ¹× ±âŸ °úÇÐÀû ¿ëµµ¿Í °°Àº ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ¼Ò¸ðǰ ¹× ½Ã¾àÀÌ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ´Ù´Â Á¡µµ ÀÌ ºÎ¹®ÀÇ Å« ½ÃÀå Á¡À¯À²À» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ò¸ðǰÀº ÀÏ»óÀûÀÎ °Ë»ç ¾÷¹«¿¡ ÇʼöÀûÀ̸ç, ¿¬±¸¿Í Áø´ÜÀÇ ¿¬¼Ó¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ¸¸¼º ÁúȯÀÇ Áõ°¡·Î ÀÎÇØ PCR ±â¼úÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ ¼Ò¸ðǰ ¹× ½Ã¾à¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦¾à ¹× ÀÇ·á ºÎ¹®ÀÌ ±â¼ú ¹ßÀüÀ» ¼ö¿ëÇϰí R&D Ȱµ¿À» Ȱ¼ºÈ­Çϰí ÀÖ´Â °Íµµ ÀÌ ºÐ¾ß¿¡ Å« ¼ºÀå ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. °á·ÐÀûÀ¸·Î, Real-time PCR, Digital PCR, Endpoint PCR ½ÃÀå¿¡¼­ ¼Ò¸ðǰ ¹× ½Ã¾à ºÎ¹®ÀÌ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ´Â °ÍÀº °æÀï ȯ°æ, ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß ¹× °è¼Ó È®´ëµÇ°í ÀÖ´Â ¿¬±¸ ¹× ÀÇ·á ºÐ¾ß µî ¿©·¯ ¿äÀÎÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÑ °á°úÀÔ´Ï´Ù. ½ÃÀåÀÌ °è¼Ó ÁøÈ­ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ¿ìÀ§´Â ¾ÕÀ¸·Îµµ Áö¼ÓµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±â¼úÀû ÀλçÀÌÆ®

Á¤·®Àû PCR ºÐ¾ß´Â 2022³â 88.63% ÀÌ»óÀÇ »ó´çÇÑ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÏ¸ç ½ÃÀå¿¡¼­ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. ¸î °¡Áö ¿øµ¿·ÂÀÌ ÀÌ ºÎ¹®À» ÃÖÀü¹æÀ¸·Î ¹Ð¾îºÙ¿© ´«¿¡ ¶ç´Â ¼ºÀå ±Ëµµ¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ù°, ºü¸¥ ±â¼ú ¹ßÀü ¼Óµµ°¡ Á¤·®Àû PCR ºÎ¹® »ó½ÂÀÇ Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¿¬±¸ÀÚ¿Í Áø´Ü ÀÇ»çÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿¡ ºÎÀÀÇÏ´Â º¸´Ù Á¤±³ÇÏ°í »ç¿ëÇϱ⠽¬¿î PCR ½Ã½ºÅÛ °³¹ß·Î À̾îÁö°í ÀÖ½À´Ï´Ù. µÑ°, ÀÚµ¿ PCR ½Ã½ºÅÛ ¹× ÇöÀå Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­ ½Ã½ºÅÛÀÌ Á¦°øÇÏ´Â ÆíÀǼº°ú È¿À²¼ºÀÌ Å« °ü½ÉÀ» ²ø¸é¼­ Á¤·®Àû PCR ºÎ¹®ÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è°¡ COVID-19 ÆÒµ¥¹Í¿¡ ´ëÀÀÇϸ鼭 ÀÌ ºÎ¹®Àº ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, COVID-19 ¼±º° ¹× Áø´ÜÀ» À§ÇÑ ½Ç½Ã°£ PCR ±â¹Ý Á¦Ç°ÀÇ µµÀÔÀº ÀÌ·¯ÇÑ ¼ºÀå¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Huwel Lifesciences´Â 2023³â 2¿ù ´Ù¾çÇÑ ¹ÙÀÌ·¯½º À¯ÇüÀ» °Ë»çÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÈ ÈÞ´ë¿ë RT-PCR Àåºñ¸¦ Ãâ½ÃÇÏ¿© °Ë»ç¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» ³ô¿´½À´Ï´Ù.

¶ÇÇÑ 2020³â 3¿ù ºê·çÄ¿ ÄÚÆÛ·¹À̼Ç(Bruker Corporation)ÀÌ ¹ßÇ¥ÇÑ genesig real-time PCR Äڷγª¹ÙÀÌ·¯½º ºÐ¼®±â ÆÇ¸Å °è¾à°ú °°Àº ÆÇ¸Å °è¾àÀº Á¤·®Àû PCR ±â¼úÀÇ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °è¾àÀº ¹Ì±¹, ¿µ±¹, ½ºÆäÀÎ, ÇÁ¶û½º, µ¶ÀÏÀ» Æ÷ÇÔÇÑ Áö¿ª¿¡¼­ Áß¿äÇÑ Áø´Ü µµ±¸ÀÇ °¡¿ë¼ºÀ» È®´ëÇß½À´Ï´Ù. °á·ÐÀûÀ¸·Î, Á¤·®Àû PCR ºÐ¾ß°¡ ½ÃÀå¿¡¼­ ºÎ»óÇÑ °ÍÀº ±â¼ú Çõ½Å, ÀÚµ¿È­ ¹× ÇöÀå Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, COVID-19 °Ë»ç¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â µî ¿©·¯ °¡Áö ¿äÀÎÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇ߱⠶§¹®ÀÔ´Ï´Ù. ÀÌ ºÐ¾ß´Â ´çºÐ°£ °­·ÂÇÑ ¼ºÀå ±Ëµµ¸¦ À¯ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

Áö¿ªº° ÀλçÀÌÆ®

2022³â¿¡´Â ºÏ¹Ì°¡ 36.10% ÀÌ»óÀÇ Å« ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÏ¸ç ¼¼°è ½ÃÀåÀ» ÁÖµµÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °­·ÂÇÑ ÀÔÁö´Â ¿¹Ãø ±â°£ µ¿¾È Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¸î °¡Áö ÁÖ¿ä ¿äÀÎÀÌ ÀÌ·¯ÇÑ Áö¼ÓÀûÀÎ ¿ìÀ§¸¦ Á¡ÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â Á¤ºÎ ÁÖµµÀÇ ÀÇ·á ¹× ÀÎÇÁ¶ó ±¸Ãà ³ë·Â°ú ±ÔÁ¦°¡ Á¸ÀçÇÑ´Ù´Â Á¡ÀÔ´Ï´Ù. ºÏ¹Ì´Â Áö¿øÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇØ PCR Áø´ÜÀ» Æ÷ÇÔÇÑ ÀÇ·á ±â¼ú °³¹ßÀ» Àû±ØÀûÀ¸·Î Àå·ÁÇØ ¿Ô½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀº Áúº´ÀÌ ¸¹ÀÌ ¹ß»ýÇÏ´Â Áö¿ªÀ¸·Î ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀÎ Áø´Ü ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÑ Áö¿ªÀÔ´Ï´Ù.

¶ÇÇÑ, ºÏ¹Ì´Â PCR ±â¼ú ºÐ¾ßÀÇ ¼±µµÀûÀÎ Á¦Á¶¾÷üµéÀÌ ´Ù¼ö Á¸ÀçÇϸç, ÀÌ ºÐ¾ßÀÇ Çõ½Å°ú »ý»êÀÇ Áß½ÉÁö·Î¼­ÀÇ ÀÔÁö¸¦ È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ±¹ ³» Àü¹®¼ºÀ» ¹ÙÅÁÀ¸·Î ÀÌ Áö¿ªÀº ½Å¼ÓÇϰí Á¤¹ÐÇÑ Áø´Ü Å×½ºÆ®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀ¸·Î ÃÊÁ¡À» ¿Å±â¸é ÀÌ Áö¿ªÀÌ °¡Àå À¯¸ÁÇϰí À¯¸®ÇÑ ½ÃÀåÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. Áß±¹°ú ÀϺ»Àº PCR ±â¼úÀ» ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÅëÇÕÇÏ´Â µ¥ ÀÖ¾î °ý¸ñÇÒ¸¸ÇÑ ÁøÀüÀ» º¸À̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àεµ¿Í È£ÁÖ¿Í °°Àº ½ÅÈï °æÁ¦ ±¹°¡´Â ÀÇ·á, ¿¬±¸ ¹× ÀÓ»ó ÇÁ·¹ÀÓ ¿öÅ©¸¦ Àû±ØÀûÀ¸·Î °³¹ßÇÏ¿©ÀÌ Áö¿ªÀÇ ¼ºÀå ÀáÀç·Â¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ÀüüÀûÀ¸·Î ºÏ¹Ì´Â ±ÔÁ¦ Áö¿ø, Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê, Áúº´ À¯ÇàÀ¸·Î ÀÎÇØ ¿ìÀ§¸¦ Á¡Çϰí ÀÖÀ¸¸ç, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±â¼ú ÅëÇÕ°ú ÀÇ·á ¹× ¿¬±¸ ºÎ¹®ÀÇ È®´ë·Î ÀÎÇØ ºûÀ» ¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ µÎ Áö¿ª ¸ðµÎ °¡±î¿î ½ÃÀÏ ³»¿¡ PCR ½ÃÀå¿¡¼­ Å« ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå °í°´ÀÇ ¼Ò¸®

Á¦5Àå ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ¼¼°è ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ±â¼úº°(Á¤·®, µðÁöÅÐ, ¿£µåÆ÷ÀÎÆ®)
    • Á¦Ç°º°(¼Ò¸ðǰ¡¤½Ã¾à, Àåºñ, ¼ÒÇÁÆ®¿þ¾î¡¤¼­ºñ½º)
    • ¿ëµµº°(ÀÓ»ó, ¿¬±¸)
    • ±â¾÷º°(2022³â)
    • Áö¿ªº°
  • ½ÃÀå ¸Ê

Á¦6Àå ºÏ¹ÌÀÇ ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ±â¼úº°
    • Á¦Ç°º°
    • ¿ëµµº°
    • ±¹°¡º°
  • ºÏ¹Ì : ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ¸ß½ÃÄÚ
    • ij³ª´Ù

Á¦7Àå À¯·´ÀÇ ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ±â¼úº°
    • Á¦Ç°º°
    • ¿ëµµº°
    • ±¹°¡º°
  • À¯·´ : ±¹°¡º° ºÐ¼®
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ

Á¦8Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ±â¼úº°
    • Á¦Ç°º°
    • ¿ëµµº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • Çѱ¹
    • ÀϺ»
    • È£ÁÖ

Á¦9Àå ³²¹ÌÀÇ ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ±â¼úº°
    • Á¦Ç°º°
    • ¿ëµµº°
    • ±¹°¡º°
  • ³²¹Ì : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ÄÝ·Òºñ¾Æ

Á¦10Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½Ç½Ã°£ PCR, µðÁöÅÐ PCR, ¿£µåÆ÷ÀÎÆ® PCR ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ¾àÁ¦ Ŭ·¡½ºº°
    • À¯Çüº°
    • Åõ¿© °æ·Îº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º° ºÐ¼®
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®

Á¦11Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • °úÁ¦

Á¦12Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

  • Á¦Ç° Ãâ½Ã
  • ÀμöÇÕº´

Á¦13Àå PESTLE ºÐ¼®

Á¦14Àå Porter's Five Forces ºÐ¼®

  • ¾÷°è³» °æÀï
  • ½Å±Ô Âü¿© °¡´É¼º
  • °ø±Þ¾÷üÀÇ ´É·Â
  • °í°´ÀÇ ´É·Â
  • ´ëüǰÀÇ À§Çù

Á¦15Àå °æÀï »óȲ

  • Abbott Laboratories Inc
  • Bio-Rad Laboratories Inc.
  • Thermo Fisher Scientific, Inc.
  • BIOMERIEUX SA
  • Fluidigm Corporation
  • F. Hoffmann-La Roche Ltd
  • GE Healthcare
  • Agilent Technologies, Inc.
  • Qiagen NV
  • Microsynth Ag

Á¦16Àå Àü·«Àû Á¦¾È

ksm 23.11.14

In 2022, the Global Real-time PCR, Digital PCR & Endpoint PCR Market reached a valuation of USD 8.01 billion and is projected to grow with a Compound Annual Growth Rate (CAGR) of 6.03% by 2028. This PCR (Polymerase Chain Reaction) market is characterized by three distinct techniques: Real-time PCR, Digital PCR, and Endpoint PCR.

Real-time PCR, valued at approximately USD 4 billion, stands as the dominant segment within this market. It holds this position due to its versatility in quantitatively measuring DNA amplification in real-time. Real-time PCR finds extensive applications in clinical diagnostics, gene expression analysis, and pathogen detection, with industry leaders such as Thermo Fisher Scientific and Bio-Rad Laboratories leading the market.

Digital PCR, although smaller in size with a market value of around USD 450 million, is experiencing rapid growth. This growth is attributed to its precision in nucleic acid quantification and its applications in the detection of rare mutations.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 8.01 Billion
Market Size 2028USD 11.47 Billion
CAGR 2023-20286.03%
Fastest Growing SegmentClinical
Largest MarketNorth America

Endpoint PCR, a mature technology with a stable market size, remains crucial for various molecular biology applications, including genotyping, DNA sequencing, and infectious disease diagnostics.

All three PCR techniques are continuously evolving through technological advancements and are witnessing increased demand in healthcare and life sciences. They cater to specific research and diagnostic needs, thereby contributing to the market's growth and diversification.

Key Market Drivers

Rising Incidence Of Chronic Diseases, Infectious Diseases, And Genetic Disorders

The escalating incidence of chronic diseases, infectious diseases, and genetic disorders is significantly propelling the Real-time PCR, Digital PCR, and Endpoint PCR market. The global burden of chronic illnesses such as cancer, cardiovascular diseases, and diabetes is on the rise. These diseases necessitate early detection and precise monitoring. Real-time PCR, with its real-time quantitative capabilities, allows for the timely identification of genetic markers associated with these conditions. Digital PCR, known for its unparalleled precision, aids in detecting rare mutations, facilitating early intervention and personalized treatment strategies. The emergence of infectious diseases, including recent pandemics, emphasizes the need for accurate diagnostics. Real-time PCR has been instrumental in detecting viral, bacterial, and fungal pathogens. Its speed and sensitivity support swift identification and containment of infectious agents. Meanwhile, Digital PCR offers enhanced sensitivity for monitoring viral load, critical for managing infectious diseases.

Genetic disorders demand a thorough understanding of an individual's genetic profile. Real-time and Digital PCR are pivotal in genetic testing, enabling the detection of genetic mutations linked to inherited disorders. This assists in early diagnosis, tailored treatment, and genetic counseling. Therefore, the surge in these diseases necessitates advanced diagnostic tools. Real-time PCR, Digital PCR, and Endpoint PCR, with their precision and sensitivity, are indispensable in addressing these healthcare challenges, leading to earlier detection, more targeted treatments, and improved patient outcomes.

Increasing Demand For Rapid Diagnostic Tests And Growing Adoption Of Qpcr & Dpcr

The Real-time PCR, Digital PCR, and Endpoint PCR market are witnessing a significant surge in demand due to two key factors: the increasing need for rapid diagnostic tests and the growing adoption of qPCR (quantitative PCR) and dPCR (digital PCR) technologies. The demand for quick and accurate diagnostic tests is escalating, driven by the need for timely disease detection and monitoring, particularly in the context of infectious diseases. Real-time PCR, with its ability to deliver rapid and precise results, has become a cornerstone in diagnostics. It enables healthcare professionals to swiftly identify pathogens, making it invaluable in situations like the COVID-19 pandemic.

Quantitative PCR (qPCR) and digital PCR (dPCR) have gained traction in both research and clinical settings due to their unmatched precision and sensitivity. Researchers are increasingly relying on these techniques to quantify nucleic acids accurately. In diagnostics, dPCR, with its absolute quantification capabilities, is proving to be a game-changer, especially in monitoring viral loads in infectious diseases.The convergence of the need for rapid diagnostics and the adoption of qPCR and dPCR technologies has fueled the growth of the Real-time PCR, Digital PCR, and Endpoint PCR market. These techniques are not only meeting the demand for rapid and accurate testing but are also enabling earlier disease detection, tailored treatments, and improved patient outcomes. As healthcare continues to evolve, these PCR technologies are poised to play pivotal roles in shaping the future of diagnostics and research.

implementation of MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments)

The implementation of MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines is exerting a significant influence on the Real-time PCR, Digital PCR, and Endpoint PCR market. These guidelines provide a standardized framework for conducting and reporting quantitative PCR experiments, promoting data accuracy, reproducibility, and reliability. Here's how MIQE is driving the PCR market: MIQE-compliant studies adhere to stringent experimental design and reporting standards, ensuring the accuracy and integrity of PCR-generated data. Researchers and clinicians increasingly prioritize high-quality data in their work, spurring the demand for advanced PCR technologies. MIQE adherence enhances the credibility of PCR-based research, facilitating greater trust in the scientific community. This leads to more collaborative studies and accelerates the pace of scientific discovery, driving the adoption of Real-time PCR, Digital PCR, and Endpoint PCR technologies. In clinical diagnostics, MIQE compliance is critical to guarantee the precision of patient test results. Regulatory bodies and healthcare institutions are increasingly requiring MIQE adherence for PCR-based diagnostic assays, propelling the use of PCR instruments and reagents. The strict standards set by MIQE guidelines necessitate high-quality PCR instruments, reagents, and software. This drives investments in cutting-edge PCR technology, expanding the market for these PCR solutions.

Therefore implementation of MIQE guidelines has become a catalyst for the PCR market's growth. Researchers, clinicians, and regulatory bodies increasingly recognize the significance of MIQE compliance, promoting the adoption of Real-time PCR, Digital PCR, and Endpoint PCR technologies across a wide range of scientific and clinical applications.

Technological advancements in PCR (Polymerase Chain Reaction)

Technological advancements in PCR (Polymerase Chain Reaction) are propelling the Real-time PCR, Digital PCR, and Endpoint PCR market into a new era of precision, efficiency, and versatility. These advancements are driving the adoption of PCR techniques across various industries and applications. Continuous research and development efforts have led to PCR systems with greater sensitivity and precision. Real-time PCR and Digital PCR, in particular, can now detect and quantify nucleic acids with unprecedented accuracy, revolutionizing genomics research, clinical diagnostics, and personalized medicine. PCR techniques have evolved to enable multiplexing, allowing the simultaneous analysis of multiple genetic targets in a single reaction. This not only saves time but also conserves resources. High-throughput PCR systems have emerged, meeting the demand for rapid and large-scale testing, especially in clinical diagnostics and drug discovery.

PCR instruments are increasingly being integrated with automation systems, streamlining laboratory workflows and minimizing human error. This is vital in clinical settings where reliability and speed are paramount. Miniaturization and portability have resulted in point-of-care PCR devices that can be deployed in remote or resource-limited areas. These compact systems are expanding the use of PCR in infectious disease diagnosis and monitoring. PCR has become an integral component of NGS workflows, facilitating target amplification before sequencing. This integration has accelerated advancements in genomics and molecular biology research. Therefore, technological breakthroughs are reshaping the PCR landscape, fueling the adoption of Real-time PCR, Digital PCR, and Endpoint PCR across diverse sectors. These innovations are broadening the scope of PCR applications, making it an indispensable tool in modern science, medicine, and diagnostics.

Key Market Challenges

High Device Costs Associated With Real Time Pcr

The high device costs associated with Real-time PCR have become a significant challenge for the Real-time PCR, Digital PCR, and Endpoint PCR market. While these technologies offer unparalleled precision and sensitivity, their initial investment and ongoing operational expenses can be substantial, creating several hurdles: The considerable upfront cost of purchasing Real-time PCR, Digital PCR, or Endpoint PCR instruments can deter smaller research laboratories, clinics, and resource-constrained regions from adopting these technologies. This limits their access to advanced molecular diagnostic capabilities. Beyond the initial purchase, PCR instruments require regular maintenance and the use of specialized consumables, such as reagents and disposables. These ongoing expenses can strain budgets, particularly in healthcare settings with tight financial constraints. Proper utilization of PCR systems demands trained personnel with expertise in molecular biology techniques. Investing in staff training adds to the overall cost of implementing and maintaining PCR technologies.

The cost per test with PCR-based assays can be higher compared to some other diagnostic methods. This can be a concern for healthcare providers and patients, potentially limiting the widespread adoption of these techniques. The high cost of PCR instruments has led to a competitive market, with manufacturers striving to offer cost-effective solutions. While this benefits consumers, it can pose a challenge for manufacturers in terms of maintaining profitability. Therefore, while Real-time PCR, Digital PCR, and Endpoint PCR offer exceptional diagnostic capabilities, their high device costs present a significant challenge. To overcome this obstacle and promote broader adoption, the industry must continue to explore cost-effective innovations, streamline operational expenses, and facilitate accessibility to these advanced molecular diagnostic technologies across diverse healthcare and research settings.

Stringent Regulatory Policies

Stringent regulatory policies present a considerable challenge for the Real-time PCR, Digital PCR, and Endpoint PCR market. While regulations are essential for ensuring the safety and reliability of diagnostic devices, they often pose several hurdles to the industry's growth and innovation. One of the primary challenges lies in the lengthy and resource-intensive process of obtaining regulatory approvals. Companies must navigate complex and time-consuming procedures, such as FDA clearance in the United States or CE marking in Europe. These approval delays can significantly impede the introduction of new PCR technologies to the market. Compliance costs are another major concern. Meeting stringent regulatory requirements demands substantial investments in testing, documentation, and quality control measures. These expenses can increase the overall cost of PCR technologies, potentially making them less accessible to healthcare providers and patients. The stringent regulatory landscape can also deter smaller, innovative companies from entering the market. Compliance with complex regulations may require significant financial and human resources, limiting the development of novel PCR technologies.

Moreover, different regions often have their own regulatory frameworks, resulting in variations and inconsistencies. Adhering to various sets of rules can be burdensome for manufacturers aiming to market their products globally. Therefore, while regulatory policies are crucial for ensuring patient safety and product quality, they create significant challenges for the Real-time PCR, Digital PCR, and Endpoint PCR market. Balancing stringent regulations with innovation and market access is essential to drive the industry forward and provide healthcare providers and patients with advanced diagnostic tools.

Key Market Trends

Genomics research

Genomics research is playing a pivotal role in driving the growth of the Real-time PCR, Digital PCR, and Endpoint PCR market. This field of study, focused on understanding the complete set of an organism's genes (its genome), relies heavily on Polymerase Chain Reaction (PCR) technologies for a multitude of applications.

One of the primary drivers is the need for DNA amplification and sequencing, which are fundamental processes in genomics research. PCR techniques enable researchers to selectively amplify specific DNA regions, facilitating the analysis of genetic variations, mutations, and gene expression patterns. Moreover, the emergence of next-generation sequencing (NGS) has further accentuated the importance of PCR. NGS relies on PCR for target amplification before sequencing, making PCR a critical component in the genomics workflow. This synergy between PCR and NGS has propelled genomics research into new dimensions, enabling researchers to explore complex biological questions and uncover genomic insights.

Additionally, genomics research has far-reaching implications in fields such as personalized medicine, agriculture, and evolutionary biology. The demand for accurate, high-throughput, and cost-effective PCR technologies has surged as genomics research expands its horizons. Therefore, genomics research's insatiable appetite for DNA analysis and sequencing has fueled the demand for Real-time PCR, Digital PCR, and Endpoint PCR technologies. These PCR techniques are indispensable tools in the genomics researcher's toolkit, contributing significantly to our understanding of genetics and driving innovations in science, medicine, and beyond.

Point-of-care testing (POCT)

Point-of-care testing (POCT) has emerged as a prominent trend in the Real-time PCR, Digital PCR, and Endpoint PCR market, transforming the landscape of diagnostic and healthcare practices. This shift is driven by several key factors. The need for rapid and on-the-spot diagnostics has never been more critical, particularly in scenarios like infectious disease outbreaks, where quick and accurate results can be a matter of life and death. PCR technologies, including Real-time PCR and Digital PCR, have evolved to meet this demand. Portable and compact PCR devices are now available, allowing healthcare professionals to perform molecular diagnostics at the patient's bedside or in remote locations. Secondly, the COVID-19 pandemic highlighted the significance of POCT using PCR techniques. Real-time PCR, in particular, played a central role in mass testing efforts, emphasizing the technology's adaptability for rapid and widespread diagnostics. Furthermore, the decentralization of testing facilities is a growing trend in healthcare. POCT reduces the need for sending samples to centralized laboratories, saving time and resources. This decentralization also promotes early diagnosis and treatment, improving patient outcomes. In addition, as PCR devices become more user-friendly and require less technical expertise, their adoption in POCT settings becomes more feasible for healthcare providers beyond traditional laboratories. Overall, the trend towards point-of-care testing using PCR technologies is driven by the demand for quick, accurate, and accessible diagnostics. As these technologies continue to evolve, they are expected to play an increasingly significant role in healthcare, offering timely insights and improving patient care.

Segmental Insights

Product Insights

The consumables and reagents segment emerged as the dominant revenue contributor, accounting for a substantial share of over 56.51% in 2022 within the Real-time PCR, Digital PCR, and Endpoint PCR market. This dominance can be attributed to several key factors that have shaped its growth trajectory. The outbreak of the COVID-19 pandemic created an unprecedented demand for diagnostic testing, where PCR technologies played a pivotal role. Consumables and reagents are fundamental components of PCR assays, and the surge in testing requirements significantly boosted their consumption. The need for early and accurate disease detection during the pandemic further fueled demand. Secondly, the multitude of companies engaged in the manufacturing of digital PCR consumables and reagents contributed to the segment's prominence. Competition in this sector led to product innovation and a wider range of offerings, catering to diverse research and diagnostic needs.

Moreover, the extensive use of consumables and reagents across various domains, including healthcare, research, and other scientific applications, has sustained the segment's large market share. These consumables are integral to routine laboratory practices, ensuring the continuity of research and diagnostics. Furthermore, the rising prevalence of chronic diseases has led to increased utilization of PCR technologies, consequently bolstering the demand for consumables and reagents. Additionally, the pharmaceutical and healthcare sectors' growing acceptance of technological advancements and increased research and development activities are set to create significant growth opportunities for this segment in the foreseeable future. In conclusion, the consumables and reagents segment's dominance in the Real-time PCR, Digital PCR, and Endpoint PCR market is the result of a confluence of factors, including the COVID-19 pandemic, competitive manufacturing landscape, widespread application, and the ever-expanding realm of research and healthcare. This dominance is poised to persist as the market continues to evolve.

Technology Insights

The quantitative PCR segment established its dominance in the market, capturing a substantial revenue share of over 88.63% in 2022. Several driving forces have propelled this segment to the forefront, shaping its remarkable growth trajectory. Firstly, the rapid pace of technological advancements has been a catalyst for the quantitative PCR segment's ascent. These advancements have led to the development of more sophisticated and user-friendly PCR systems, catering to the evolving needs of researchers and diagnosticians. Secondly, there is a growing demand for automated PCR systems and point-of-care diagnostics. The convenience and efficiency offered by automated systems have garnered significant interest, further propelling the quantitative PCR segment's growth. Additionally, the segment has experienced an exponential surge in demand due to the global response to the COVID-19 pandemic. The introduction of real-time PCR-based products for COVID-19 screening and diagnosis has played a pivotal role in this growth. For example, Huwel Lifesciences unveiled a portable RT-PCR machine in February 2023 designed to test various virus types, enhancing accessibility to testing.

Furthermore, distribution agreements, such as the one announced by Bruker Corporation in March 2020 for the distribution of genesig real-time PCR coronavirus assay, have facilitated the widespread adoption of quantitative PCR technologies. These agreements have expanded the availability of critical diagnostic tools in regions including the U.S., the U.K., Spain, France, and Germany. In conclusion, the quantitative PCR segment's ascendancy in the market can be attributed to a confluence of factors, including technological innovations, increased demand for automation and point-of-care diagnostics, and the pivotal role it has played in COVID-19 testing. This segment is poised to maintain its strong growth trajectory in the foreseeable future.

Regional Insights

In 2022, North America took the lead on the global market stage, capturing a significant revenue share of over 36.10%. This strong position is expected to persist throughout the forecast period, and several key factors are responsible for this continued dominance. One of the primary drivers is the presence of favorable regulations and government-led initiatives aimed at advancing healthcare infrastructure. North America has actively promoted the development of healthcare technologies, including PCR diagnostics, through supportive regulatory frameworks. Additionally, the region grapples with a high prevalence of diseases, necessitating reliable and efficient diagnostic solutions.

Moreover, North America boasts a robust presence of leading PCR technology manufacturers, further cementing its status as a hub for innovation and production in this sector. This homegrown expertise ensures that the region can meet the escalating demand for rapid and precise diagnostic tests. Shifting the focus to Asia Pacific, this region emerges as the most promising and lucrative market. China and Japan stand out for their notable advancements in integrating PCR technology into various applications. Furthermore, emerging economies like India and Australia are actively developing their healthcare, research, and clinical frameworks, contributing to the region's growth potential.

Overall, North America's dominance is attributed to regulatory support, government initiatives, and disease prevalence, while the Asia Pacific region shines with technological integration and expanding healthcare and research sectors. These factors position both regions for substantial growth in the PCR market in the foreseeable future.

Key Market Players

  • Abbott Laboratories Inc
  • Bio-Rad Laboratories Inc.
  • Thermo Fisher Scientific, Inc.
  • BIOMERIEUX SA
  • Fluidigm Corporation
  • F. Hoffmann-La Roche Ltd
  • GE Healthcare
  • Agilent Technologies, Inc.
  • Qiagen NV
  • Microsynth Ag

Report Scope:

In this report, the Global Real-time PCR, Digital PCR & End-point PCR Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Real-time PCR, Digital PCR & End-point PCR Market, By Technology:

  • Quantitative
  • Digital
  • Endpoint

Real-time PCR, Digital PCR & End-point PCR Market, By Product:

  • Consumables & Reagents
  • Instruments
  • Software & Services

Real-time PCR, Digital PCR & End-point PCR Market, By Application:

  • Clinical
  • Research

Real-time PCR, Digital PCR & End-point PCR Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey
  • Egypt

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Real-time PCR, Digital PCR & End-point PCR Market.

Available Customizations:

  • Global Real-time PCR, Digital PCR & End-point PCR market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

2. Research Methodology

3. Executive Summary

4. Voice of Customers

5. Global Real-time PCR, Digital PCR & End-point PCR Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Technology (Quantitative, Digital, Endpoint)
      • 5.2.1.1. By Quantitative (Consumables & Reagents, Instruments, Software & Services)
      • 5.2.1.2. By Digital (Consumables & Reagents, Instruments, Software & Services)
      • 5.2.1.3. By Endpoint (Consumables & Reagents, Instruments, Software & Services)
    • 5.2.2. By Product (Consumables & Reagents, Instruments, Software & Services)
    • 5.2.3. By Application (Clinical, Research)
      • 5.2.3.1. By Clinical (Pathogen Testing, Oncology Testing, Blood Screening, Liquid Biopsy Testing, Dpcr-Based Non-Invasive Prenatal Testing)
      • 5.2.3.2. By Research (Stem Cell Research, Dna Cloning & Sequencing, Recombinant Dna Technology, Rare Mutation Detection, Others)
    • 5.2.4. By Company (2022)
    • 5.2.5. By Region
  • 5.3. Market Map

6. North America Real-time PCR, Digital PCR & End-point PCR Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Technology
    • 6.2.2. By Product
    • 6.2.3. By Application
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Technology
        • 6.3.1.2.2. By Product
        • 6.3.1.2.3. By Application
    • 6.3.2. Mexico Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Technology
        • 6.3.2.2.2. By Product
        • 6.3.2.2.3. By Application
    • 6.3.3. Canada Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Technology
        • 6.3.3.2.2. By Product
        • 6.3.3.2.3. By Application

7. Europe Real-time PCR, Digital PCR & End-point PCR Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology
    • 7.2.2. By Product
    • 7.2.3. By Application
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Technology
        • 7.3.1.2.2. By Product
        • 7.3.1.2.3. By Application
    • 7.3.2. Germany Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Technology
        • 7.3.2.2.2. By Product
        • 7.3.2.2.3. By Application
    • 7.3.3. United Kingdom Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Technology
        • 7.3.3.2.2. By Product
        • 7.3.3.2.3. By Application
    • 7.3.4. Italy Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Technology
        • 7.3.4.2.2. By Product
        • 7.3.4.2.3. By Application
    • 7.3.5. Spain Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Technology
        • 7.3.5.2.2. By Product
        • 7.3.5.2.3. By Application

8. Asia-Pacific Real-time PCR, Digital PCR & End-point PCR Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology
    • 8.2.2. By Product
    • 8.2.3. By Application
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology
        • 8.3.1.2.2. By Product
        • 8.3.1.2.3. By Application
    • 8.3.2. India Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology
        • 8.3.2.2.2. By Product
        • 8.3.2.2.3. By Application
    • 8.3.3. South Korea Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology
        • 8.3.3.2.2. By Product
        • 8.3.3.2.3. By Application
    • 8.3.4. Japan Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Technology
        • 8.3.4.2.2. By Product
        • 8.3.4.2.3. By Application
    • 8.3.5. Australia Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Technology
        • 8.3.5.2.2. By Product
        • 8.3.5.2.3. By Application

9. South America Real-time PCR, Digital PCR & End-point PCR Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology
    • 9.2.2. By Product
    • 9.2.3. By Application
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology
        • 9.3.1.2.2. By Product
        • 9.3.1.2.3. By Application
    • 9.3.2. Argentina Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology
        • 9.3.2.2.2. By Product
        • 9.3.2.2.3. By Application
    • 9.3.3. Colombia Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology
        • 9.3.3.2.2. By Product
        • 9.3.3.2.3. By Application

10. Middle East and Africa Real-time PCR, Digital PCR & End-point PCR Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Drug Class
    • 10.2.2. By Type
    • 10.2.3. By Route Of Administration
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology
        • 10.3.1.2.2. By Product
        • 10.3.1.2.3. By Application
    • 10.3.2. Saudi Arabia Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology
        • 10.3.2.2.2. By Product
        • 10.3.2.2.3. By Application
    • 10.3.3. UAE Real-time PCR, Digital PCR & End-point PCR Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology
        • 10.3.3.2.2. By Product
        • 10.3.3.2.3. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. PESTLE Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Business Overview
  • 15.2. Company Snapshot
  • 15.3. Product & Services
  • 15.4. Financials (In case of listed companies)
  • 15.5. Recent Developments
  • 15.6. SWOT Analysis
    • 15.6.1. Abbott Laboratories Inc
    • 15.6.2. Bio-Rad Laboratories Inc.
    • 15.6.3. Thermo Fisher Scientific, Inc.
    • 15.6.4. BIOMERIEUX SA
    • 15.6.5. Fluidigm Corporation
    • 15.6.6. F. Hoffmann-La Roche Ltd
    • 15.6.7. GE Healthcare
    • 15.6.8. Agilent Technologies, Inc.
    • 15.6.9. Qiagen NV
    • 15.6.10. Microsynth Ag

16. Strategic Recommendations

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦