½ÃÀ庸°í¼­
»óǰÄÚµå
1379555

¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀå - ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ ¹× ¿¹Ãø : À½±Ø ¼³°èº°, ¿ëµµº°, Áö¿ªº°, °æÀï»çº°(2018-2028³â)

Lithium Silicon Battery Market - Global Industry Size, Share, Trends, Opportunity, and Forecast Segmented By Anode Design, By Application, By Region, By Competition 2018-2028

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 178 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ¼¼°è ½ÃÀå ±Ô¸ð´Â 2022³â 3¾ï 6,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ÀÎ 2028³â±îÁö ¿¬Æò±Õ 18.55%ÀÇ °ß°íÇÑ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀåÀº PEM ¿¬·áÀüÁö ½Ã½ºÅÛ ¹× °ü·Ã ºÎǰÀÇ ¿¬±¸ °³¹ß, Á¦Á¶ ¹× ¹èÆ÷¿Í °ü·ÃµÈ ¼¼°è »ê¾÷À» ¸»Çϸç, PEM ¿¬·áÀüÁö´Â °íºÐÀÚ ÀüÇØÁú ¸·ÀÇ µµ¿òÀ¸·Î ¼ö¼Ò¿Í »ê¼ÒÀÇ ¹ÝÀÀ¿¡ ÀÇÇØ Àü±â¸¦ »ý¼ºÇÏ´Â Àü±â È­ÇÐ ÀåÄ¡ÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ÀÌ ¿¬·áÀüÁö´Â ³ôÀº ¿¡³ÊÁö È¿À², Àú¹èÃâ, ±ú²ýÇÏ°í ¾ÈÁ¤ÀûÀÎ Àü·ÂÀ» ´Ù¾çÇÑ ¿ëµµ¿¡ °ø±ÞÇÒ ¼ö ÀÖ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. °íºÐÀÚ ÀüÇØÁú¸· ¿¬·áÀüÁö´Â Á¾Á¾ PEM ¿¬·áÀüÁö·Î ºÒ¸®¸ç, Àü±âÈ­ÇÐ ¹ÝÀÀÀ» ÅëÇØ ¼ö¼Ò¿Í »ê¼ÒÀÇ È­ÇÐ ¿¡³ÊÁö¸¦ Àü±â, ¹°, ¿­·Î º¯È¯ÇÏ´Â Àü±âÈ­ÇÐ ÀåÄ¡ÀÔ´Ï´Ù. ÀÌ °úÁ¤Àº ¾ç¼ºÀÚ Àüµµ¼º °íºÐÀÚ ÀüÇØÁú ¸·À» Æ÷ÇÔÇÏ´Â °³º° ¼¿ ½ºÅÿ¡¼­ ¹ß»ýÇϸç, PEM ¿¬·áÀüÁö´Â ³»¿¬ ±â°üÀ» ´ëüÇÏ´Â ±ú²ýÇϰí È¿À²ÀûÀÎ ¿¬·áÀüÁö Àü±â ÀÚµ¿Â÷(FCEV)¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. PEM ¿¬·áÀüÁö´Â ÀÚµ¿Â÷, ¹ö½º, Æ®·° µîÀÇ µ¿·Â¿øÀ̸ç, PEM ¿¬·áÀüÁö´Â ÁÖ°Å¿ë, »ó¾÷¿ë, »ê¾÷¿ë °íÁ¤½Ä ¹ßÀü¿¡µµ »ç¿ëµË´Ï´Ù. ¹é¾÷ Àü¿ø, ¿­º´ÇÕ¹ßÀü(CHP) ½Ã½ºÅÛ, ±×¸®µå Áö¿øÀ» Á¦°øÇÕ´Ï´Ù. ¼Ò±Ô¸ð PEM ¿¬·áÀüÁö´Â ³ëÆ®ºÏ, ½º¸¶Æ®Æù, Ä·Çοëǰ µî ÈÞ´ë¿ë ÀüÀÚ±â±âÀÇ Àü¿øÀ¸·Î »ç¿ëµÇ¾î ¼ö¸íÀÌ ±æ°í ±ú²ýÇÑ ¿¡³ÊÁö¿øÀ» Á¦°øÇÕ´Ï´Ù. Åë½Å ±âÁö±¹, µ¥ÀÌÅͼ¾ÅÍ ¹× Áß¿ä ÀÎÇÁ¶ó´Â Á¤Àü ½Ã Áö¼ÓÀûÀÎ ¿î¿µÀ» º¸ÀåÇÏ´Â ¹é¾÷ Àü¿øÀ¸·Î PEM ¿¬·áÀüÁö¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, PEM ¿¬·áÀüÁö´Â Áö°ÔÂ÷, ÆÈ·¹Æ® Àè ¹× ±âŸ â°í ¹× ¹°·ù ¼¾ÅÍÀÇ ÀÚÀç°ü¸® Àåºñ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. PEM ¿¬·áÀüÁö ½ÃÀåÀº ±â¼ú ¹ßÀü, ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡, ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ Ãß±¸·Î ²÷ÀÓ¾øÀÌ ÁøÈ­Çϰí ÀÖÀ¸¸ç, PEM ¿¬·áÀüÁö´Â º¸´Ù Áö¼Ó °¡´ÉÇÑ Àúź¼Ò ¿¡³ÊÁö·ÎÀÇ Àüȯ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ±âÁ¸ÀÇ È­¼® ¿¬·á ±â¹Ý ¹ßÀü ¹× ¿î¼Û ½Ã½ºÅÛÀ» ´ëüÇÒ ¼ö ÀÖ´Â À¯¸ÁÇÑ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¹ßÀü ¹× ¿î¼Û ½Ã½ºÅÛÀ» ´ëüÇÒ ¼ö ÀÖ´Â À¯¸ÁÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀåÀº PEM ¿¬·áÀüÁö ½Ã½ºÅÛÀÇ °³¹ß, Á¦Á¶ ¹× ¹èÆ÷¿¡ ÃÊÁ¡À» ¸ÂÃá ûÁ¤ ¿¡³ÊÁö »ê¾÷ÀÇ ÇÑ ºÐ¾ß·Î, PEM ¿¬·áÀüÁö´Â ³ôÀº ¿¡³ÊÁö È¿À², Àú¹èÃâ, ¿î¼Û, °íÁ¤½Ä ¹ßÀü, ÈÞ´ë¿ë ±â±â µî ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÇÕÇÑ °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. ½ÃÀåÀº ¼ºÀå°ú °³Ã´¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¸î °¡Áö ÁÖ¿ä ÃËÁø¿äÀÎÀÇ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. PEM ¿¬·áÀüÁö ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº ´ÙÀ½°ú °°´Ù: ±âÈÄ º¯È­¸¦ ¿ÏÈ­ÇÏ°í ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇØ ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö¿øÀ» ã´Â ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀº PEM ¿¬·áÀüÁö ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. À¸·Î ¼öÁõ±â¸¸ ¹èÃâÇϴ ûÁ¤ ¿¡³ÊÁö¿øÀÔ´Ï´Ù. ¿î¼Û ºÎ¹®Àº ƯÈ÷ ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)¿¡¼­ PEM ¿¬·áÀüÁö¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. Á¤ºÎ¿Í ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ź¼Ò ¹èÃâ·® °¨¼Ò¿Í ´ë±â ȯ°æ °³¼±ÀÇ Çʿ伺 ¶§¹®¿¡ ³»¿¬±â°ü ¿£ÁøÀÇ ´ë¾ÈÀ¸·Î FCEV ¾ç±Ø ¼³°è¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò¸¦ »ý»ê, ÀúÀåÇÏ°í ¿¡³ÊÁö ¿î¹Ýü·Î Ȱ¿ëÇÏ´Â ½ÅÈï °æÁ¦ ±¹°¡´Â PEM ¿¬·áÀüÁöÀÇ °­·ÂÇÑ ÃßÁø·ÂÀÔ´Ï´Ù. ¼ö¼Ò´Â Àç»ý °¡´É ¿¡³ÊÁö¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ °ø±Þ¿ø¿¡¼­ »ý»êÇÒ ¼ö ÀÖÀ¸¸ç, ¿¬·áÀüÁö¿¡¼­ È¿À²ÀûÀ¸·Î ¹ßÀüÇÒ ¼ö ÀÖÀ¸¸ç, PEM ¿¬·áÀüÁö´Â ±×¸®µå ¼öÁØÀÇ ¿¡³ÊÁö ÀúÀå ¹× ¹é¾÷ Àü¿ø ½Ã½ºÅÛ°ú °°Àº ¿¡³ÊÁö ÀúÀå ¿ëµµ¿¡¼­ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. °£ÇæÀû ÀÎ Àç»ý °¡´É ¿¡³ÊÁö ¿øÀÇ ±ÕÇüÀ» ¸ÂÃß±â À§ÇØ ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024³â-2028³â
2022³â ½ÃÀå ±Ô¸ð 3¾ï 6,000¸¸ ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 10¾ï 4,930¸¸ ´Þ·¯
CAGR 2023-2028³â 18.55%
±Þ¼ºÀå ºÎ¹® ÀÔÀÚ ±â¹Ý ±¸Á¶
ÃÖ´ë ½ÃÀå ¾Æ½Ã¾ÆÅÂÆò¾ç

ºÐ»êÇü ¿¡³ÊÁö ¹ßÀü

PEM ¿¬·áÀüÁö´Â ºÐ»êÇü ¶Ç´Â ºñÁýÁßÇü ¿¡³ÊÁö »ý»ê¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿­º´ÇÕ¹ßÀü(CHP) ¿ëµµ¿¡ ÀûÇÕÇϸç, ÁÖ°Å ¹× »ó¾÷¿ë °Ç¹°¿¡ Àü±â¿Í ¿­À» ¸ðµÎ °ø±ÞÇÕ´Ï´Ù. ¿¬·áÀüÁö¸¦ Æ÷ÇÔÇÑ Ã»Á¤ ¿¡³ÊÁö ±â¼úÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ Áö¿ø Á¤Ã¥, Àμ¾Æ¼ºê ¹× º¸Á¶±ÝÀº PEM ¿¬·áÀüÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¿Í Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿¬±¸ °³¹ß

PEM ¿¬·áÀüÁö ¾ç±Ø ¼³°èÀÇ ¼º´É, ³»±¸¼º ¹× ºñ¿ë È¿À²¼ºÀ» Çâ»ó½Ã۱â À§ÇÑ Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ßÀÌ ½ÃÀåÀÇ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àç·á ¹× Á¦Á¶ °øÁ¤ÀÇ Çõ½ÅÀÌ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò ¹× ¿¬·áÀüÁö ¿¬±¸°³¹ß¿¡ ´ëÇÑ ±¹°¡ ¹× ±¹Á¦±â±¸ÀÇ Çù·ÂÀº ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀå ±âȸ¸¦ È®´ëÇϸç, PEM ¿¬·áÀüÁö ¾ç±Ø ¼³°è°¡ ¼º¼÷ÇØÁü¿¡ µû¶ó ±âÁ¸ ¿ëµµ ¿ÜÀÇ ´Ù¸¥ ¿ëµµ·Îµµ Ȱ¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â Åë½Å ÀÎÇÁ¶óÀÇ ¹é¾÷ Àü¿ø, ¿ÀÇÁ ±×¸®µå ¹ßÀü, °¡ÀüÁ¦Ç°¿ë ¼ÒÇü ÈÞ´ë¿ë ¿¬·áÀüÁö µîÀÌ Æ÷ÇԵ˴ϴÙ. ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼Ç°ú ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ¼ÒºñÀÚ¿Í ±â¾÷ÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ Áö¼Ó °¡´ÉÇϰí È¿À²ÀûÀÎ ¿¡³ÊÁö¿øÀ¸·Î PEM ¿¬·áÀüÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ¼ö¼ÒÀü±âÂ÷¿ë ¼ö¼Ò ÃæÀü ÀÎÇÁ¶óÀÇ È®´ë´Â PEM ¿¬·áÀüÁöÂ÷ º¸±ÞÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϱâ À§Çؼ­´Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇʼöÀûÀ̸ç, PEM ¿¬·áÀüÁö ¾Ö³ëµå ¼³°èÀÇ ¼º´É°ú ÀÌÁ¡À» º¸¿©ÁÖ´Â ÁÖ¸ñ¹Þ´Â ½ÇÁõ ÇÁ·ÎÁ§Æ®¿Í ÆÄÀÏ·µ ÇÁ·Î±×·¥Àº ½Å·Ú¼ºÀ» ³ôÀÌ°í ½ÃÀå ¼ö¿ëÀ» ÃËÁøÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå °úÁ¦

³ôÀº »ý»êºñ¿ë

PEM ¿¬·áÀüÁöÀÇ ÁÖ¿ä °úÁ¦ Áß Çϳª´Â Á¦Á¶ ºñ¿ëÀÌ »ó´ëÀûÀ¸·Î ³ô´Ù´Â °ÍÀÔ´Ï´Ù. ÀÌ´Â ÁÖ·Î Àü±Ø¿¡ ¹é±Ý°ú °°Àº °í°¡ÀÇ Ã˸ŠÀç·á¸¦ »ç¿ëÇϱ⠶§¹®À̸ç, PEM ¿¬·áÀüÁö°¡ ´Ù¸¥ ¿¡³ÊÁö¿ø°úÀÇ °æÀï·ÂÀ» °®Ãß±â À§Çؼ­´Â ÀÌ·¯ÇÑ ºñ¿ë Àý°¨Àº ÇʼöÀûÀ̸ç, PEM ¿¬·áÀüÁö°¡ °æÁ¦¼ºÀ» È®º¸Çϱâ À§Çؼ­´Â ¿À·£ ±â°£ µ¿¾È È¿À²ÀûÀ¸·Î ÀÛµ¿ÇØ¾ß ÇÕ´Ï´Ù. ÇØ¾ß ÇÕ´Ï´Ù. ¿¬·áÀüÁö ±¸¼º ¿ä¼Ò, ƯÈ÷ ¾ç¼ºÀÚ Àüµµ¸·°ú Ã˸ÅÀÇ Àå±âÀûÀÎ ³»±¸¼º°ú ¼ö¸íÀ» º¸ÀåÇÏ´Â °ÍÀÌ Áß¿äÇÑ °úÁ¦À̸ç, PEM ¿¬·áÀüÁö¿¡ »ç¿ëµÇ´Â Ã˸Ŵ ¿À¿°¹°Áú, ¿¬·á ºÒ¼ø¹°, °íÀü¾Ð »çÀÌŬ°ú °°Àº ¿äÀο¡ ¹Î°¨ÇÕ´Ï´Ù. Ã˸ÅÀÇ ¿­È­´Â ¿¬·áÀüÁöÀÇ ¼º´É°ú ¼ö¸í¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â PEM ¿¬·áÀüÁöÀÇ ÁÖ¿ä ¿¬·áÀ̸ç, ¼ö¼ÒÀÇ ÀúÀå, ¿î¼Û ¹× À¯ÅëÀº ¿©ÀüÈ÷ Å« °úÁ¦ÀÔ´Ï´Ù. È¿À²ÀûÀÌ°í ¾ÈÀüÇÏ¸ç ºñ¿ë È¿À²ÀûÀÎ ¼ö¼Ò ÀÎÇÁ¶óÀÇ °³¹ßÀº ½ÃÀå ¼ºÀå¿¡ ÇʼöÀûÀÔ´Ï´Ù. ƯÈ÷ ¿¬·áÀüÁö ÀÚµ¿Â÷¸¦ ³Î¸® º¸±ÞÇϱâ À§Çؼ­´Â Á¾ÇÕÀûÀÎ ¼ö¼Ò ¿¬·á °ø±Þ ÀÎÇÁ¶ó°¡ ºÎÁ·ÇÏ´Ù´Â °ÍÀÌ ¹®Á¦ÀÔ´Ï´Ù. ¼ö¼Ò ÃæÀü¼Ò È®ÃæÀ» À§Çؼ­´Â ¸¹Àº ÅõÀÚ¿Í Á¶Á¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼ö¼Ò »ý»êÀÇ ´ëºÎºÐÀº È­¼®¿¬·á¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, À̴ ûÁ¤¿¡³ÊÁö ¸ñÇ¥¿¡ ¹ÝÇÕ´Ï´Ù. Àç»ý °¡´É ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÑ Àü±âºÐÇØ¿Í °°Àº È®Àå °¡´ÉÇϰí Áö¼Ó °¡´ÉÇÑ ¼ö¼Ò »ý»ê ¹æ¹ýÀÇ °³¹ßÀÌ °úÁ¦À̸ç, PEM ¿¬·áÀüÁö´Â ¾ç¼ºÀÚ Àüµµ¸·ÀÇ Å»¼ö ¹× ¹ü¶÷À» ¹æÁöÇϱâ À§ÇØ ÀûÀýÇÑ ¼öºÐ °ü¸®°¡ ÇÊ¿äÇÕ´Ï´Ù. ÃÖÀûÀÇ ¼º´ÉÀ» ¾ò±â À§Çؼ­´Â ¿¬·áÀüÁö ³» ¼öºÐ ÇÔ·®ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù.

Äݵ彺ŸƮ ¹× µ¿°á

Ãß¿î ³¯¾¾¿¡ PEM ¿¬·áÀüÁö¸¦ ÀÛµ¿½ÃŰ´Â °ÍÀº ¹èÅ͸® ³»ºÎÀÇ ¹°ÀÌ ¾ó¾îºÙÀ» ¼ö Àֱ⠶§¹®¿¡ ¾î·Á¿î ¹®Á¦ÀÏ ¼ö ÀÖ½À´Ï´Ù. È¿°úÀûÀÎ °¡¿­ ¹× ´Ü¿­ ¼Ö·ç¼ÇÀÇ °³¹ßÀº Ãß¿î Áö¿ª¿¡¼­ÀÇ Àû¿ëÀ» À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ½ÇÇè½Ç ±Ô¸ðÀÇ ÇÁ·ÎÅäÀ¯Çü¿¡¼­ ´ë±Ô¸ð »ó¾÷ »ý»êÀ¸·Î ÀüȯÇÏ´Â °ÍÀº Á¾Á¾ ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. ±Ô¸ð°¡ Ä¿Áö´õ¶óµµ ÀϰüµÈ ¼º´É°ú ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â °ÍÀº PEM ¿¬·áÀüÁö Á¦Á¶¾÷ü¿¡°Ô Å« Àå¾Ö¹°ÀÔ´Ï´Ù. ¼ö¼Ò´Â °¡¿¬¼º ¹°Áú·Î, ƯÈ÷ ¿î¼Û ºÐ¾ß¿¡¼­ ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á°¡ ÀÖ½À´Ï´Ù. ¼ö¼ÒÀÇ ¾ÈÀüÇÑ Ãë±Þ, ÀúÀå ¹× È°¿ëÀ» º¸ÀåÇÏ´Â °ÍÀº ´ëÁßÀû ¼ö¿ëÀ» À§ÇØ ¸Å¿ì Áß¿äÇϸç, PEM ¿¬·áÀüÁö´Â ¸®Æ¬À̿ ¹èÅ͸® ¹× °íü»êÈ­¹° ¿¬·áÀüÁö¿Í °°Àº ´Ù¸¥ ûÁ¤ ¿¡³ÊÁö ±â¼ú°ú °æÀïÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò ¹× ¿¬·áÀüÁö ±â¼ú¿¡ ´ëÇÑ Àϰü¼º ¾ø´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í Á¤Ã¥Àº ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. µµÀÔ¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ ³ôÀ̱â À§Çؼ­´Â ¸íÈ®Çϰí Áö¿øÀûÀÎ ±ÔÁ¦°¡ ÇÊ¿äÇÕ´Ï´Ù. ¿¬·áÀüÁö ¾ç±Ø ¼³°è¿¡ ´ëÇÑ »çȸÀû ÀÎ½Ä °³¼±°ú ½Å·Ú ±¸ÃàÀÌ °úÁ¦ÀÔ´Ï´Ù. ƯÈ÷ ³»¿¬ ±â°ü°ú °°Àº ±âÁ¸ ±â¼ú°ú ºñ±³ÇÒ ¶§ ¿¬·áÀüÁö¿¡ ´ëÇÑ »çȸÀÇ Àνİú ÀÌÇØ´Â äÅ÷ü¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå µ¿Çâ

Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê¿Í ¹Î°£ÅõÀÚ Áõ°¡°¡ ½ÃÀåÀ» °ßÀÎÇÒ Àü¸Á

PEM ¿¬·áÀüÁö ½ÃÀåÀº Áö³­ 2³â°£ Å« ¼ºÀåÀ» º¸¿´´Âµ¥, ÀÌ´Â ÁÖ·Î ÁÖ¿ä ½ÃÀå¿¡¼­ÀÇ Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºêÀÇ µµÀÔ°ú ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ Áö¿ø Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÚµ¿Â÷¿ë À½±Ø ¼³°è ÇÁ·Î±×·¥Àº ÃÖÃÊÀÇ ¼Ò¸Å ¼ö¼ÒÃæÀü¼Ò 100°³¼Ò¿¡ ´ëÇÑ Àå±âÀûÀÎ °øµ¿ ÅõÀÚ ±ÇÇÑÀ» ºÎ¿©Çß½À´Ï´Ù. ÀÌ´Â ¹Î°£ ºÎ¹®ÀÇ ¿¬·áÀüÁö ½ÃÀå¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù. ͏®Æ÷´Ï¾Æ ¿¬·áÀüÁö ÆÄÆ®³Ê½ÊÀº 2030³â±îÁö 1,000°³ÀÇ ¼ö¼ÒÃæÀü¼Ò¿Í 100¸¸ ´ëÀÇ ¿¬·áÀüÁö ÀÚµ¿Â÷ º¸±ÞÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¸ñÇ¥´Â ¿¬·áÀüÁö ¾ç±Ø ¼³°è ±â¾÷, ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ¿¡³ÊÁö ±â¾÷, Á¤ºÎ ±â°ü, ºñÁ¤ºÎ±â±¸, ´ëÇÐ µî 40¿© °³ ÆÄÆ®³ÊÀÇ Àǰ߰ú ÇÕÀǸ¦ ¹Ý¿µÇÑ °ÍÀ¸·Î, 2022³â 2¿ù, ÀÌ ÇÁ·ÎÁ§Æ®´Â °í¿Â °íºÐÀÚ ÀüÇØÁú ¸· ¿¬·áÀüÁö(HT-PEMFC)°¡ È¿°úÀûÀÎ ¿­ Á¦°Å¸¦ ÅëÇØ, ´ëÇü Â÷·® ¹× ±âŸ ´ë±Ô¸ð ¸ðºô¸®Æ¼ ¿ëµµ¸¦ Àü±âÈ­ÇÒ ¼ö ÀÖ´Â ¸Å·ÂÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÑ´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú½À´Ï´Ù. ¶ÇÇÑ, LANL(Katie Lim), »÷µð¾Æ ±¹¸³¿¬±¸¼Ò(Cy Fujimoto), Çѱ¹ °úÇÐ ¹× À½±Ø ¼³°è ¿¬±¸¼Ò(Jiyoon Jung), ´º¸ß½ÃÄÚ ´ëÇб³(Ivana Gonzales), ÄÚ³×Æ¼ÄÆ ´ëÇб³(Jasna Jankovic), ºÏ¹Ì µµ¿äŸ ¿¬±¸¼Ò(Jhendong Hu and Hongfei), ±×¸®°í Zhendong Hu and Hongfei Jia) µî ¿©·¯ ±â°üÀÌ ÀÌ ¿¬±¸¿¡ Âü¿©Çß½À´Ï´Ù. ¿¬·áÀüÁö Áß¿¡¼­µµ PEM À¯ÇüÀÌ °¡Àå ³Î¸® º¸±ÞµÇ¾î ÀÖ½À´Ï´Ù. À¯·´ÀÇ ¿¬·áÀüÁö µµÀÔ ¸ñÇ¥¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, PEMÇü ¿¬·áÀüÁö ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

2022³â 2¿ù, ·Î½º¾Ë¶ó¸ð½º ±¹¸³¿¬±¸¼ÒÀÇ °úÇÐÀÚµéÀº ´õ ³ôÀº ¿Âµµ¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â »õ·Î¿î °íºÐÀÚ ¿¬·áÀüÁö¸¦ °³¹ßÇß½À´Ï´Ù. Æ®·°À̳ª ¹ö½º¿Í °°Àº Â÷·®¿¡ Áß´ëÇü ¿¬·áÀüÁö¸¦ »ç¿ëÇÒ ¶§ °¡Àå Å« ±â¼úÀû Àå¾Ö¹° Áß Çϳª¿´´ø °ú¿­ ¹®Á¦´Â 80-160¡É¿¡¼­ ÀÛµ¿Çϰí ÃÖ÷´Ü ¿¬·áÀüÁöº¸´Ù ³ôÀº Á¤°Ý Ãâ·Â ¹Ðµµ¸¦ °¡Áø »õ·Î¿î °í¿Â °íºÐÀÚ ¿¬·áÀüÁö¸¦ ÅëÇØ ÇØ°áµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ¼¼°èÀûÀ¸·Î ¿¬·áÀüÁö ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºÏÇѰú ¹Ì±¹Àº ¿¬·áÀüÁö ÀÚµ¿Â÷ Àç°í·®¿¡¼­ ¼¼°è¸¦ ¼±µµÇÏ´Â ±¹°¡·Î, 2021³â¿¡´Â ¼¼°è ¿¬·áÀüÁö ÀÚµ¿Â÷ Àç°í Áß ºÏÇÑÀÌ 38%, ¹Ì±¹ÀÌ 24%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÅõÀÚ´Â ¿¹Ãø ±â°£ µ¿¾È ½ÃÀåÀ» ÃËÁøÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. µû¶ó¼­ À§ÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ PEMFC ¾ç±Ø ¼³°è¿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ¹Î°£ ÅõÀÚ Áõ°¡°¡ ¿¹Ãø ±â°£ µ¿¾È ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®º° ÀλçÀÌÆ®

ÃÖÁ¾ ¿ëµµº° ÀλçÀÌÆ®

ÀÚµ¿Â÷ ºÎ¹®Àº PEM ¿¬·áÀüÁö ½ÃÀå¿¡¼­ °¡Àå Å« ½ÃÀåÀÔ´Ï´Ù. ÀÚµ¿Â÷ ºÎ¹®ÀÇ PEM ¿¬·áÀüÁö ¼ö¿ä´Â ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ´õ ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿î¼Û ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ÁÖµµÇϰí ÀÖÀ¸¸ç, PEM ¿¬·áÀüÁö´Â ¹ö½º, ½Â¿ëÂ÷, Æ®·°°ú °°Àº ¿¬·áÀüÁö ÀÚµ¿Â÷¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷¿ë ºÎ¹®Àº PEM ¿¬·áÀüÁö ½ÃÀå¿¡¼­ µÎ ¹øÂ°·Î Å« ½ÃÀåÀÔ´Ï´Ù. »ê¾÷ ºÐ¾ßÀÇ PEM ¿¬·áÀüÁö ¼ö¿ä´Â ¹é¾÷ Àü¿ø ½Ã½ºÅÛ ¹× ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, PEM ¿¬·áÀüÁö´Â µ¥ÀÌÅͼ¾ÅÍ, Åë½Å, Á¦Á¶ µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »ó¾÷¿ë ºÐ¾ß´Â PEM ¿¬·áÀüÁö ½ÃÀå¿¡¼­ 3À§¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. »ó¾÷¿ë ºÐ¾ßÀÇ PEM ¿¬·áÀüÁö ¼ö¿ä´Â ¹é¾÷ Àü·Â ½Ã½ºÅÛ ¹× ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, PEM ¿¬·áÀüÁö´Â º´¿ø, È£ÅÚ, ¼îÇθô µî ´Ù¾çÇÑ »ó¾÷¿ë ¿ëµµ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÁÖ°Å¿ë ºÎ¹®Àº PEM ¿¬·áÀüÁö ½ÃÀå¿¡¼­ °¡Àå ÀÛÀº ºÎ¹®ÀÔ´Ï´Ù. ÁÖ°Å¿ë PEM ¿¬·áÀüÁö ¼ö¿ä´Â ¹é¾÷ Àü·Â ½Ã½ºÅÛ ¹× ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, PEM ¿¬·áÀüÁö´Â ÁÖÅÃ, ¾ÆÆÄÆ® µî ´Ù¾çÇÑ ÁÖ°Å¿ë ¿ëµµ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

Áö¿ªº° ÀλçÀÌÆ®

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è ¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀåÀÇ ¼±µÎÁÖÀÚ·Î ÀÚ¸®¸Å±èÇϰí ÀÖÀ¸¸ç, 2022³â¿¡´Â Å« ¼öÀÍ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡ÀÇ Ã»Á¤ ¿¡³ÊÁö »ç¿ë¿¡ ´ëÇÑ Á¤ºÎ Á¤Ã¥ÀÌ ¾çÈ£Çϱ⠶§¹®¿¡ °íü °íºÐÀÚ ¿¬·áÀüÁöÀÇ À¯¸ÁÇÑ Áö¿ª ½ÃÀå Áß ÇϳªÀÔ´Ï´Ù. Áß±¹Àº PEMFCÀÇ ÀáÀç·ÂÀÌ °¡Àå ³ôÀº ±¹°¡·Î ²ÅÈü´Ï´Ù. Áß±¹ÀÇ ¼ö¼Ò¿¬·áÀüÁö »ê¾÷Àº ÁÖ·Î °øÇØ °¨¼Ò¸¦ À§ÇØ ¼ö¼ÒÂ÷ º¸±ÞÀ» Àå·ÁÇϱâ À§ÇÑ ±¹°¡ ¹× Áö¹æ Á¤ºÎÀÇ º¸Á¶±Ý°ú Àμ¾Æ¼ºê ÇÁ·Î±×·¥À» ¹ÙÅÁÀ¸·Î ¼ºÀå¼¼¸¦ º¸À̰í Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀáÀçÀûÀ¸·Î Å« ½ÃÀå°ú ÇÔ²² Áß±¹¿¡´Â PEMFC¸¦ Á¦Á¶ÇÏ´Â ¼ö¸¹Àº ±¹³» ±â¾÷ÀÌ ÀÖ½À´Ï´Ù. µû¶ó¼­ Áß±¹ ³» ¼ö¿ä¿Í ±¹³» °ø±ÞÀÌ Á¸ÀçÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áß±¹ ±â¾÷µéÀº 2022³â±îÁö 1.5-2.5GWÀÇ ÀüÇØÁ¶ »ý»ê ´É·ÂÀ» ´Ã·Á ±¹³»¿Ü ½ÃÀå¿¡ °ø±ÞÇÒ °èȹÀÔ´Ï´Ù. µû¶ó¼­ À§ÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå °í°´ÀÇ ¼Ò¸®

Á¦5Àå ¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ¼¼°è ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ºÎ±Ø ¼³°èº°(ÀÔÀÚ ±â¹Ý ±¸Á¶, Porus Si, ³ª³ë¿ÍÀ̾î, ³ª³ëÅØ½ºÅ¸ÀÏ, ³ª³ëÆ©ºê, Si ±â¹Ý º¹ÇÕÀç·á, ±âŸ)
    • ¿ëµµº°(Àü±âÀÚµ¿Â÷, Àü·Â ÀúÀå, Àü±â ±â°è, ÀüÀÚ µð¹ÙÀ̽º, ÀΰøÀ§¼º, ±âŸ)
    • Áö¿ªº°
  • ±â¾÷º°(2022³â)
  • ½ÃÀå ¸Ê

Á¦6Àå ºÏ¹ÌÀÇ ¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ºÎ±Ø ¼³°èº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ºÏ¹Ì : ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ

Á¦7Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ºÎ±Ø ¼³°èº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • Àεµ³×½Ã¾Æ

Á¦8Àå À¯·´ÀÇ ¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ºÎ±Ø ¼³°èº°
    • ¿ëµµº°
    • ±¹°¡º°
  • À¯·´ : ±¹°¡º° ºÐ¼®
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ·¯½Ã¾Æ
    • ½ºÆäÀÎ

Á¦9Àå ³²¹ÌÀÇ ¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ºÎ±Ø ¼³°èº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ³²¹Ì : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª

Á¦10Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¸®Æ¬ ½Ç¸®ÄÜ ¹èÅ͸® ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ºÎ±Ø ¼³°èº°
    • ¿ëµµº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º° ºÐ¼®
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • À̽º¶ó¿¤
    • ÀÌÁýÆ®

Á¦11Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • °úÁ¦

Á¦12Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

Á¦13Àå ±â¾÷ °³¿ä

  • Tesla, Inc
  • Panasonic Corporation
  • LG Chem
  • Samsung SDI
  • BYD Company Limited
  • CATL
  • A123 Systems
  • Enphase Energy
  • NEC Energy Solutions
  • Saft Group

Á¦14Àå Àü·«Àû Á¦¾È

Á¦15Àå ¸®¼­Ä¡»ç¿¡ ´ëÇØ¡¤¸éÃ¥»çÇ×

LSH 23.11.23

Global Lithium Silicon Battery Market has valued at USD 360 Million in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 18.55% through 2028. The Lithium Silicon Battery Market refers to the global industry involved in the research, development, manufacturing, and deployment of PEM fuel cell systems and related components. PEM fuel cells are a type of electrochemical device that generate electricity through the reaction of hydrogen and oxygen, with the aid of a polymer electrolyte membrane. These fuel cells are known for their high energy efficiency, low emissions, and ability to provide clean and reliable power for various applications. A Polymer Electrolyte Membrane Fuel Cell, often referred to as a PEM fuel cell, is an electrochemical device that converts the chemical energy of hydrogen and oxygen into electricity, water, and heat through an electrochemical reaction. This process occurs within a stack of individual cells, each containing a proton-conducting polymer electrolyte membrane. PEM fuel cells are used in fuel cell electric vehicles (FCEVs) as a clean and efficient alternative to internal combustion engines. They power vehicles like cars, buses, and trucks. PEM fuel cells are used for stationary power generation in residential, commercial, and industrial settings. They provide backup power, combined heat and power (CHP) systems, and grid support. Small-scale PEM fuel cells are used to power portable electronic devices, such as laptops, smartphones, and camping equipment, offering longer-lasting and cleaner energy sources. Telecom base stations, data centers, and critical infrastructure rely on PEM fuel cells for backup power to ensure continuous operations during power outages. PEM fuel cells are used in forklifts, pallet jacks, and other material handling equipment in warehouses and distribution centers. The PEM fuel cell market is continually evolving due to advancements in technology, increasing environmental concerns, and the pursuit of clean energy solutions. It plays a crucial role in the transition toward a more sustainable and low-carbon energy landscape, offering a promising alternative to traditional fossil fuel-based power generation and transportation systems.

Key Market Drivers

The Lithium Silicon Battery Market is a segment of the clean energy industry that focuses on the development, manufacturing, and deployment of PEM fuel cell systems. PEM fuel cells are known for their high energy efficiency, low emissions, and suitability for various applications, including transportation, stationary power generation, and portable devices. The market is influenced by several key drivers that impact its growth and development. Here are the primary drivers of the PEM fuel cell market: The global push for clean and sustainable energy sources to mitigate climate change and reduce greenhouse gas emissions is a major driver of the PEM fuel cell market. PEM fuel cells produce electricity through a chemical reaction between hydrogen and oxygen, emitting only water vapor as a byproduct, making them a clean energy source. The transportation sector represents a significant opportunity for PEM fuel cells, particularly in fuel cell electric vehicles (FCEVs). Governments and automakers are investing in FCEV Anode Design as an alternative to internal combustion engines, driven by the need to reduce carbon emissions and improve air quality. The development of a hydrogen economy, where hydrogen is produced, stored, and used as an energy carrier, is a strong driver for PEM fuel cells. Hydrogen can be produced from various sources, including renewable energy, and used in fuel cells to generate electricity efficiently. PEM fuel cells can play a role in energy storage applications, such as grid-level energy storage and backup power systems. The need for reliable and efficient energy storage solutions to balance intermittent renewable energy sources drives the market.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 360 Million
Market Size 2028USD 1049.3 Million
CAGR 2023-202818.55%
Fastest Growing SegmentParticle-Based Structures
Largest MarketAsia-Pacific

Decentralized Energy Generation

PEM fuel cells can be used for distributed or decentralized energy generation. They are well-suited for combined heat and power (CHP) applications, providing both electricity and heat for residential and commercial buildings. Supportive government policies, incentives, and subsidies aimed at promoting clean energy technologies, including fuel cells, encourage investment and adoption of PEM fuel cell systems.

Research and Development

Ongoing research and development efforts to improve the performance, durability, and cost-effectiveness of PEM fuel cell Anode Design are driving advancements in the market. Innovations in materials and manufacturing processes contribute to market growth. Collaboration between countries and international organizations on hydrogen and fuel cell research and development fosters innovation and expands market opportunities. As PEM fuel cell Anode Design matures, it finds applications beyond traditional uses. This includes backup power for telecom infrastructure, off-grid power generation, and small-scale portable fuel cells for consumer electronics. Increasing awareness of clean energy solutions and environmental concerns among consumers and businesses has led to a growing interest in PEM fuel cells as a sustainable and efficient energy source. The expansion of hydrogen refueling infrastructure for FCEVs is a crucial driver for the adoption of PEM fuel cell vehicles. Investments in infrastructure are essential to support the growth of the market. High-profile demonstration projects and pilot programs that showcase the capabilities and benefits of PEM fuel cell Anode Design help build confidence and drive market acceptance.

Key Market Challenges

High Manufacturing Costs

One of the primary challenges for PEM fuel cells is their relatively high manufacturing costs, primarily attributed to the use of expensive catalyst materials, such as platinum, in the electrodes. Reducing these costs is essential to make PEM fuel cells more competitive with other energy sources. PEM fuel cells must operate efficiently for extended periods to be economically viable. Ensuring the long-term durability and longevity of fuel cell components, especially the proton-conducting membrane and catalysts, is a significant challenge. The catalysts used in PEM fuel cells are sensitive to factors like contaminants, fuel impurities, and high-voltage cycling. Catalyst degradation can significantly impact the performance and lifespan of the fuel cell. Hydrogen is the primary fuel for PEM fuel cells, and its storage, transportation, and distribution remain significant challenges. Developing efficient, safe, and cost-effective hydrogen infrastructure is essential for the market's growth. The lack of a comprehensive hydrogen fueling infrastructure is a challenge, particularly for the widespread adoption of fuel cell vehicles. Expanding hydrogen refueling stations requires significant investment and coordination. The majority of hydrogen production relies on fossil fuels, which contradicts the goal of clean energy. Developing scalable and sustainable hydrogen production methods, such as electrolysis using renewable energy sources, is a challenge. PEM fuel cells require proper water management to prevent dehydration or flooding of the proton-conducting membrane. Balancing water content within the fuel cell is critical for optimal performance.

Cold Start and Freezing

Operating PEM fuel cells in cold weather conditions can be challenging due to the potential for water freezing within the cell. Developing effective heating and insulation solutions is essential for cold-weather applications. Transitioning from laboratory-scale prototypes to large-scale commercial production is often challenging. Ensuring consistent performance and reliability at scale is a significant hurdle for PEM fuel cell manufacturers. Hydrogen is flammable and poses safety concerns, particularly in transportation applications. Ensuring the safe handling, storage, and use of hydrogen is critical for public acceptance. PEM fuel cells face competition from other clean energy technologies, such as lithium-ion batteries and solid oxide fuel cells, which offer different advantages and may be better suited for certain applications. Inconsistent regulatory frameworks and policies regarding hydrogen and fuel cell technologies can hinder market growth. Clear and supportive regulations are necessary to incentivize adoption. Raising awareness and fostering public trust in fuel cell Anode Design is a challenge. Public perception and understanding of fuel cells, especially in comparison to well-established technologies like internal combustion engines, can impact adoption rates.

Despite these challenges, ongoing research and development efforts, government support, and collaborations between industry and academia are addressing many of these issues. As Anode Design advances, and as clean energy goals become more critical, PEM fuel cells are expected to play a significant role in achieving sustainable and efficient energy solutions. Overcoming these challenges will be essential for the PEM fuel cell market to reach its full potential and contribute to a cleaner and more sustainable energy future.

Key Market Trends

Government Initiatives and Growing Private Investments are Expected to Drive the Market

The PEM fuel cell market witnessed significant growth in the last two years, mainly due to the introduction of government initiatives in key markets and increasing investment support from the private sector. The Californian Energy Commission's Alternative and Renewable Fuel and Vehicle Anode Design Program, a government initiative in 2013, established long-term authority to co-fund the first 100 retail hydrogen stations. This encouraged the private sector to invest in the fuel cell market. The Californian Fuel Cell Partnership aims for a network of 1,000 hydrogen stations and a fuel cell vehicle population of up to 1,000,000 vehicles by 2030. The target reflects the input and consensus of more than 40 partners, including fuel cell Anode Design companies, automakers, energy companies, government agencies and non-governmental organizations, and universities. In February 2022, a project showed that high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) offer an attractive solution to electrify heavy-duty vehicles and other large-scale mobility applications due to effective heat rejection. Moreover, multiple institutions, including LANL (Katie Lim), Sandia National Labs (Cy Fujimoto), Korea Institute of Science and Anode Design (Jiyoon Jung), University of New Mexico (Ivana Gonzales), University of Connecticut (Jasna Jankovic), and Toyota Research Institute of North America (Zhendong Hu and Hongfei Jia) were involved in this p Among fuel cells, the PEM type is the most popular one. It is expected to play a crucial role in Europe's target for fuel cell deployment and drive the PEM fuel cells market.

In February 2022, scientists of the Los Alamos National Laboratory developed a new polymer fuel cell that operates at higher temperatures. The long-standing issue of overheating, one of the biggest technical obstacles to using medium- and heavy-duty fuel cells in vehicles, such as trucks and buses, was resolved by a new high-temperature polymer fuel cell that operates at 80-160 degrees Celsius and has a higher rated power density than cutting-edge fuel cells. Furthermore, there is a rise in fuel cell-based vehicle demand worldwide. North Korea and the United States are the leading countries in the world in terms of stock of fuel cell-based vehicles. In 2021, North Korea and the United States had 38% and 24% of world fuel cell-based vehicle stock, respectively. Hence, such government initiatives and investments are likely to propel the market during the forecast period. Therefore, owing to the abovementioned factors, government initiatives and growing private investments in PEMFC Anode Design are expected to drive the market during the forecast period.

Segmental Insights

End Use Insights

The automotive segment is the largest segment of the PEM fuel cell market. The demand for PEM fuel cells in the automotive segment is being driven by the increasing environmental concerns and the need for cleaner and more sustainable transportation solutions. PEM fuel cells are used in fuel cell-powered vehicles, such as buses, cars, and trucks. The industrial segment is the second largest segment of the PEM fuel cell market. The demand for PEM fuel cells in the industrial segment is being driven by the need for backup power systems and energy storage solutions. PEM fuel cells are used in a variety of industrial applications, such as data centers, telecommunications, and manufacturing. The commercial segment is the third largest segment of the PEM fuel cell market. The demand for PEM fuel cells in the commercial segment is being driven by the need for backup power systems and energy storage solutions. PEM fuel cells are used in a variety of commercial applications, such as hospitals, hotels, and shopping malls. The residential segment is the smallest segment of the PEM fuel cell market. The demand for PEM fuel cells in the residential segment is being driven by the need for backup power systems and energy storage solutions. PEM fuel cells are used in a variety of residential applications, such as homes and apartments.

Regional Insights

The Asia pacific region has established itself as the leader in the Global Lithium Silicon Battery Market with a significant revenue share in 2022. The Asia-Pacific is one of the promising regional markets for polymer electrolyte membrane fuel cells due to favorable government policies for clean energy usage in countries such as China, Japan, and South Korea. China is considered to have the highest potential for PEMFC as the hydrogen fuel cell industry in the country has been gaining traction on the back of favorable national and provincial government subsidies and incentive programs from local authorities, mainly to encourage the uptake of hydrogen vehicles to cut pollution. Along with the potentially large market, China has numerous domestic enterprises that manufacture PEMFC. Hence, the country's demand and domestic supply are present, further bolstering the growth of the market. Moreover, Chinese companies seek to build their electrolyzer manufacturing capacity to 1.5-2.5 GW in 2022 to supply domestic and overseas markets. Therefore, owing to the abovementioned factors, the Asia-Pacific is expected to dominate the market during the forecast period.

Key Market Players

  • Tesla, Inc
  • Panasonic Corporation
  • LG Chem
  • Samsung SDI
  • BYD Company Limited
  • CATL
  • A123 Systems
  • Enphase Energy
  • NEC Energy Solutions
  • Saft Group

Report Scope:

In this report, the Global Lithium Silicon Battery Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Global Lithium Silicon Battery Market, By Anode Design:

  • Particle-Based Structures
  • Porus Si
  • Nanowires
  • Nanofibers Nanotubes
  • Si-Based Composites
  • Others

Global Lithium Silicon Battery Market, By Application:

  • Electric Vehicles
  • Power Storage
  • Electric Machinery
  • Electronic Devices
  • Satellites
  • Others

Global Lithium Silicon Battery Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Asia-Pacific
  • China
  • India
  • Japan
  • South Korea
  • Indonesia
  • Europe
  • Germany
  • United Kingdom
  • France
  • Russia
  • Spain
  • South America
  • Brazil
  • Argentina
  • Middle East & Africa
  • Saudi Arabia
  • South Africa
  • Egypt
  • UAE
  • Israel

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Lithium Silicon Battery Market.

Available Customizations:

  • Global Lithium Silicon Battery Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
  • 1.3. Markets Covered
  • 1.4. Years Considered for Study
  • 1.5. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

4. Voice of Customers

5. Global Lithium Silicon Battery Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Anode Design (Particle-Based Structures, Porus Si, Nanowires, Nanofibers, and Nanotubes, Si-Based Composites, Others)
    • 5.2.2. By Application (Electric Vehicles, Power Storage, Electric Machinery, Electronic Devices, Satellites, Others)
    • 5.2.3. By Region
  • 5.3. By Company (2022)
  • 5.4. Market Map

6. North America Lithium Silicon Battery Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Anode Design
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Lithium Silicon Battery Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Anode Design
        • 6.3.1.2.2. By Application
    • 6.3.2. Canada Lithium Silicon Battery Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Anode Design
        • 6.3.2.2.2. By Application
    • 6.3.3. Mexico Lithium Silicon Battery Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Anode Design
        • 6.3.3.2.2. By Application

7. Asia-Pacific Lithium Silicon Battery Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Anode Design
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Asia-Pacific: Country Analysis
    • 7.3.1. China Lithium Silicon Battery Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Anode Design
        • 7.3.1.2.2. By Application
    • 7.3.2. India Lithium Silicon Battery Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Anode Design
        • 7.3.2.2.2. By Application
    • 7.3.3. Japan Lithium Silicon Battery Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Anode Design
        • 7.3.3.2.2. By Application
    • 7.3.4. South Korea Lithium Silicon Battery Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Anode Design
        • 7.3.4.2.2. By Application
    • 7.3.5. Indonesia Lithium Silicon Battery Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Anode Design
        • 7.3.5.2.2. By Application

8. Europe Lithium Silicon Battery Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Anode Design
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Lithium Silicon Battery Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Anode Design
        • 8.3.1.2.2. By Application
    • 8.3.2. United Kingdom Lithium Silicon Battery Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Anode Design
        • 8.3.2.2.2. By Application
    • 8.3.3. France Lithium Silicon Battery Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Anode Design
        • 8.3.3.2.2. By Application
    • 8.3.4. Russia Lithium Silicon Battery Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Anode Design
        • 8.3.4.2.2. By Application
    • 8.3.5. Spain Lithium Silicon Battery Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Anode Design
        • 8.3.5.2.2. By Application

9. South America Lithium Silicon Battery Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Anode Design
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Lithium Silicon Battery Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Anode Design
        • 9.3.1.2.2. By Application
    • 9.3.2. Argentina Lithium Silicon Battery Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Anode Design
        • 9.3.2.2.2. By Application

10. Middle East & Africa Lithium Silicon Battery Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Anode Design
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. Saudi Arabia Lithium Silicon Battery Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Anode Design
        • 10.3.1.2.2. By Application
    • 10.3.2. South Africa Lithium Silicon Battery Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Anode Design
        • 10.3.2.2.2. By Application
    • 10.3.3. UAE Lithium Silicon Battery Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Anode Design
        • 10.3.3.2.2. By Application
    • 10.3.4. Israel Lithium Silicon Battery Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Anode Design
        • 10.3.4.2.2. By Application
    • 10.3.5. Egypt Lithium Silicon Battery Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Anode Design
        • 10.3.5.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenge

12. Market Trends & Developments

13. Company Profiles

  • 13.1. Tesla, Inc
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services
  • 13.2. Panasonic Corporation
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel
    • 13.2.5. Key Product/Services
  • 13.3. LG Chem
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel
    • 13.3.5. Key Product/Services
  • 13.4. Samsung SDI
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel
    • 13.4.5. Key Product/Services
  • 13.5. BYD Company Limited
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel
    • 13.5.5. Key Product/Services
  • 13.6. CATL
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel
    • 13.6.5. Key Product/Services
  • 13.7. A123 Systems
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel
    • 13.7.5. Key Product/Services
  • 13.8. Enphase Energy
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel
    • 13.8.5. Key Product/Services
  • 13.9. NEC Energy Solutions
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel
    • 13.9.5. Key Product/Services
  • 13.10. Saft Group
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel
    • 13.10.5. Key Product/Services

14. Strategic Recommendations

15. About Us & Disclaimer

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦