½ÃÀ庸°í¼­
»óǰÄÚµå
1376272

ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø(2018-2028³â), ºÎ¹®º° - À¯Çüº°, Â÷Á¾º°, ¼ö¿ä ºÐ·ùº°, Áö¿ªº°, °æÀï

Automotive Heat Shield Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Type, By Vehicle Type, By Demand Category, By Regional, Competition

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 182 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀå ±Ô¸ð´Â 2022³â¿¡ 150¾ï ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ CAGRÀº 3.8%·Î °ß°íÇÑ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù.

¼¼°è ÀÚµ¿Â÷ ¹æ¿­ÆÇ ½ÃÀåÀº ÀÚµ¿Â÷ ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀü°ú ¿¡³ÊÁö È¿À²ÀûÀÎ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿À´Ã³¯ ÁøÈ­ÇÏ´Â ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ¿­ Â÷Æó´Â ¿­ ¹æÃâÀ» ¾ïÁ¦Çϰí ÀÚµ¿Â÷ÀÇ Àü¹ÝÀûÀÎ È¿À²¼ºÀ» ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ȯ°æ ±ÔÁ¦°¡ Á¡Á¡ ´õ ¾ö°ÝÇØÁö°í ¿¬ºñ È¿À²¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ Áö¼ÓÀûÀ¸·Î Çâ»óµÊ¿¡ µû¶ó ÀÚµ¿Â÷ ¿­ Â÷Æó¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷ ºÎ¹®ÀÌ ±Þ¼ºÀåÇϰí ÀÖ´Â ½ÅÈï ½ÃÀåÀÌ ÀÌ·¯ÇÑ È®´ë¿¡ Å©°Ô ±â¿©ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±×·¯³ª ÀÌ ½ÃÀåÀÌ Á÷¸éÇÑ µµÀüµµ ÀνÄÇØ¾ß ÇÕ´Ï´Ù. °í±Þ ¿­ Â÷ÆóÀÇ ³ôÀº ºñ¿ëÀº Á¦Á¶¾÷ü¿Í ¼ÒºñÀÚ ¸ðµÎ¿¡°Ô ¿©ÀüÈ÷ ¿ì·ÁµÇ´Â ºÎºÐÀÔ´Ï´Ù. ¶ÇÇÑ COVID-19°¡ ÀÚµ¿Â÷ »ê¾÷¿¡ ¹ÌÄ¡´Â °æÁ¦Àû ¿µÇâÀº ½ÃÀå ¼ºÀå¿¡ ¶Ç ´Ù¸¥ Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024-2028
½ÃÀå ±Ô¸ð 2022³â 150¾ï ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 186¾ï 1,000¸¸ ´Þ·¯
CAGR 2023-2028 3.80%
±Þ¼ºÀå ºÎ¹® ½Â¿ëÂ÷
ÃÖ´ë ½ÃÀå ¾Æ½Ã¾ÆÅÂÆò¾ç

±×·¯³ª, ÀÌ·¯ÇÑ µµÀü°úÁ¦°¡ ÀÖ´Â ¹Ý¸é, ÀÚµ¿Â÷ ¿­ Â÷Æó ½ÃÀå¿¡´Â ±âȸ°¡ ³ÑÃijª°í ÀÖ½À´Ï´Ù. Àü±â ¹× ÇÏÀ̺긮µåÂ÷ÀÇ º¸±ÞÀº ¾öû³­ ÀáÀç·ÂÀ» °¡Áö°í ÀÖÀ¸¸ç, ÀÌ´Â ´õ Å« ¼ºÀåÀÇ ±æÀ» ¿­¾îÁÙ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿Â÷´Â °íÀ¯ÇÑ ¹æ¿­ ¿ä±¸ »çÇ×À» °¡Áö°í ÀÖÀ¸¹Ç·Î ƯÁ¤ ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ÀÖ´Â Çõ½ÅÀûÀÎ ¿­ Â÷Æó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

¾ö°ÝÇØÁø ¹è±â°¡½º ±ÔÁ¦

ÀÚµ¿Â÷ ¿­ Â÷Æó ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ¼¼°è °¢±¹ Á¤ºÎÀÇ ¹è±â°¡½º ±ÔÁ¦°¡ Á¡Á¡ ´õ ¾ö°ÝÇØÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â ÀÚµ¿Â÷ ¹è±â°¡½º ¹èÃâÀ» ¾ïÁ¦ÇÏ°í ´ë±â ¿À¿°À» ÁÙÀÌ¸ç ±âÈÄ º¯È­¿¡ ´ëÀÀÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ÃæÁ·½Ã۱â À§ÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ´õ ¸¹Àº ¿­À» ¹ß»ý½ÃŰ´Â ÷´Ü ¿£Áø ¹× ¹è±â ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¿­ Â÷Æó´Â ÀÌ °úµµÇÑ ¿­À» È¿À²ÀûÀ¸·Î °ü¸®Çϰí Ã˸ŠÄÁ¹öÅÍ ¹× ¹è±â °¡½º Á¦¾î ½Ã½ºÅÛ°ú °°Àº ¼¶¼¼ÇÑ ºÎǰÀÌ ÃÖÀûÀÇ ¿Âµµ¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. °ú¿­À» ¹æÁöÇÔÀ¸·Î½á ¿­ Â÷Æó´Â ¹è±â°¡½º ¹èÃâÀ» ÁÙÀÌ°í ¿¬ºñ¸¦ °³¼±ÇÏ¿© ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â µ¥ ±â¿©ÇÕ´Ï´Ù.

È¿°úÀûÀÎ ¿­ °ü¸® ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ÀÚµ¿Â÷ »ê¾÷¿¡¼­ Çõ½ÅÀûÀÎ ¿­ Â÷Æó¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹è±â°¡½º ±ÔÁ¦°¡ °è¼Ó ÁøÈ­ÇÔ¿¡ µû¶ó ¿­ Â÷Æó´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ Â÷·® ¼º´ÉÀ» À¯ÁöÇϸ鼭 ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ»ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

Àü±âÀÚµ¿Â÷(EV) º¸±Þ È®´ë

¼¼°è°¡ Àü±âÀÚµ¿Â÷·Î ÀüȯÇÏ´Â °Íµµ ÀÚµ¿Â÷ ¹æ¿­ÆÇ ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. ±âÁ¸ ³»¿¬ ±â°üÂ÷(ICE)¿Í ´Þ¸® Àü±âÀÚµ¿Â÷´Â ÁÖ·Î ¹èÅ͸® ½Ã½ºÅÛ ¹× Àü·Â ÀüÀÚ Àåºñ¿Í °ü·ÃµÈ °íÀ¯ ÇÑ ¿­ °ü¸® ¹®Á¦°¡ ÀÖÀ¸¸ç, EV´Â °í¿Â¿¡ Ãë¾àÇÑ ¸®Æ¬À̿ ¹èÅ͸®ÀÇ ¾ÈÀü°ú ¼ö¸íÀ» º¸ÀåÇϱâ À§ÇØ È¿À²ÀûÀÎ ³Ã°¢ ¹× ¿­ ¹æÃâÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¿­ Â÷Æó´Â ¹èÅ͸®¸¦ °úµµÇÑ ¿­·ÎºÎÅÍ º¸È£Çϰí ÃÖÀûÀÇ ÀÛµ¿ ¿Âµµ¸¦ À¯ÁöÇÏ¸ç ¿­ ÆøÁÖ¸¦ ¹æÁöÇϱâ À§ÇØ »ç¿ëµÇ¸ç, EV¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ¹èÅ͸® ±¸È¹°ú ÆÄ¿öÆ®·¹ÀÎÀÇ È¿°úÀûÀÎ ¿­ Â÷Æó ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺µµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Àü±âÀÚµ¿Â÷ÀÇ Ã¤ÅÃÀº ¿­ Â÷Æó Á¦Á¶¾÷üµéÀÌ EVÀÇ Æ¯¼öÇÑ ¿­ °ü¸® ¿ä±¸¸¦ ÃæÁ·Çϵµ·Ï ¼³°èµÈ Àü¿ë ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ±âȸÀ̸ç, EV ½ÃÀåÀÌ È®´ëµÊ¿¡ µû¶ó ¿­ Â÷Æó ±â¼úÀº ¹èÅ͸®ÀÇ ¾ÈÀü¼º°ú Àüü Â÷·® ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÒ °ÍÀÔ´Ï´Ù. Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

÷´Ü ¿£Áø ±â¼ú

ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¼º´É°ú ¿¬ºñ¸¦ Çâ»ó½Ã۰íÀÚ ÇÏ´Â ¼ÒºñÀÚÀÇ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ Ã·´Ü ¿£Áø ±â¼úÀ» Áö¼ÓÀûÀ¸·Î °³¹ßÇϰí ÀÖ½À´Ï´Ù. Åͺ¸ °ú±Þ°ú Á÷ºÐ»ç¸¦ Æ÷ÇÔÇÑ ÀÌ·¯ÇÑ ±â¼úµéÀº Á¾Á¾ ¿£Áø½Ç ³»ºÎÀÇ ¿Âµµ¸¦ »ó½Â½Ãŵ´Ï´Ù. °ú¿­, ºÎǰ ¼Õ»ó ¹× ¿£Áø È¿À² ÀúÇϸ¦ ¹æÁöÇÏ·Á¸é È¿°úÀûÀÎ ¿­ °ü¸®°¡ ÇʼöÀûÀÔ´Ï´Ù. ¿­ Â÷Æó´Â Áß¿äÇÑ ¿£Áø ºÎǰÀÇ ¿­À» °Ý¸®ÇÏ°í ¹æÃâÇÏ¿© ÀûÀýÇÑ ±â´É°ú ¼ö¸íÀ» º¸ÀåÇϱâ À§ÇØ Ã¤Åõ˴ϴÙ.

´Ù¾çÇÑ ÀÚµ¿Â÷¿¡ ÷´Ü ¿£Áø ±â¼úÀÌ Àû¿ëµÇ¸é¼­ ¿­ Â÷Æó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ¼º´É°ú ¹è±â°¡½º ±ÔÁ¦ÀÇ ±ÕÇüÀ» Ãß±¸ÇÔ¿¡ µû¶ó ¿­ °ü¸® ¼Ö·ç¼ÇÀº ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¹æ¿­ÆÇ Á¦Á¶¾÷ü´Â ÁøÈ­ÇÏ´Â ¿£Áø ¼³°è ¹× ¿ä±¸»çÇ׿¡ ¸ÂÃß¾î ¿­ º¸È£ ±â´ÉÀ» Á¦°øÇϱâ À§ÇØ Çõ½ÅÀÌ ÇÊ¿äÇÕ´Ï´Ù.

½ºÆ÷Ã÷-ÆÛÆ÷¸Õ½º ÀÚµ¿Â÷ÀÇ ¼ºÀå

°í¼º´É ¿îÀü °æÇè¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½É¿¡ ÈûÀÔ¾î ½ºÆ÷Ã÷Ä« ¹× ÆÛÆ÷¸Õ½º ÀÚµ¿Â÷ÀÇ Àαâ´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Â÷·®¿¡´Â Á¾Á¾ ¸¹Àº ¾çÀÇ ¿­À» ¹ß»ý½ÃŰ´Â °­·ÂÇÑ ¿£Áø°ú ¹è±â ½Ã½ºÅÛÀÌ ÀåÂøµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿­ Â÷Æó´Â ¿£Áø ºÎǰ, ¹è±â ½Ã½ºÅÛ ¹× ±âŸ ¼¶¼¼ÇÑ ºÎǰÀÌ °í¼º´É ÁÖÇà¿¡ µû¸¥ ±ØÇÑÀÇ Á¶°ÇÀ» °ßµô ¼ö ÀÖµµ·Ï º¸ÀåÇϱ⠶§¹®¿¡ ½ºÆ÷Ã÷Ä« ¹× °í¼º´É ÀÚµ¿Â÷¿¡ ÇʼöÀûÀÎ ºÎǰÀÔ´Ï´Ù.

½ºÆ÷Ã÷Ä«, ¸Ó½½Ä«, °í¼º´É SUV¿Í °°Àº ½ºÆ÷Ã÷Ä« ¹× °í¼º´É ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä´Â Ư¼ö ¿­ Â÷Æó¿¡ ´ëÇÑ Çʿ伺À» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Â÷Æó´Â °ø°ÝÀûÀÎ ÁÖÇà Áß¿¡ ¹ß»ýÇÏ´Â ³ôÀº ¿­À» °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î¾ß Çϸç, ÀÌ·¯ÇÑ ÀÚµ¿Â÷ÀÇ Àü¹ÝÀûÀÎ ¼º´É°ú ½Å·Ú¼º¿¡ ±â¿©ÇÕ´Ï´Ù.

µµ½ÃÈ­ ¹× ±³ÅëüÁõ

±Þ°ÝÇÑ µµ½ÃÈ­·Î ÀÎÇØ ¼¼°è ¸¹Àº µµ½Ã¿¡¼­ ±³Åë üÁõÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. È¥ÀâÇÑ µµ½Ã ȯ°æ¿¡¼­ Â÷·®Àº Á¾Á¾ °¡´Ù ¼­´Ù¸¦ ¹Ýº¹ÇÏ´Â ±³Åë üÁõ¿¡ Á÷¸éÇÏ¿© Àå½Ã°£ ¿£ÁøÀÌ °øÈ¸ÀüÇÏ°í ¿­ ¹ß»ýÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿­¾ÇÇÑ È¯°æ¿¡¼­ °ú¿­À» ¹æÁöÇϰí Â÷·®ÀÇ ½Å·Ú¼ºÀ» À¯ÁöÇϱâ À§Çؼ­´Â È¿°úÀûÀÎ ¿­ °ü¸® ¼Ö·ç¼ÇÀÌ ÇʼöÀûÀÔ´Ï´Ù.

¿­ Â÷Æó´Â ±³Åë üÁõ¿¡¼­ ¹ß»ýÇÏ´Â ¿­·ÎºÎÅÍ ¿£Áø°ú ¹è±â ½Ã½ºÅÛÀ» º¸È£ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¿­ Â÷Æó´Â Â÷·®ÀÌ ¿­ °ü·Ã ¹®Á¦¾øÀÌ µµ½Ã¿¡¼­ÀÇ °¡È¤ÇÑ ¿îÀüÀ» °ßµô ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. µµ½ÃÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó ±³Åë üÁõ½Ã ÀÚµ¿Â÷ÀÇ ³»±¸¼ºÀ» Çâ»ó½ÃŰ´Â ¿­ Â÷Æó¿¡ ´ëÇÑ ¼ö¿ä´Â ¿©ÀüÈ÷ Å®´Ï´Ù.

¿­ Â÷Æó Àç·áÀÇ ±â¼úÀû ¹ßÀü

ÁÖ¿ä ÃËÁø¿äÀÎ: Àç·á °úÇÐÀÇ ¹ßÀüÀ¸·Î ¼º´É Ư¼ºÀÌ °³¼±µÈ ³»¿­¼º Àç·á°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÃֽŠ¿­ Â÷Æó Àç·á´Â ¿ì¼öÇÑ ¹æ¿­¼º°ú ³»±¸¼ºÀ» Á¦°øÇÏ¿© Â÷·®ÀÇ ¿­À» º¸´Ù È¿°úÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ¿­ Â÷ÆóÀÇ ½Å·Ú¼º°ú ¼ö¸íÀ» Çâ»ó½ÃÄÑ ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ³Î¸® º¸±ÞµÇ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¿µÇâ ÷´Ü ¼ÒÀçÀÇ °¡¿ë¼ºÀº ¿­ Â÷Æó ±â¼ú¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ´õ °¡º±°í, ´õ È¿À²ÀûÀ̸ç, ´õ ¿À·¡ Áö¼ÓµÇ´Â ¿­ Â÷Æó¸¦ ¼³°èÇÒ ¼ö ÀÖ°Ô Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡ ¹«°Ô¿Í °ø°£ ¿ä±¸ »çÇ×À» ÃÖ¼ÒÈ­Çϸ鼭 ¿­ °ü¸®¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ´Â ¿É¼ÇÀ» Á¦°øÇÏ¿© Â÷·® ¼º´É°ú ¿¬ºñ¸¦ Çâ»ó½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ÀÚµ¿Â÷ ¾ÈÀü ¿ä°Ç °­È­

ÀÚµ¿Â÷ÀÇ ¾ÈÀü ±âÁØÀº °è¼Ó ÁøÈ­Çϰí ÀÖÀ¸¸ç, ¿­·Î ÀÎÇÑ °íÀåÀ¸·ÎºÎÅÍ Áß¿äÇÑ ºÎǰÀ» º¸È£ÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. Çö´ë ÀÚµ¿Â÷¿¡´Â ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¸¦ ºñ·ÔÇÑ ´Ù¾çÇÑ ¾ÈÀü ½Ã½ºÅÛÀÌ ÀåÂøµÇ¾î ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¾ÈÁ¤ÀûÀÎ ÀÛµ¿ ¿Âµµ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¿­ Â÷Æó´Â °ú¿­ ¹× ºÎǰ ¼Õ»óÀ» ¹æÁöÇÏ¿© ÀÌ·¯ÇÑ ¾ÈÀü ½Ã½ºÅÛÀÌ ÀǵµÇÑ ´ë·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

ÀÚµ¿Â÷ ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¾ÈÀü¿¡ Áß¿äÇÑ ºÎǰÀÇ ½Å·Ú¼ºÀ» À¯ÁöÇϱâ À§ÇØ ¿­ Â÷Æó¸¦ »ç¿ëÇØ¾ß ÇÕ´Ï´Ù. ¿­ Â÷Æó ±â¼úÀº ¼¶¼¼ÇÑ ÀüÀÚ Àåºñ, ¼¾¼­ ¹× ¾ÈÀü ½Ã½ºÅÛÀÌ ÁöÁ¤µÈ ¿Âµµ ¹üÀ§ ³»¿¡¼­ ÀÛµ¿Çϵµ·Ï º¸ÀåÇÏ¿© Àüü Â÷·®ÀÇ ¾ÈÀü°ú ½Å·Ú¼º¿¡ ±â¿©ÇÕ´Ï´Ù.

½ÅÈï Áö¿ªÀ¸·Î ½ÃÀå È®´ë

ÀÚµ¿Â÷ »ê¾÷Àº ÀÚµ¿Â÷ »ý»ê°ú ÆÇ¸Å°¡ ±Þ¼ºÀåÇϰí ÀÖ´Â ¾Æ½Ã¾ÆÅÂÆò¾ç°ú °°Àº ½ÅÈï Áö¿ªÀ¸·Î ÁøÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È®ÀåÀ¸·Î ÀÎÇØ ÀÌ Áö¿ª¿¡¼­ »ý»êµÇ´Â ÀÚµ¿Â÷ÀÇ ¿­ °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ »ê¾÷ÀÇ ¼¼°èÈ­´Â ¿­ Â÷Æó Á¦Á¶¾÷üµéÀÌ ½ÅÈï ½ÃÀå¿¡ Á¦Ç°À» °ø±ÞÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. À̵é Áö¿ª¿¡¼­ »ý»êµÇ´Â ÀÚµ¿Â÷ÀÇ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿­ °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ÇöÁö ǰÁú ¹× ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö ÀÖ´Ù¸é ¿­ Â÷Æó Á¦Á¶¾÷ü¿¡°Ô ¼ºÀå ÀáÀç·ÂÀ» Á¦°øÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå °úÁ¦

Àüµ¿È­ ¹× Àü±âÀÚµ¿Â÷ ¹èÅ͸® Áõ°¡

Àü±âÀÚµ¿Â÷(EV)°¡ ´ëÁßÈ­µÊ¿¡ µû¶ó EV¿¡¼­ ¿­ Â÷ÆóÀÇ ¿ªÇÒÀÌ ´õ¿í Áß¿äÇØÁö°í ÀÖÀ¸¸ç, EV´Â ¿Âµµ º¯È­¿¡ ¹Î°¨ÇÑ ¸®Æ¬À̿ ¹èÅ͸®¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¹èÅ͸® ±¸È¹ ³»ºÎÀÇ ¿­À» °ü¸®ÇÏ´Â °ÍÀº ¾ÈÀüÀ» º¸ÀåÇÏ°í ¹èÅ͸® È¿À²À» À¯ÁöÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ±×·¯³ª EV ¹èÅ͸® ÆÑÀÇ µ¶Æ¯ÇÑ µðÀÚÀΰú ¿ä±¸ »çÇ×Àº È¿°úÀûÀÎ ¿­ Â÷Æó ¼Ö·ç¼ÇÀ» °³¹ßÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ½À´Ï´Ù.

¿­ Â÷Æó Á¦Á¶¾÷ü´Â ¹«°Ô, °ø°£ Á¦¾à, ¿­ °ü¸® µîÀÇ ¿ä¼Ò¸¦ °í·ÁÇϸ鼭 ¹èÅ͸® ÆÑÀÇ ¿­À» È¿°úÀûÀ¸·Î ¹æÃâÇÏ´Â ¿­ Â÷Æó¸¦ ¼³°èÇÏ¿© EVÀÇ °íÀ¯ÇÑ ¿ä±¸¿¡ ÀûÀÀÇØ¾ß ÇÕ´Ï´Ù. ±â¼ú Çõ½ÅÀÌ ÇÊ¿äÇÕ´Ï´Ù.

°æ·®È­ ¹× ¼ÒÀç

ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¿¬ºñ¸¦ °³¼±ÇÏ°í ¹è±â°¡½º ±ÔÁ¦¸¦ ÃæÁ·½Ã۱â À§ÇØ Â÷·® °æ·®È­¸¦ À§ÇØ ²÷ÀÓ¾øÀÌ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. °æ·®È­´Â ¿­ Â÷Æó¸¦ Æ÷ÇÔÇÑ ÀÚµ¿Â÷¿¡ »ç¿ëµÇ´Â Àç·á¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áß¿äÇÑ Ãß¼¼ÀÔ´Ï´Ù. °¡º±°í ¿­ °ü¸® È¿À²ÀÌ ³ôÀº ¿­ Â÷Æó¸¦ °³¹ßÇÏ´Â °ÍÀº Å« µµÀü °úÁ¦ÀÔ´Ï´Ù.

¿­ Â÷Æó Á¦Á¶¾÷ü´Â º¹ÇÕ ÇÕ±Ý, ¼¼¶ó¹Í, °í°­µµ °­Ã¶°ú °°Àº ÷´Ü Àç·á¸¦ ޱ¸ÇÏ¿© °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼Ö·ç¼ÇÀ» °³¹ßÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â Àüü Â÷·®ÀÇ ¹«°Ô¸¦ ÁÙÀ̸鼭 ÇÊ¿äÇÑ Â÷Æó Ư¼ºÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù.

º¹ÀâÇÑ ¹è±â ½Ã½ºÅÛ

Çö´ë ÀÚµ¿Â÷´Â Á¡Á¡ ´õ º¹ÀâÇØÁö´Â ¹è±â ½Ã½ºÅÛÀ» žÀçÇϰí ÀÖÀ¸¸ç, Á¾Á¾ ¿©·¯ °³ÀÇ Ã˸Šº¯È¯±â, ¹Ì¸³ÀÚ ÇÊÅÍ ¹× ¹è±â°¡½º Àç¼øÈ¯(EGR) ±¸¼ºÇ°ÀÌ ÅëÇյǾî ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÑ ½Ã½ºÅÛÀÇ ¿­À» °ü¸®ÇÏ´Â °ÍÀº °ø°£ÀÇ Á¦¾à°ú ¹è±â °¡½º Á¦¾î¸¦ À§ÇØ ºÎǰ ¹èÄ¡¸¦ ÃÖÀûÈ­ÇØ¾ß Çϱ⠶§¹®¿¡ ¾î·Á¿î ÀÏÀÔ´Ï´Ù.

¹è±â °¡½ºÀÇ È帧À» ¹æÇØÇÏÁö ¾Ê°í º¹ÀâÇÑ ¹è±â ½Ã½ºÅÛÀÇ ¿­À» È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â ¿­ Â÷ÆóÀÇ °³¹ßÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÑ ¹®Á¦¸¦ È¿°úÀûÀ¸·Î ÇØ°áÇϱâ À§Çؼ­´Â Çõ½ÅÀûÀÎ ¼³°è¿Í ÷´Ü ¼ÒÀç°¡ ÇÊ¿äÇÕ´Ï´Ù.

ÁøÈ­µÇ´Â ¹è±â°¡½º ±ÔÁ¦

¹èÃâ°¡½º ±ÔÁ¦´Â ȯ°æ¿À¿°°ú ±âÈÄ º¯È­¿¡ ´ëÀÀÇϱâ À§ÇØ ¼¼°è¿¡¼­ °è¼Ó ÁøÈ­Çϰí ÀÖÀ¸¸ç, Á¡Á¡ ´õ ¾ö°ÝÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ÃæÁ·½Ã۱â À§Çؼ­´Â ¹è±â ½Ã½ºÅÛ°ú ¿£Áø·ë¿¡¼­ ´õ ¸¹Àº ¿­ÀÌ ¹ß»ýÇÒ ¼ö Àִ ÷´Ü ¹è±â °¡½º ±ÔÁ¦ ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¿­ Â÷Æó´Â ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×ÀÇ º¯È­¿¡ ´ëÀÀÇØ¾ß ÇÕ´Ï´Ù.

°úÁ¦´Â Áõ°¡ÇÏ´Â ¿­À» °ü¸®ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÁøÈ­ÇÏ´Â ¹è±â °¡½º ±ÔÁ¦¸¦ ÃæÁ·ÇÏ´Â ¿­ Â÷Æó¸¦ °³¹ßÇÏ´Â µ¥ ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â ¿£Áø°ú ¹è±â ½Ã½ºÅÛÀÇ ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇÏ´Â µ¿½Ã¿¡ ÃֽбÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â ¿­ Â÷Æó¸¦ °³¹ßÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù.

ADAS¿Í ÀÚÀ²ÁÖÇàÀÇ ÅëÇÕ

÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿Í ÀÚÀ²ÁÖÇà ±â¼úÀº ÀÚµ¿Â÷¿¡¼­ º¸ÆíÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀÛµ¿ Áß¿¡ ¿­À» ¹ß»ý½ÃŰ´Â ´Ù¾çÇÑ ¼¾¼­, Ä«¸Þ¶ó, ·¹ÀÌ´õ ½Ã½ºÅÛ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎǰ¿¡¼­ ¹ß»ýÇÏ´Â ¿­À» °ü¸®Çϸ鼭 ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇÏ´Â °ÍÀÌ °úÁ¦ÀÔ´Ï´Ù.

¿­ Â÷Æó Á¦Á¶¾÷ü´Â ¼¶¼¼ÇÑ ADAS ¹× ÀÚÀ²ÁÖÇà ºÎǰÀ» °ú¿­·ÎºÎÅÍ º¸È£Çϸ鼭 ÃÖ°íÀÇ È¿À²·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» °³¹ßÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â Â÷·® ±¸Á¶ ³»¿¡¼­ È¿°úÀûÀÎ ¿­ °ü¸®°¡ ÇʼöÀûÀÔ´Ï´Ù.

±â¼úÀÇ º¹À⼺

ÀÚµ¿Â÷ »ê¾÷Àº ºü¸£°Ô ¹ßÀüÇϰí ÀÖÀ¸¸ç, ¿£Áø ±â¼ú, º¯¼Ó±â ½Ã½ºÅÛ, ¹è±â ½Ã½ºÅÛÀÌ ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ±â¼úÀÇ º¹À⼺À» °¡Á®¿À°í, ¼¾¼­, ¾×Ãß¿¡ÀÌÅÍ, ÷´Ü ¼ÒÀç µî ´Ù¾çÇÑ ÄÄÆ÷³ÍÆ®¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ¿­ Â÷Æó ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù.

¿­ Â÷Æó Á¦Á¶¾÷ü´Â ÁøÈ­ÇÏ´Â ÀÚµ¿Â÷ ȯ°æ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ´ÙÀç´Ù´ÉÇÑ ¼Ö·ç¼ÇÀ» °³¹ßÇÏ¿© ±â¼ú ¹ßÀü¿¡ ´ëÀÀÇØ¾ß ÇÕ´Ï´Ù. À̸¦ À§Çؼ­´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡ À¯¿¬¼ºÀ» Á¦°øÇÏ°í ´Ù¾çÇÑ ÄÄÆ÷³ÍÆ®¿Í ½Ã½ºÅÛ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä ¿­ Â÷Æó ¼³°è°¡ ÇÊ¿äÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼³°è»óÀÇ Á¦¾à°ú °ø°£ÀÇ ÇѰè

Â÷·® ¼³°èÀÇ Á¦¾à°ú ¿£Áø·ë ¹× ¹è±â ½Ã½ºÅÛ ³»ÀÇ Á¦ÇÑµÈ °ø°£Àº ¿­ Â÷Æó °³¹ßÀÇ µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¿­ Â÷Æó´Â ¿­À» È¿°úÀûÀ¸·Î °ü¸®Çϰí ÁÖº¯ ºÎǰÀ» º¸È£Çϸ鼭 ÀÌ·¯ÇÑ Á¦ÇÑµÈ °ø°£¿¡ ÀûÇÕÇØ¾ß ÇÕ´Ï´Ù.

Á¦Á¶¾÷ü´Â »ç¿ë °¡´ÉÇÑ °ø°£¿¡ ¿Ïº®ÇÏ°Ô ¸Âµµ·Ï ¿­ Â÷Æó¸¦ Á¤¹ÐÇÏ°Ô ¼³°èÇØ¾ß Çϸç, 3D ¸ðµ¨¸µ ¹× ¼öÄ¡À¯Ã¼¿ªÇÐ(CFD) ½Ã¹Ä·¹À̼ǰú °°Àº Çõ½ÅÀûÀÎ ¼³°è ±â¼úÀº Á¼Àº °ø°£¿¡¼­ ¿­ Â÷ÆóÀÇ ±¸¼ºÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

¼ÒÀ½-Áøµ¿-Ƚ¼ö(NVH)

¿­ Â÷Æó°¡ Á¦´ë·Î ¼³°è ¹× ¼³Ä¡µÇÁö ¾ÊÀ¸¸é ÀÚµ¿Â÷ÀÇ ¼ÒÀ½, Áøµ¿ ¹× ¼ÒÀ½(NVH) ¹®Á¦¸¦ ÀÏÀ¸Å³ ¼ö ÀÖÀ¸¸ç, NVH ¹®Á¦´Â Àü¹ÝÀûÀÎ ¿îÀü °æÇè°ú ½Â°´ÀÇ Æí¾ÈÇÔ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

¿­ Â÷Æó Á¦Á¶¾÷ü´Â ¿­À» È¿°úÀûÀ¸·Î °ü¸®Çϸ鼭 ¼ÒÀ½°ú Áøµ¿À» ÃÖ¼ÒÈ­ÇÏ´Â NVH ÃÖÀûÈ­ ¼Ö·ç¼Ç °³¹ß¿¡ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù. ÀÌ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â ½ÅÁßÇÑ Àç·á ¼±ÅÃ, ¼³°è °³¼± ¹× ¼³Ä¡ ±â¼úÀÌ ÇʼöÀûÀÔ´Ï´Ù.

ºñ¿ë ¾Ð¹Ú

ºñ¿ë ¾Ð¹ÚÀº ÀÚµ¿Â÷ »ê¾÷ÀÇ ²÷ÀÓ¾ø´Â °úÁ¦ÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ³ôÀº ǰÁú ±âÁØÀ» À¯ÁöÇϸ鼭 ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ã°í ÀÖ½À´Ï´Ù. ¿­ Â÷Æó Á¦Á¶¾÷ü´Â ºñ¿ë È¿À²¼º°ú °í±Þ ¹× È¿°úÀûÀÎ ¿­ °ü¸® ¼Ö·ç¼Ç °³¹ß »çÀÌÀÇ ±ÕÇüÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù.

°æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ¿­ Â÷Æó Á¦Á¶¾÷ü´Â »ý»ê °øÁ¤À» ÃÖÀûÈ­ÇÏ°í ³¶ºñ¸¦ ÁÙÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¿øÀÚÀç Á¶´ÞÀ» ¸ð»öÇØ¾ß ÇÕ´Ï´Ù. È¿À²ÀûÀÎ Á¦Á¶ ±â¼ú°ú ±Ô¸ðÀÇ °æÁ¦´Â ¼öÀͼºÀ» À¯ÁöÇϸ鼭 ºñ¿ë ¾Ð·ÂÀ» ¿ÏÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

ģȯ°æ°ú Áö¼Ó°¡´É¼º

ź¼Ò ¹èÃâ·®À» ÁÙÀ̰í Áö¼Ó°¡´ÉÇÑ °üÇàÀ» äÅÃÇÏ´Â µî ȯ°æ º¸È£´Â ÀÚµ¿Â÷ Á¦Á¶¸¦ Æ÷ÇÔÇÑ »ê¾÷ Àü¹Ý¿¡¼­ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¿­ Â÷Æó Á¦Á¶¾÷ü´Â Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¹æ¹ýÀ» äÅÃÇϰí ȯ°æ ģȭÀû ÀÎ Àç·á¸¦ »ç¿ëÇϵµ·Ï °­¿ä ¹Þ°í ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ ¿­ Â÷Æó ¼Ö·ç¼Ç °³¹ß¿¡´Â Á¦Á¶ °øÁ¤¿¡¼­ Æó±â¹°À» ÁÙÀ̰í, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸç, ÀçȰ¿ë °¡´ÉÇÑ Àç·áÀÇ »ç¿ëÀ» °í·ÁÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â °ÍÀº ¾÷°èÀÇ ½Å·Ú¼º°ú °æÀï·ÂÀ» À¯ÁöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå µ¿Çâ

Àü±âÀÚµ¿Â÷(EV)ÀÇ Àüµ¿È­ ¹× ¿­°ü¸®

Àü±âÀÚµ¿Â÷(EV)ÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ ¹æ¿­ÆÇ ½ÃÀåÀº Àü±â ±¸µ¿°èÀÇ ¿­ °ü¸®¿Í °ü·ÃµÈ Áß¿äÇÑ Ãß¼¼¸¦ ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ³»¿¬±â°ü(ICE) Â÷·®°ú ´Þ¸® EV´Â ÁÖ·Î ¹èÅ͸® ½Ã½ºÅÛ°ú °ü·ÃµÈ °íÀ¯ÇÑ ¿­ °ü¸® ¹®Á¦°¡ ÀÖ½À´Ï´Ù. ¸®Æ¬À̿ ¹èÅ͸®´Â ¿Âµµ º¯È­¿¡ ¹Î°¨Çϰí ÀÌ»óÀûÀÎ ÀÛµ¿ ¿Âµµ¸¦ À¯ÁöÇÏ´Â °ÍÀÌ ¾ÈÀü°ú ±ä ¼ö¸íÀ» À§ÇØ ¸Å¿ì Áß¿äÇϸç, EV ¹èÅ͸®¸¦ ÃÖÀûÀÇ ¿Âµµ ¹üÀ§·Î À¯ÁöÇÏ·Á¸é ¿­ Â÷Æó¸¦ Æ÷ÇÔÇÑ È¿°úÀûÀÎ ¿­ °ü¸®°¡ ÇʼöÀûÀÔ´Ï´Ù.

EV ½ÃÀåÀÇ ¼ºÀåÀº ¿­ Â÷Æó Á¦Á¶¾÷üµéÀÌ Àü±âÀÚµ¿Â÷ÀÇ Æ¯¼öÇÑ ¿­ °ü¸® ¿ä±¸¸¦ ÃæÁ·Çϵµ·Ï ¼³°èµÈ Àü¿ë ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ´Â Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡´Â EVÀÇ ¾ÈÀü¼º°ú ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¹èÅ͸® ±¸È¹, Àü±â ¸ðÅÍ ¹× ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¸¦ À§ÇÑ ¿­ Â÷ÆóÀÇ °³¹ßÀÌ Æ÷ÇԵ˴ϴÙ.

°æ·®È­ ¹× ÷´Ü ¼ÒÀç

°æ·®È­´Â ¿¬ºñ Çâ»ó°ú ¹è±â°¡½º °¨ÃàÀ» Ãß±¸ÇÏ´Â ÀÚµ¿Â÷ »ê¾÷ÀÇ ÁÖ¿ä Æ®·»µåÀÔ´Ï´Ù. ¿­ Â÷Æóµµ ÀÌ·¯ÇÑ Ãß¼¼ÀÇ ÇÑ ÃàÀ» ´ã´çÇϰí ÀÖÀ¸¸ç, Á¦Á¶¾÷üµéÀº ±âÁ¸ÀÇ Áß±Ý¼Ó ¿­ Â÷Æó¸¦ ´ëüÇÒ ¼ö Àִ ÷´Ü °æ·® ¼ÒÀ縦 ¸ð»öÇϰí ÀÖ½À´Ï´Ù. º¹ÇÕ ÇÕ±Ý, ¼¼¶ó¹Í, °í°­µµ °­Ã¶Àº °¡º±Áö¸¸ ³»±¸¼ºÀÌ ¶Ù¾î³­ ¿­ Â÷Æó¸¦ ¸¸µé±â À§ÇØ Ã¤ÅÃµÈ Àç·á Áß ÇϳªÀÔ´Ï´Ù.

¿­ Â÷Æó Á¦Á¶¿¡ ÷´Ü °æ·® ¼ÒÀ縦 äÅÃÇÏ´Â °ÍÀº ÀÚµ¿Â÷ÀÇ °æ·®È­¿¡ ±â¿©ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿­ °ü¸®ÀÇ Àü¹ÝÀûÀÎ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. °æ·®È­¿Í ³»±¸¼ºÀ» À¯ÁöÇÔÀ¸·Î½á ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â Â÷·® ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀ» ÃæÁ·½Ãų ¼ö ÀÖ½À´Ï´Ù.

°í±Þ ¹è±â ½Ã½ºÅÛ ¹× ¹è±â °¡½º Á¦¾î

Çö´ë ÀÚµ¿Â÷´Â ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¸¦ ÃæÁ·Çϵµ·Ï ¼³°èµÈ Á¡Á¡ ´õ º¹ÀâÇÑ ¹è±â ½Ã½ºÅÛÀ» žÀçÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡´Â ¿©·¯ °³ÀÇ Ã˸Šº¯È¯±â, ¹Ì¸³ÀÚ ÇÊÅÍ ¹× ¹è±â°¡½º Àç¼øÈ¯(EGR) ºÎǰÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿­ Â÷Æó´Â ÀÌ·¯ÇÑ º¹ÀâÇÑ ¹è±â ½Ã½ºÅÛ ³»ºÎÀÇ ¿­À» °ü¸®ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, È¿°úÀûÀÎ ¹è±â °¡½º Á¦¾î¸¦ À§Çؼ­´Â °ø°£ Á¦¾à°ú ÃÖÀûÈ­µÈ ÄÄÆ÷³ÍÆ® ¹èÄ¡°¡ ÇʼöÀûÀÔ´Ï´Ù.

¹è±â ½Ã½ºÅÛÀÇ °íµµÈ­ Ãß¼¼¿¡ µû¶ó ¿­ Â÷Æó Á¦Á¶¾÷ü´Â º¹ÀâÇÑ ¹è±â ±¸¼º¿¡¼­µµ ¿­À» È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ» °³¹ßÇØ¾ß ÇÕ´Ï´Ù. ¿©±â¿¡´Â °ú¿­À» ¹æÁöÇÏ°í ¹è±â °¡½º ±ÔÁ¦¸¦ ÁؼöÇÏ´Â È¿°ú¸¦ À¯ÁöÇϸ鼭 ´Ù¾çÇÑ ¹è±â ÄÄÆ÷³ÍÆ®¸¦ ¼ö¿ëÇÏ´Â ¸ÂÃãÇü ¿­ Â÷Æó°¡ Æ÷ÇԵ˴ϴÙ.

ADAS(÷´Ü¿îÀüÀÚÁö¿ø½Ã½ºÅÛ) ÅëÇÕ

ÀÚµ¿Â÷¿¡ ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)°¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀÛµ¿ Áß¿¡ ¿­À» ¹ß»ý½ÃŰ´Â ´Ù¾çÇÑ ¼¾¼­, Ä«¸Þ¶ó, ·¹ÀÌ´õ ºÎǰ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °í°¨µµ ADAS ºÎǰ¿¡¼­ ¹ß»ýÇÏ´Â ¿­À» °ü¸®ÇÏ¿© ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇÏ´Â °ÍÀÌ ÀÚµ¿Â÷ ¹æ¿­ÆÇ ½ÃÀåÀÇ Áß¿äÇÑ Æ®·»µå°¡ µÇ°í ÀÖ½À´Ï´Ù.

¹æ¿­ÆÇ Á¦Á¶¾÷ü´Â ADAS ºÎǰÀÇ °ú¿­À» ¹æÁöÇÏ´Â µ¿½Ã¿¡ ÃÖ°í È¿À²·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» °³¹ßÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â ÀÏüÇü ¿­ Â÷Æó¿Í °°Àº Â÷·® ±¸Á¶¹° ³»ÀÇ È¿°úÀûÀÎ ¿­ °ü¸®°¡ ÇʼöÀûÀÔ´Ï´Ù.

¿­ Â÷Æó ¼³°èÀÇ ±â¼úÀû ¹ßÀü

¿­ Â÷Æó ¼³°èÀÇ ±â¼úÀû Áøº¸°¡ ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº 3D ¸ðµ¨¸µ ¹× ¼öÄ¡À¯Ã¼¿ªÇÐ(CFD) ½Ã¹Ä·¹À̼ǰú °°Àº ÷´Ü ¼³°è ±â¼úÀ» Ȱ¿ëÇÏ¿© ¿­ Â÷ÆóÀÇ ±¸¼ºÀ» ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ Á¤¹ÐÇÑ ¿£Áö´Ï¾î¸µ°ú °íÈ¿À²ÀÇ ¿­ Â÷Æó¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù.

°í±Þ ¼³°è ±â¹ýÀº Á¦Á¶¾÷ü°¡ ¿ì¼öÇÑ ¿­ º¸È£ ±â´ÉÀ» Á¦°øÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿£Áø·ë°ú ¹è±â ½Ã½ºÅÛÀÇ »ç¿ë °¡´ÉÇÑ °ø°£¿¡ ¿Ïº®ÇÏ°Ô ¸Â´Â ¿­ Â÷Æó¸¦ ¸¸µé ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Çö´ë ÀÚµ¿Â÷¿¡¼­ ¿­ Â÷ÆóÀÇ Àü¹ÝÀûÀÎ È¿°ú¿Í ÅëÇÕ¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¼ÒÀ½, Áøµ¿, ½ÂÂ÷°¨(NVH) ÃÖÀûÈ­

¿­ Â÷Æó°¡ Á¦´ë·Î ¼³°è ¹× ¼³Ä¡µÇÁö ¾ÊÀ¸¸é ÀÚµ¿Â÷ÀÇ ¼ÒÀ½, Áøµ¿ ¹× ¼ÒÀ½(NVH) ¹®Á¦¸¦ À¯¹ßÇÒ ¼ö ÀÖÀ¸¸ç, NVH ¹®Á¦´Â Àü¹ÝÀûÀÎ ¿îÀü °æÇè°ú ½Â°´ÀÇ Æí¾ÈÇÔ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ NVH¿¡ ÃÖÀûÈ­µÈ ¿­ Â÷Æó ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¿­ Â÷Æó Á¦Á¶¾÷üµéÀº ¿­À» È¿°úÀûÀ¸·Î °ü¸®Çϸ鼭 ¼ÒÀ½°ú Áøµ¿À» ÃÖ¼ÒÈ­ÇÏ´Â NVH ÃÖÀûÈ­ ¼Ö·ç¼Ç °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡ ºÎÀÀÇϰí ž½ÂÀÚÀÇ Æí¾ÈÇÔÀ» Çâ»ó½Ã۱â À§Çؼ­´Â ½ÅÁßÇÑ Àç·á ¼±ÅÃ, ¼³°è °³¼± ¹× ¼³Ä¡ ±â¼úÀÌ ÇʼöÀûÀÔ´Ï´Ù.

Áö¼Ó°¡´É°æ¿µ¿¡ ´ëÇÑ °ü½É Áõ°¡

ȯ°æ º¸È£¿Í Áö¼Ó°¡´É¼ºÀº ÀÚµ¿Â÷ Á¦Á¶¸¦ Æ÷ÇÔÇÑ »ê¾÷ Àü¹Ý¿¡¼­ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¿­ Â÷Æó Á¦Á¶¾÷ü´Â Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¹æ¹ýÀ» äÅÃÇϰí ȯ°æ ģȭÀû ÀÎ Àç·á¸¦ »ç¿ëÇϵµ·Ï °­¿ä ¹Þ°í ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ ¿­ Â÷Æó ¼Ö·ç¼Ç °³¹ß¿¡´Â Á¦Á¶ °øÁ¤¿¡¼­ Æó±â¹°À» ÁÙÀ̰í, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸç, ÀçȰ¿ëÀÌ °¡´ÉÇϰí ȯ°æ ģȭÀûÀÎ Àç·á¸¦ »ç¿ëÇÏ´Â °ÍÀ» °í·ÁÇØ¾ß ÇÕ´Ï´Ù. Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â °ÍÀº ¾÷°èÀÇ ½Å·Ú¼º°ú °æÀï·ÂÀ» À¯ÁöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

°í¼º´É ÀÚµ¿Â÷ ¹× °í±ÞÂ÷ Ä¿½ºÅ͸¶ÀÌ¡

ÀÚµ¿Â÷ Ä¿½ºÅ͸¶ÀÌ¡Àº ƯÈ÷ ¼º´É°ú ·°¼Å¸® ºÐ¾ß¿¡¼­ º¸ÆíÈ­µÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº ƯÁ¤ ¼º´É Ư¼º°ú ¹ÌÇÐÀ» °®Ãá °³ÀÎÈ­µÈ ÀÚµ¿Â÷¸¦ ¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â °³ÀÎÀÇ ÃëÇâÀ» ÃæÁ·½Ã۰í Àü¹ÝÀûÀÎ ¿îÀü °æÇèÀ» Çâ»ó½Ã۱â À§ÇØ ¿­ Â÷Æó¸¦ ¸ÂÃãÈ­ÇÏ¿© ¿­ Â÷Æó¸¦ ¸ÂÃãÈ­ÇÏ´Â °ÍÀ¸·Î À̾îÁý´Ï´Ù.

¿­ Â÷Æó Á¦Á¶¾÷ü´Â °í¼º´É ¹× °í±Þ ÀÚµ¿Â÷¸¦ À§ÇÑ ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ¼ÒºñÀÚ°¡ ÀÚ½ÅÀÇ ÃëÇâ¿¡ µû¶ó ¿­ Â÷ÆóÀÇ µðÀÚÀÎ, Àç·á ¹× ¸¶°¨À» ¼±ÅÃÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â È¿°úÀûÀÎ ¿­ °ü¸®¸¦ À¯ÁöÇϸ鼭 Â÷·®ÀÇ ¹ÌÇÐÀ» Çâ»ó½Ãŵ´Ï´Ù.

¼¼°è ÁøÃâ ¹× °ø±Þ¸Á ÃÖÀûÈ­

ÀÚµ¿Â÷ »ê¾÷ÀÇ ¼¼°èÈ­´Â ¿­ Â÷Æó Á¦Á¶¾÷ü°¡ ½ÅÈï ½ÃÀå¿¡ Á¦Ç°À» °ø±ÞÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¿ªÀ¸·Î ÁøÃâÇÏ·Á¸é °ø±Þ¸ÁÀ» ÃÖÀûÈ­Çϰí ÇöÁö ǰÁú ¹× ±ÔÁ¦ ¿ä°Ç¿¡ ¸Â°Ô Á¶Á¤ÇØ¾ß ÇÕ´Ï´Ù.

ÀÚµ¿Â÷ »ê¾÷ÀÇ ¼¼°èÈ­´Â °ø±Þ¸ÁÀÇ º¹À⼺À» È¿À²ÀûÀ¸·Î ±Øº¹Çϰí Áö¿ª Ç¥ÁØÀ» ÃæÁ·½Ãų ¼ö ÀÖ´Ù¸é ¿­ Â÷Æó Á¦Á¶¾÷ü¿¡°Ô ¼ºÀå ÀáÀç·ÂÀ» Á¦°øÇÕ´Ï´Ù. ½ÅÈï ½ÃÀå ÁøÃâ¿¡´Â Àü·«Àû °èȹ°ú À¯¿¬¼ºÀÌ ÇÊ¿äÇÕ´Ï´Ù.

ºÎ¹®º° ÀλçÀÌÆ®

À¯Çüº° ÀλçÀÌÆ®

ÀÚµ¿Â÷ ¿­ Â÷Æó ¼¼°è ½ÃÀåÀº ÀÚµ¿Â÷ÀÇ È¿À²¼º°ú ¹è±â°¡½º ±ÔÁ¦¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ ÁÖ¿ä ¿äÀÎÀ¸·Î ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ÀÇ ¿­ °ü¸®¿¡ ÇʼöÀûÀÎ ¿­ Â÷Æó´Â ¿­ ¹æÃâÀ» ¾ïÁ¦ÇÏ¿© ¿£Áø È¿À²À» °³¼±ÇÏ°í ¿¬ºñ¿Í ¹è±â°¡½º ¹èÃâÀ» ÁÙÀÌ´Â µ¥ ±â¿©ÇÕ´Ï´Ù. ½ÃÀå ¼ºÀåÀº ÀÚµ¿Â÷ »ý»ê·® Áõ°¡, ¿­ Â÷Æó ±â¼úÀÇ ¹ßÀü, ÀÚµ¿Â÷ ¾ÈÀü¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÉ °ÍÀÔ´Ï´Ù. ±×·¯³ª ³ôÀº »ý»ê ºñ¿ë°ú ¿­ Â÷Æó¸¦ ´ú ÇÊ¿ä·Î ÇÏ´Â Àü±âÀÚµ¿Â÷·ÎÀÇ ÀüȯÀº ½ÃÀå ¼ºÀå¿¡ °É¸²µ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

Â÷Á¾º° ÀλçÀÌÆ®

¼¼°è ÀÚµ¿Â÷ ¹æ¿­ÆÇ ½ÃÀåÀº ½Â¿ëÂ÷, ¼ÒÇü »ó¿ëÂ÷(LCV), ´ëÇü »ó¿ëÂ÷(HCV) µî ´Ù¾çÇÑ Â÷Á¾À¸·Î ºÐ·ùµË´Ï´Ù. ½Â¿ëÂ÷´Â »ý»ê·®ÀÌ ¸¹¾Æ ÀÚµ¿Â÷ ¹æ¿­ÆÇ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¿­ Â÷Æó´Â ÀÚµ¿Â÷ ºÎǰÀ» ¿­ ¼Õ»óÀ¸·ÎºÎÅÍ º¸È£Çϰí Â÷·® ³»ºÎÀÇ ¿­À» ³·Ãß¾î ÀÚµ¿Â÷ÀÇ ¼º´É°ú Æí¾ÈÇÔÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀ̸ç, LCV¿Í HCV´Â ¿£Áø·ëÀÌ ³Ð°í ÀûÀç·®ÀÌ ¸¹±â ¶§¹®¿¡ ¿­ Â÷Æó¿¡ ´ëÇÑ Æ¯º°ÇÑ ¿ä±¸ »çÇ×ÀÌ ÀÖÀ¸¸ç, ½ÃÀå¿¡µµ Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ÀÇ ¾ÈÀü°ú È¿À²¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¸ðµç Â÷Á¾¿¡¼­ ÀÚµ¿Â÷ ¹æ¿­ÆÇ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Áö¿ªº° ÀλçÀÌÆ®

ºÏ¹Ì¿¡¼­´Â °ß°íÇÑ ÀÚµ¿Â÷ ºÎ¹®°ú ÀÚµ¿Â÷ ¾ÈÀü¿¡ ´ëÇÑ ¾ö°ÝÇÑ Á¤ºÎ ±ÔÁ¦°¡ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϸ鼭 ÀÚµ¿Â÷ ¿­ Â÷Æó ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. À¯·´ÀÌ ±× µÚ¸¦ µû¸£°í ÀÖÀ¸¸ç, °í±ÞÂ÷ ¹× ½ºÆ÷Ã÷Ä« Á¦Á¶¾÷üÀÇ ³ôÀº ¿­ Â÷Æó ±â¼ú Ȱ¿ëÀÌ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÅÈï ½ÃÀå, ƯÈ÷ Áß±¹°ú Àεµ´Â À¯¸ÁÇÑ ¼ºÀå ±âȸ¸¦ °¡Áö°í ÀÖ½À´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ­, °¡Ã³ºÐ ¼Òµæ Áõ°¡, ÀÚµ¿Â÷ Á¦Á¶ »ê¾÷ÀÇ ¼ºÀåÀÌ ÀÌ Áö¿ª ¼ö¿ä ±ÞÁõ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ½ÃÀåÀº ¾ÆÁ÷ Ãʱ⠴ܰ迡 ÀÖÀ¸¸ç, ÀÚµ¿Â÷ ºÎ¹®ÀÇ È®ÀåÀ¸·Î ÀÎÇÑ ¼ºÀå ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀå¿¡¼­ COVID-19ÀÇ ¿µÇâ

Á¦5Àå °í°´ÀÇ ¼Ò¸® ºÐ¼®

  • ºê·£µå ÀÎÁöµµ
  • ºê·£µå ¸¸Á·µµ
  • ±¸ÀÔ °áÁ¤¿äÀÎ

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • À¯Çüº°(¿£Áø·ë, ¹è±â·ë, ±âŸ)
    • Â÷Á¾º°(½Â¿ëÂ÷¿ë, »ó¿ëÂ÷ ¿ë)
    • ¼ö¿ä Ä«Å×°í¸®º°(OEM, ¾ÖÇÁÅ͸¶ÄÏ)
    • Áö¿ªº°
    • ±â¾÷º°(»óÀ§ 5»ç, ±âŸ - ±Ý¾× ±â¹Ý, 2022³â)
  • ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀå ¸ÅÇΰú ±âȸ Æò°¡
    • À¯Çüº°
    • ÀÚµ¿Â÷ À¯Çüº°
    • ¼ö¿ä Ä«Å×°í¸®º°
    • Áö¿ªº°

Á¦7Àå ¾Æ½Ã¾ÆÅÂÆò¾ç ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • À¯Çüº°
    • Â÷Á¾º°
    • ¼ö¿ä Ä«Å×°í¸®º°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Àεµ³×½Ã¾Æ
    • ű¹
    • Çѱ¹
    • È£ÁÖ

Á¦8Àå À¯·´¡¤CIS ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • À¯Çüº°
    • Â÷Á¾º°
    • ¼ö¿ä Ä«Å×°í¸®º°
    • ±¹°¡º°
  • À¯·´ & CIS : ±¹°¡º° ºÐ¼®
    • µ¶ÀÏ
    • ½ºÆäÀÎ
    • ÇÁ¶û½º
    • ·¯½Ã¾Æ
    • ÀÌÅ»¸®¾Æ
    • ¿µ±¹
    • º§±â¿¡

Á¦9Àå ºÏ¹Ì ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • À¯Çüº°
    • Â÷Á¾º°
    • ¼ö¿ä Ä«Å×°í¸®º°
    • ±¹°¡º°
  • ºÏ¹Ì ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ¸ß½ÃÄÚ
    • ij³ª´Ù

Á¦10Àå ³²¹Ì ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀåÀÇ Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • À¯Çüº°
    • Â÷Á¾º°
    • ¼ö¿ä Ä«Å×°í¸®º°
    • ±¹°¡º°
  • ³²¹Ì : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ÄÝ·Òºñ¾Æ
    • ¾Æ¸£ÇîÆ¼³ª

Á¦11Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ÀÚµ¿Â÷¿ë ¿­Â÷Æó ½ÃÀåÀÇ Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • À¯Çüº°
    • Â÷Á¾º°
    • ¼ö¿ä Ä«Å×°í¸®º°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º° ºÐ¼®
    • ÅÍŰ
    • À̶õ
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®

Á¦12Àå SWOT ºÐ¼®

  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦13Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ÃËÁø¿äÀÎ
  • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦

Á¦14Àå ½ÃÀå µ¿Çâ°ú °³Ã´

Á¦15Àå °æÀï ±¸µµ

  • Company Profiles(Up to 10 Major Companies)
    • Dana Incorporated
      • Company Details
      • Key Product Offered
      • Financials(As Per Availability)
      • Recent Developments
      • Key Management Personnel
    • Lydall Inc.
      • Company Details
      • Key Product Offered
      • Financials(As Per Availability)
      • Recent Developments
      • Key Management Personnel
    • Elringklinger AG
      • Company Details
      • Key Product Offered
      • Financials(As Per Availability)
      • Recent Developments
      • Key Management Personnel
    • Federal-Mogul Corporation
      • Company Details
      • Key Product Offered
      • Financials(As Per Availability)
      • Recent Developments
      • Key Management Personnel
    • Morgan Advanced Materials
      • Company Details
      • Key Product Offered
      • Financials(As Per Availability)
      • Recent Developments
      • Key Management Personnel
    • Autoneum Holding AG
      • Company Details
      • Key Product Offered
      • Financials(As Per Availability)
      • Recent Developments
      • Key Management Personnel
    • Nichias Corporation
      • Company Details
      • Key Product Offered
      • Financials(As Per Availability)
      • Recent Developments
      • Key Management Personnel
    • Talbros Automotive Components Ltd
      • Company Details
      • Key Product Offered
      • Financials(As Per Availability)
      • Recent Developments
      • Key Management Personnel

Á¦16Àå Àü·«Àû Á¦¾È

  • ÁßÁ¡ ºÐ¾ß
    • Ÿ±ê Áö¿ª°ú ±¹°¡
    • Â÷Á¾º° Ÿ±ê
    • À¯Çüº° Ÿ±ê

Á¦17Àå Á¶»çȸ»ç¡¤¸éÃ¥»çÇ×

KSA 23.11.15

Global Automotive Heat Shield Market has valued at USD 15 billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 3.8%. The Global Automotive Heat Shield Market is projected to experience a strong growth trajectory, primarily driven by continuous advancements in automotive technology and the growing demand for energy-efficient vehicles. In today's ever-evolving automotive landscape, heat shields play a critical role in reducing heat dissipation, thereby enhancing the overall efficiency of vehicles.

As environmental regulations become increasingly stringent and consumer awareness regarding fuel efficiency continues to improve, the demand for automotive heat shields is expected to witness a significant surge. Notably, emerging markets with rapidly growing automotive sectors are anticipated to be key contributors to this expansion.

However, it is important to acknowledge the challenges that this market faces. The high cost of advanced heat shields remains a concern for manufacturers and consumers alike. Additionally, the economic impact of the COVID-19 pandemic on the automotive industry has posed further obstacles to market growth.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 15 Billion
Market Size 2028USD 18.61 Billion
CAGR 2023-20283.80%
Fastest Growing SegmentPassenger Cars
Largest MarketAsia-Pacific

Nevertheless, amidst these challenges, opportunities abound in the automotive heat shield market. The increasing adoption of electric and hybrid vehicles holds immense potential and is poised to pave the way for further growth. These vehicles, with their unique heat dissipation requirements, are driving the demand for innovative heat shield solutions that can cater to their specific needs.

In conclusion, the Global Automotive Heat Shield Market is on a robust growth trajectory, fueled by the continuous advancements in automotive technology and the rising demand for energy-efficient vehicles. While challenges persist, opportunities prevail, and the market is poised for further expansion as it adapts to the evolving needs of the automotive industry.

Key Market Drivers

Stringent Emission Regulations

One of the primary drivers of the Automotive Heat Shield Market is the increasingly stringent emission regulations imposed by governments worldwide. These regulations aim to curb vehicle emissions, reduce air pollution, and combat climate change. To meet these stringent standards, automakers are adopting advanced engine and exhaust technologies that generate more heat. Heat shields are essential in managing this excess heat efficiently, ensuring that sensitive components, such as catalytic converters and emission control systems, operate at optimal temperatures. By preventing overheating, heat shields contribute to lower emissions and improved fuel efficiency, aligning with regulatory requirements.

The need for effective heat management solutions is driving the demand for innovative heat shields in the automotive industry. As emission standards continue to evolve, heat shields will play a critical role in helping automakers meet these requirements while maintaining vehicle performance.

Increasing Adoption of Electric Vehicles (EVs)

The global shift towards electric vehicles is another significant driver of the Automotive Heat Shield Market. Unlike traditional internal combustion engine (ICE) vehicles, electric vehicles have unique heat management challenges, primarily related to their battery systems and power electronics. EVs require efficient cooling and heat dissipation to ensure the safety and longevity of lithium-ion batteries, which are sensitive to high temperatures. Heat shields in EVs are used to protect batteries from excessive heat, maintain optimal operating temperatures, and prevent thermal runaway events. As the demand for EVs continues to grow, the need for effective heat shield solutions in battery compartments and powertrains rises in tandem.

The adoption of electric vehicles presents an opportunity for heat shield manufacturers to provide specialized solutions designed to meet the specific thermal management needs of EVs. As the EV market expands, heat shield technology will play a pivotal role in enhancing battery safety and overall vehicle performance.

Advanced Engine Technologies

Automotive manufacturers are continuously developing advanced engine technologies to meet consumer demands for improved performance and fuel efficiency. These technologies, including turbocharging and direct injection, often result in higher temperatures within the engine compartment. Effective heat management is essential to prevent overheating, component damage, and reduced engine efficiency. Heat shields are employed to isolate and dissipate heat away from critical engine components, ensuring their proper functioning and longevity.

The increasing adoption of advanced engine technologies across a wide range of vehicles drives the demand for heat shields. As automakers seek to balance performance and emission standards, heat management solutions become integral to achieving these objectives. Heat shield manufacturers must innovate to provide heat protection that aligns with the evolving engine designs and requirements.

Growth in Sports and Performance Vehicles

The popularity of sports and performance vehicles continues to rise, driven by consumer interest in high-performance driving experiences. These vehicles often feature powerful engines and exhaust systems that generate significant amounts of heat. Heat shields are essential components in sports and performance cars, as they ensure that engine components, exhaust systems, and other sensitive parts can withstand the extreme conditions associated with high-performance driving.

The demand for sports and performance vehicles, including sports cars, muscle cars, and high-performance SUVs, fuels the need for specialized heat shields. These shields must be designed to handle the elevated heat levels generated during aggressive driving, contributing to the overall performance and reliability of such vehicles.

Urbanization and Traffic Congestion

Rapid urbanization has led to increased traffic congestion in many cities worldwide. In congested urban environments, vehicles often encounter stop-and-go traffic, leading to prolonged engine idling and increased heat generation. Effective heat management solutions are crucial in preventing overheating and maintaining vehicle reliability in these challenging conditions.

Heat shields help protect engines and exhaust systems from the heat generated during traffic congestion. They play a vital role in ensuring that vehicles can endure the rigors of urban driving without experiencing heat-related issues. As urbanization continues, the demand for heat shields that enhance the durability of vehicles in congested traffic remains significant.

Technological Advancements in Heat Shield Materials

Key Driver: Advancements in materials science have led to the development of heat-resistant materials with improved performance characteristics. Modern heat shield materials offer superior heat dissipation and durability, allowing for more effective heat management in vehicles. These materials enhance the reliability and longevity of heat shields, contributing to their widespread adoption in the automotive industry.

Impact: The availability of advanced materials has revolutionized heat shield technology, enabling the design of lighter, more efficient, and longer-lasting heat shields. These materials provide automakers with options for optimizing heat management while minimizing weight and space requirements, resulting in improved vehicle performance and fuel efficiency.

Enhanced Vehicle Safety Requirements

Vehicle safety standards continue to evolve, with an increasing emphasis on protecting critical components from heat-related failures. Modern vehicles are equipped with various safety systems, including advanced driver-assistance systems (ADAS), that rely on stable operating temperatures. Heat shields play a crucial role in ensuring that these safety systems function as intended by preventing overheating and component damage.

The growing focus on vehicle safety necessitates the use of heat shields to maintain the reliability of safety-critical components. Heat shield technology ensures that sensitive electronics, sensors, and safety systems operate within their specified temperature ranges, contributing to overall vehicle safety and reliability.

Market Expansion into Emerging Regions

The automotive industry has expanded into emerging regions such as Asia-Pacific, where vehicle production and sales are experiencing rapid growth. This expansion has led to increased demand for heat management solutions in vehicles produced in these regions.

The globalization of the automotive industry has created opportunities for heat shield manufacturers to supply their products to emerging markets. The demand for reliable heat management solutions in vehicles manufactured in these regions offers growth potential for heat shield suppliers, provided they can meet local quality and regulatory requirements.

Key Market Challenges

Increasing Electrification and EV Batteries

As electric vehicles (EVs) gain popularity, the role of heat shields in these vehicles becomes even more critical. EVs rely on lithium-ion batteries that are sensitive to temperature variations. Managing heat in the battery compartment is essential to ensure safety and maintain battery efficiency. However, the unique design and requirements of EV battery packs present challenges in developing effective heat shield solutions.

Heat shield manufacturers must adapt to the specific needs of EVs by designing heat shields that effectively dissipate heat from the battery pack while considering factors like weight, space constraints, and thermal management. The growth of the EV market provides opportunities but also requires innovation to address these challenges effectively.

Lightweighting and Materials

Automotive manufacturers are continually striving to reduce vehicle weight to improve fuel efficiency and meet emissions standards. Lightweighting is a crucial trend that affects the materials used in vehicles, including heat shields. Developing heat shields that are both lightweight and highly efficient in heat management presents a considerable challenge.

Heat shield manufacturers must explore advanced materials, such as composite alloys, ceramics, and high-strength steel, to create lightweight yet durable solutions. These materials need to maintain the shielding properties required while reducing overall vehicle weight.

Complex Exhaust Systems

Modern vehicles are equipped with increasingly complex exhaust systems, often incorporating multiple catalytic converters, particulate filters, and exhaust gas recirculation (EGR) components. Managing heat in these intricate systems is challenging due to space constraints and the need to optimize component placement for emissions control.

Developing heat shields that can efficiently manage heat in complex exhaust systems without obstructing the flow of exhaust gases is essential. Innovative designs and advanced materials are necessary to address these complexities effectively.

Evolving Emission Standards

Emission regulations continue to evolve globally, becoming stricter to combat environmental pollution and climate change. Meeting these stringent standards requires advanced emission control technologies, which can generate more heat in the exhaust system and engine compartment. Heat shields need to adapt to these changing requirements.

The challenge lies in developing heat shields that not only manage increased heat but also comply with evolving emission standards. Manufacturers must invest in research and development to create heat shields that align with the latest regulatory requirements while ensuring optimum engine and exhaust system performance.

Integration of ADAS and Autonomous Driving

Advanced driver-assistance systems (ADAS) and autonomous driving technologies are becoming more common in vehicles. These systems rely on various sensors, cameras, and radar systems that generate heat during operation. Managing the heat generated by these components while ensuring their optimal performance is a challenge.

Heat shield manufacturers must develop solutions that protect sensitive ADAS and autonomous driving components from overheating while allowing them to operate at peak efficiency. Effective thermal management within the vehicle's structure is vital to address this challenge.

Technological Complexity

The automotive industry is evolving rapidly, with advancements in engine technologies, transmission systems, and exhaust systems. These advancements result in increased technological complexity, requiring heat shield solutions that can accommodate various components, including sensors, actuators, and advanced materials.

Heat shield manufacturers must keep pace with technological advancements by developing versatile solutions that can adapt to the evolving automotive landscape. This may involve creating modular heat shield designs that can accommodate different components and systems, providing flexibility to automakers.

Design Constraints and Space Limitations

Vehicle design constraints and limited space in engine compartments and exhaust systems can pose challenges in heat shield development. Heat shields must fit within these confined spaces while effectively managing heat and protecting nearby components.

Manufacturers need to engineer heat shields with precision to fit seamlessly within the available space. Innovative design techniques, such as 3D modeling and computational fluid dynamics (CFD) simulations, can help optimize heat shield configurations within tight spaces.

Noise, Vibration, and Harshness (NVH)

Heat shields can contribute to noise, vibration, and harshness (NVH) issues in vehicles if not properly designed and installed. NVH concerns can impact the overall driving experience and passenger comfort.

Heat shield manufacturers must focus on creating NVH-optimized solutions that minimize noise and vibration while effectively managing heat. Careful material selection, design refinement, and installation techniques are essential to address this challenge.

Cost Pressures

Cost pressures are a constant challenge in the automotive industry. Automakers seek cost-effective solutions while maintaining high-quality standards. Heat shield manufacturers need to balance cost efficiency with the development of advanced and effective heat management solutions.

To remain competitive, heat shield manufacturers must optimize their production processes, reduce waste, and explore cost-effective sourcing of raw materials. Efficient manufacturing techniques and economies of scale can help mitigate cost pressures while maintaining profitability.

Environmental Concerns and Sustainability

Environmental concerns, including reducing carbon footprints and adopting sustainable practices, are growing in importance across industries, including automotive manufacturing. Heat shield manufacturers are under pressure to adopt sustainable manufacturing practices and use eco-friendly materials.

Developing sustainable heat shield solutions involves reducing waste in the manufacturing process, minimizing environmental impact, and exploring the use of recyclable materials. Meeting sustainability goals is crucial for maintaining industry credibility and competitiveness.

Key Market Trends

Electrification and Thermal Management in Electric Vehicles (EVs)

As the adoption of electric vehicles (EVs) continues to rise, the Automotive Heat Shield Market is witnessing a significant trend related to thermal management in electric drivetrains. Unlike traditional internal combustion engine (ICE) vehicles, EVs have unique heat management challenges, primarily associated with their battery systems. Lithium-ion batteries are sensitive to temperature variations, and maintaining the ideal operating temperature is crucial for safety and longevity. Effective thermal management, including the use of heat shields, is essential to ensure that EV batteries remain within the optimal temperature range.

The growth of the EV market presents a substantial opportunity for heat shield manufacturers to provide specialized solutions designed to meet the specific thermal management needs of electric vehicles. This trend includes the development of heat shields for battery compartments, electric motors, and power electronics, all aimed at enhancing the safety and performance of EVs.

Lightweighting and Advanced Materials

Lightweighting is a dominant trend in the automotive industry, driven by the pursuit of improved fuel efficiency and reduced emissions. Heat shields play a role in this trend as well, with manufacturers exploring advanced lightweight materials to replace traditional heavy metal heat shields. Composite alloys, ceramics, and high-strength steel are among the materials being employed to create lightweight yet durable heat shields.

The adoption of advanced lightweight materials in heat shield manufacturing not only contributes to weight reduction in vehicles but also enhances the overall efficiency of heat management. By reducing weight and maintaining durability, these materials are enabling automakers to meet stringent regulatory standards while improving vehicle performance.

Advanced Exhaust Systems and Emission Control

Modern vehicles are equipped with increasingly complex exhaust systems designed to meet stringent emission regulations. These systems often include multiple catalytic converters, particulate filters, and exhaust gas recirculation (EGR) components. Heat shields are crucial for managing heat within these intricate exhaust systems, where space constraints and optimized component placement are vital for effective emission control.

The trend toward advanced exhaust systems requires heat shield manufacturers to develop innovative solutions that can efficiently manage heat in complex exhaust configurations. This includes heat shields that are customized to accommodate various exhaust components while maintaining their effectiveness in preventing overheating and ensuring emission compliance.

Integration of Advanced Driver-Assistance Systems (ADAS)

The integration of advanced driver-assistance systems (ADAS) into vehicles is on the rise. These systems rely on various sensors, cameras, and radar components that generate heat during operation. Managing the heat generated by these sensitive ADAS components while ensuring their optimal performance is a critical trend in the Automotive Heat Shield Market.

Heat shield manufacturers must develop solutions that protect ADAS components from overheating while allowing them to operate at peak efficiency. Effective thermal management within the vehicle's structure, such as integrated heat shields, is essential to address this challenge.

Technological Advancements in Heat Shield Design

Technological advancements in heat shield design are shaping the market. Manufacturers are utilizing advanced design techniques, including 3D modeling and computational fluid dynamics (CFD) simulations, to optimize heat shield configurations. These techniques enable precise engineering and the creation of highly efficient heat shields.

Advanced design methods help manufacturers create heat shields that not only provide excellent thermal protection but also fit seamlessly within the available space in engine compartments and exhaust systems. These innovations are crucial for enhancing the overall effectiveness and integration of heat shields in modern vehicles.

Noise, Vibration, and Harshness (NVH) Optimization

Heat shields can contribute to noise, vibration, and harshness (NVH) issues in vehicles if not properly designed and installed. NVH concerns can impact the overall driving experience and passenger comfort. As a result, there is a growing trend toward NVH-optimized heat shield solutions.

Heat shield manufacturers are focusing on creating NVH-optimized solutions that minimize noise and vibration while effectively managing heat. Careful material selection, design refinement, and installation techniques are essential to address this trend and enhance passenger comfort.

Increased Focus on Sustainable Practices

Environmental concerns and sustainability are gaining importance across industries, including automotive manufacturing. Heat shield manufacturers are under pressure to adopt sustainable manufacturing practices and use eco-friendly materials.

Developing sustainable heat shield solutions involves reducing waste in the manufacturing process, minimizing environmental impact, and exploring the use of recyclable and eco-friendly materials. Meeting sustainability goals is crucial for maintaining industry credibility and competitiveness.

Customization for Performance and Luxury Vehicles

Vehicle customization, particularly in the performance and luxury segments, is becoming more common. Consumers seek personalized vehicles with specific performance characteristics and aesthetics. This trend has led to the customization of heat shields to meet individual preferences and enhance the overall driving experience.

Heat shield manufacturers are offering customized solutions for performance and luxury vehicles, allowing consumers to select heat shield designs, materials, and finishes that align with their preferences. This trend enhances the vehicle's aesthetics while maintaining effective heat management.

Global Expansion and Supply Chain Optimization

The automotive industry's globalization has created opportunities for heat shield manufacturers to supply their products to emerging markets. Expanding into these regions requires optimizing supply chains and adapting to local quality and regulatory requirements.

The globalization of the automotive industry offers growth potential for heat shield suppliers, provided they can efficiently navigate supply chain complexities and meet regional standards. Expanding into emerging markets requires strategic planning and flexibility.

Segmental Insights

Type Insights

The global automotive heat shield market is witnessing a significant growth surge, largely driven by increased demand for vehicle efficiency and emission control. Heat shields, integral to thermal management in vehicles, help improve engine efficiency by reducing heat dissipation, thereby contributing to fuel economy and emissions reduction. The market growth is further propelled by rising vehicle production, advancements in heat shield technology, and stringent regulations regarding vehicle safety. However, high production costs and the shift towards electric vehicles, which require fewer heat shields, may pose challenges to market growth.

Vehicle Type Insights

The global Automotive Heat Shield market is categorized by a diverse range of vehicle types, including passenger cars, light commercial vehicles (LCVs), and heavy commercial vehicles (HCVs). Passenger cars, due to their high production volumes, lead the demand for Automotive Heat Shields. They are essential for protecting vehicle components from heat damage and reducing cabin heat, thereby enhancing vehicle performance and comfort. LCVs and HCVs, with their specific requirements for heat shields due to larger engine compartments and high-load carrying capacities, also contribute significantly to the market. The increasing focus on vehicle safety and efficiency is likely to propel the growth of the Automotive Heat Shield market across all vehicle types.

Regional Insights

In North America, the automotive heat shield market is experiencing significant growth, primarily driven by the robust automotive sector and stringent government regulations concerning vehicle safety. Europe follows closely, with demand propelled by the strong presence of luxury and sports car manufacturers who utilize advanced heat shield technologies. Emerging markets in Asia-Pacific, particularly China and India, present promising growth opportunities. Rapid urbanization, increasing disposable incomes, and growing automotive manufacturing industries contribute to the surging demand in these regions. However, the market in the Middle East and Africa is in its nascent stage, with potential for growth due to expanding automobile sectors.

Key Market Players

  • Dana Incorporated
  • Lydall Inc.
  • Elringklinger AG
  • Federal-Mogul Corporation
  • Morgan Advanced Materials
  • Autoneum Holding AG
  • Nichias Corporation
  • Talbros Automotive Components Ltd

Report Scope:

In this report, the Global Automotive Heat Shield Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automotive Heat Shield Market, By Demand Category:

  • OEM's
  • Aftermarket

Automotive Heat Shield Market, By Type:

  • Engine Compartment
  • Exhaust Compartment
  • Other

Automotive Heat Shield Market, By Vehicle Type:

  • Passenger Cars
  • Commercial Vehicles

Automotive Heat Shield Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe & CIS
  • Germany
  • Spain
  • France
  • Russia
  • Italy
  • United Kingdom
  • Belgium
  • Asia-Pacific
  • China
  • India
  • Japan
  • Indonesia
  • Thailand
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • Turkey
  • Iran
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Automotive Heat Shield Market.

Available Customizations:

  • Global Automotive Heat Shield Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Product Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Impact of COVID-19 on Global Automotive Heat Shield Market

5. Voice of Customer Analysis

  • 5.1. Brand Awareness
  • 5.2. Brand Satisfaction
  • 5.3. Factors Affecting Purchase Decision

6. Global Automotive Heat Shield Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Volume & Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type Market Share Analysis (Engine Compartment, Exhaust Compartment, and Other)
    • 6.2.2. By Vehicle Type Market Share Analysis (Passenger Cars and Commercial Vehicle Types)
    • 6.2.3. By Demand Category Market Share Analysis (OEM's and Aftermarket)
    • 6.2.4. By Regional Market Share Analysis
      • 6.2.4.1. Asia-Pacific Market Share Analysis
      • 6.2.4.2. Europe & CIS Market Share Analysis
      • 6.2.4.3. North America Market Share Analysis
      • 6.2.4.4. South America Market Share Analysis
      • 6.2.4.5. Middle East & Africa Market Share Analysis
    • 6.2.5. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2022)
  • 6.3. Global Automotive Heat Shield Market Mapping & Opportunity Assessment
    • 6.3.1. By Type Market Mapping & Opportunity Assessment
    • 6.3.2. By Vehicle Type Market Mapping & Opportunity Assessment
    • 6.3.3. By Demand Category Market Mapping & Opportunity Assessment
    • 6.3.4. By Regional Market Mapping & Opportunity Assessment

7. Asia-Pacific Automotive Heat Shield Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Volume & Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type Market Share Analysis
    • 7.2.2. By Vehicle Type Market Share Analysis
    • 7.2.3. By Demand Category Market Share Analysis
    • 7.2.4. By Country Market Share Analysis
      • 7.2.4.1. China Market Share Analysis
      • 7.2.4.2. India Market Share Analysis
      • 7.2.4.3. Japan Market Share Analysis
      • 7.2.4.4. Indonesia Market Share Analysis
      • 7.2.4.5. Thailand Market Share Analysis
      • 7.2.4.6. South Korea Market Share Analysis
      • 7.2.4.7. Australia Market Share Analysis
      • 7.2.4.8. Rest of Asia-Pacific Market Share Analysis
  • 7.3. Asia-Pacific: Country Analysis
    • 7.3.1. China Automotive Heat Shield Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Volume & Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type Market Share Analysis
        • 7.3.1.2.2. By Vehicle Type Market Share Analysis
        • 7.3.1.2.3. By Demand Category Market Share Analysis
    • 7.3.2. India Automotive Heat Shield Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Volume & Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type Market Share Analysis
        • 7.3.2.2.2. By Vehicle Type Market Share Analysis
        • 7.3.2.2.3. By Demand Category Market Share Analysis
    • 7.3.3. Japan Automotive Heat Shield Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Volume & Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type Market Share Analysis
        • 7.3.3.2.2. By Vehicle Type Market Share Analysis
        • 7.3.3.2.3. By Demand Category Market Share Analysis
    • 7.3.4. Indonesia Automotive Heat Shield Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Volume & Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type Market Share Analysis
        • 7.3.4.2.2. By Vehicle Type Market Share Analysis
        • 7.3.4.2.3. By Demand Category Market Share Analysis
    • 7.3.5. Thailand Automotive Heat Shield Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Volume & Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type Market Share Analysis
        • 7.3.5.2.2. By Vehicle Type Market Share Analysis
        • 7.3.5.2.3. By Demand Category Market Share Analysis
    • 7.3.6. South Korea Automotive Heat Shield Market Outlook
      • 7.3.6.1. Market Size & Forecast
        • 7.3.6.1.1. By Volume & Value
      • 7.3.6.2. Market Share & Forecast
        • 7.3.6.2.1. By Type Market Share Analysis
        • 7.3.6.2.2. By Vehicle Type Market Share Analysis
        • 7.3.6.2.3. By Demand Category Market Share Analysis
    • 7.3.7. Australia Automotive Heat Shield Market Outlook
      • 7.3.7.1. Market Size & Forecast
        • 7.3.7.1.1. By Volume & Value
      • 7.3.7.2. Market Share & Forecast
        • 7.3.7.2.1. By Type Market Share Analysis
        • 7.3.7.2.2. By Vehicle Type Market Share Analysis
        • 7.3.7.2.3. By Demand Category Market Share Analysis

8. Europe & CIS Automotive Heat Shield Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Volume & Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type Market Share Analysis
    • 8.2.2. By Vehicle Type Market Share Analysis
    • 8.2.3. By Demand Category Market Share Analysis
    • 8.2.4. By Country Market Share Analysis
      • 8.2.4.1. Germany Market Share Analysis
      • 8.2.4.2. Spain Market Share Analysis
      • 8.2.4.3. France Market Share Analysis
      • 8.2.4.4. Russia Market Share Analysis
      • 8.2.4.5. Italy Market Share Analysis
      • 8.2.4.6. United Kingdom Market Share Analysis
      • 8.2.4.7. Belgium Market Share Analysis
      • 8.2.4.8. Rest of Europe & CIS Market Share Analysis
  • 8.3. Europe & CIS: Country Analysis
    • 8.3.1. Germany Automotive Heat Shield Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Volume & Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type Market Share Analysis
        • 8.3.1.2.2. By Vehicle Type Market Share Analysis
        • 8.3.1.2.3. By Demand Category Market Share Analysis
    • 8.3.2. Spain Automotive Heat Shield Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Volume & Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type Market Share Analysis
        • 8.3.2.2.2. By Vehicle Type Market Share Analysis
        • 8.3.2.2.3. By Demand Category Market Share Analysis
    • 8.3.3. France Automotive Heat Shield Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Volume & Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type Market Share Analysis
        • 8.3.3.2.2. By Vehicle Type Market Share Analysis
        • 8.3.3.2.3. By Demand Category Market Share Analysis
    • 8.3.4. Russia Automotive Heat Shield Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Volume & Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type Market Share Analysis
        • 8.3.4.2.2. By Vehicle Type Market Share Analysis
        • 8.3.4.2.3. By Demand Category Market Share Analysis
    • 8.3.5. Italy Automotive Heat Shield Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Volume & Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type Market Share Analysis
        • 8.3.5.2.2. By Vehicle Type Market Share Analysis
        • 8.3.5.2.3. By Demand Category Market Share Analysis
    • 8.3.6. United Kingdom Automotive Heat Shield Market Outlook
      • 8.3.6.1. Market Size & Forecast
        • 8.3.6.1.1. By Volume & Value
      • 8.3.6.2. Market Share & Forecast
        • 8.3.6.2.1. By Type Market Share Analysis
        • 8.3.6.2.2. By Vehicle Type Market Share Analysis
        • 8.3.6.2.3. By Demand Category Market Share Analysis
    • 8.3.7. Belgium Automotive Heat Shield Market Outlook
      • 8.3.7.1. Market Size & Forecast
        • 8.3.7.1.1. By Volume & Value
      • 8.3.7.2. Market Share & Forecast
        • 8.3.7.2.1. By Type Market Share Analysis
        • 8.3.7.2.2. By Vehicle Type Market Share Analysis
        • 8.3.7.2.3. By Demand Category Market Share Analysis

9. North America Automotive Heat Shield Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Volume & Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type Market Share Analysis
    • 9.2.2. By Vehicle Type Market Share Analysis
    • 9.2.3. By Demand Category Market Share Analysis
    • 9.2.4. By Country Market Share Analysis
      • 9.2.4.1. United States Market Share Analysis
      • 9.2.4.2. Mexico Market Share Analysis
      • 9.2.4.3. Canada Market Share Analysis
  • 9.3. North America: Country Analysis
    • 9.3.1. United States Automotive Heat Shield Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Volume & Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type Market Share Analysis
        • 9.3.1.2.2. By Vehicle Type Market Share Analysis
        • 9.3.1.2.3. By Demand Category Market Share Analysis
    • 9.3.2. Mexico Automotive Heat Shield Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Volume & Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type Market Share Analysis
        • 9.3.2.2.2. By Vehicle Type Market Share Analysis
        • 9.3.2.2.3. By Demand Category Market Share Analysis
    • 9.3.3. Canada Automotive Heat Shield Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Volume & Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type Market Share Analysis
        • 9.3.3.2.2. By Vehicle Type Market Share Analysis
        • 9.3.3.2.3. By Demand Category Market Share Analysis

10. South America Automotive Heat Shield Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Volume & Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type Market Share Analysis
    • 10.2.2. By Vehicle Type Market Share Analysis
    • 10.2.3. By Demand Category Market Share Analysis
    • 10.2.4. By Country Market Share Analysis
      • 10.2.4.1. Brazil Market Share Analysis
      • 10.2.4.2. Argentina Market Share Analysis
      • 10.2.4.3. Colombia Market Share Analysis
      • 10.2.4.4. Rest of South America Market Share Analysis
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Automotive Heat Shield Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Volume & Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type Market Share Analysis
        • 10.3.1.2.2. By Vehicle Type Market Share Analysis
        • 10.3.1.2.3. By Demand Category Market Share Analysis
    • 10.3.2. Colombia Automotive Heat Shield Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Volume & Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type Market Share Analysis
        • 10.3.2.2.2. By Vehicle Type Market Share Analysis
        • 10.3.2.2.3. By Demand Category Market Share Analysis
    • 10.3.3. Argentina Automotive Heat Shield Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Volume & Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type Market Share Analysis
        • 10.3.3.2.2. By Vehicle Type Market Share Analysis
        • 10.3.3.2.3. By Demand Category Market Share Analysis

11. Middle East & Africa Automotive Heat Shield Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Volume & Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Type Market Share Analysis
    • 11.2.2. By Vehicle Type Market Share Analysis
    • 11.2.3. By Demand Category Market Share Analysis
    • 11.2.4. By Country Market Share Analysis
      • 11.2.4.1. Turkey Market Share Analysis
      • 11.2.4.2. Iran Market Share Analysis
      • 11.2.4.3. Saudi Arabia Market Share Analysis
      • 11.2.4.4. UAE Market Share Analysis
      • 11.2.4.5. Rest of Middle East & Africa Market Share Africa
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Turkey Automotive Heat Shield Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Volume & Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Type Market Share Analysis
        • 11.3.1.2.2. By Vehicle Type Market Share Analysis
        • 11.3.1.2.3. By Demand Category Market Share Analysis
    • 11.3.2. Iran Automotive Heat Shield Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Volume & Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Type Market Share Analysis
        • 11.3.2.2.2. By Vehicle Type Market Share Analysis
        • 11.3.2.2.3. By Demand Category Market Share Analysis
    • 11.3.3. Saudi Arabia Automotive Heat Shield Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Volume & Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Type Market Share Analysis
        • 11.3.3.2.2. By Vehicle Type Market Share Analysis
        • 11.3.3.2.3. By Demand Category Market Share Analysis
    • 11.3.4. UAE Automotive Heat Shield Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Volume & Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Type Market Share Analysis
        • 11.3.4.2.2. By Vehicle Type Market Share Analysis
        • 11.3.4.2.3. By Demand Category Market Share Analysis

12. SWOT Analysis

  • 12.1. Strength
  • 12.2. Weakness
  • 12.3. Opportunities
  • 12.4. Threats

13. Market Dynamics

  • 13.1. Market Drivers
  • 13.2. Market Challenges

14. Market Trends and Developments

15. Competitive Landscape

  • 15.1. Company Profiles (Up to 10 Major Companies)
    • 15.1.1. Dana Incorporated
      • 15.1.1.1. Company Details
      • 15.1.1.2. Key Product Offered
      • 15.1.1.3. Financials (As Per Availability)
      • 15.1.1.4. Recent Developments
      • 15.1.1.5. Key Management Personnel
    • 15.1.2. Lydall Inc.
      • 15.1.2.1. Company Details
      • 15.1.2.2. Key Product Offered
      • 15.1.2.3. Financials (As Per Availability)
      • 15.1.2.4. Recent Developments
      • 15.1.2.5. Key Management Personnel
    • 15.1.3. Elringklinger AG
      • 15.1.3.1. Company Details
      • 15.1.3.2. Key Product Offered
      • 15.1.3.3. Financials (As Per Availability)
      • 15.1.3.4. Recent Developments
      • 15.1.3.5. Key Management Personnel
    • 15.1.4. Federal-Mogul Corporation
      • 15.1.4.1. Company Details
      • 15.1.4.2. Key Product Offered
      • 15.1.4.3. Financials (As Per Availability)
      • 15.1.4.4. Recent Developments
      • 15.1.4.5. Key Management Personnel
    • 15.1.5. Morgan Advanced Materials
      • 15.1.5.1. Company Details
      • 15.1.5.2. Key Product Offered
      • 15.1.5.3. Financials (As Per Availability)
      • 15.1.5.4. Recent Developments
      • 15.1.5.5. Key Management Personnel
    • 15.1.6. Autoneum Holding AG
      • 15.1.6.1. Company Details
      • 15.1.6.2. Key Product Offered
      • 15.1.6.3. Financials (As Per Availability)
      • 15.1.6.4. Recent Developments
      • 15.1.6.5. Key Management Personnel
    • 15.1.7. Nichias Corporation
      • 15.1.7.1. Company Details
      • 15.1.7.2. Key Product Offered
      • 15.1.7.3. Financials (As Per Availability)
      • 15.1.7.4. Recent Developments
      • 15.1.7.5. Key Management Personnel
    • 15.1.8. Talbros Automotive Components Ltd
      • 15.1.8.1. Company Details
      • 15.1.8.2. Key Product Offered
      • 15.1.8.3. Financials (As Per Availability)
      • 15.1.8.4. Recent Developments
      • 15.1.8.5. Key Management Personnel

16. Strategic Recommendations

  • 16.1. Key Focus Areas
    • 16.1.1. Target Regions & Countries
    • 16.1.2. Target By Vehicle Type
    • 16.1.3. Target By Type

17. About Us & Disclaimer

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦