½ÃÀ庸°í¼­
»óǰÄÚµå
1379727

¼¼°è µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå : »ê¾÷±Ô¸ð, µ¿Çâ, ±âȸ, ¿¹Ãø, ¼Ò½Ì À¯Çüº°, À¯Çüº°, ¶óº§¸µ À¯Çüº°, ¾÷°èº°, Áö¿ªº°, °æÀﺰ(2018³â-2028³â)

Data Labeling Solution and Services Market- Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Sourcing Type, By Type, By Labeling Type, By Vertical, By Region, By Competition, 2018-2028

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¼­ºñ½º ½ÃÀåÀº 2022³â 113¾ï ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2028³â±îÁö º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 19.4%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀåÀº °¢ ¾÷°è¿¡¼­ °íǰÁúÀÇ ¶óº§¸µµÈ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó »ó´çÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µÀº ¸Ó½Å·¯´×°ú ÀΰøÁö´É¿¡¼­ Áß¿äÇÑ ´Ü°èÀÌ¸ç ¾Ë°í¸®ÁòÀ» È¿°úÀûÀ¸·Î ÇнÀÇϱâ À§ÇÑ µ¥ÀÌÅÍÀÇ ÁÖ¼®°ú ºÐ·ù¸¦ Æ÷ÇÔÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀÇ È®´ë¿¡´Â ÇコÄɾî, ÀÚÀ² ÁÖÇàÂ÷, ÀüÀÚ»ó°Å·¡ µîÀÇ ºÐ¾ß¿¡¼­ AI ÁÖµµÀÇ ¿ëµµ°ú ÀÚµ¿È­ÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀÌ ¹è°æ¿¡ ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º´Â À̹ÌÁö, µ¿¿µ»ó, ÅØ½ºÆ® ¹× ±âŸ µ¥ÀÌÅÍ À¯Çü¿¡ Á¤È®ÇÏ°Ô ÁÖ¼®À» ´Þ±â À§ÇØ ÇÊ¿äÇÑ Àü¹® Áö½ÄÀ» Á¦°øÇÏ¿© AI ¸ðµ¨ÀÌ Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ ÀÚ¿¬ ¾ð¾î ó¸® ¹× ÄÄÇ»ÅÍ ºñÀü°ú °°Àº º¹ÀâÇÑ AI ¿ëµµÀÇ ÃâÇö¿¡´Â ´Ù¾çÇϰí Á¤È®ÇÏ°Ô ·¹À̺íÀÌ ÁöÁ¤µÈ µ¥ÀÌÅÍ ¼¼Æ®°¡ ÇÊ¿äÇÕ´Ï´Ù. ±â¾÷ÀÌ AI¸¦ Ȱ¿ëÇÏ¿© º¸´Ù ¶Ù¾î³­ ÀλçÀÌÆ®, È¿À², °æÀïÀ» ½ÇÇöÇÏ·Á°í Çϰí ÀÖ´Â °¡¿îµ¥, µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í È®´ëµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀÇ ¹Ì·¡´Â ¶óº§¸µ ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈ­ÇÏ°í ºñ¿ëÀ» Àý°¨Çϸç AI ¸ðµ¨ °³¹ßÀÇ È¿À²¼ºÀ» ³ôÀÌ´Â ´Éµ¿ ÇнÀ°ú ¹Ý±³»ç ÇнÀ µî ¶óº§¸µ ±â¼úÀÇ Çõ½Å¿¡µµ ¿µÇâÀ» ¹Þ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024³â-2028³â
2022³â ½ÃÀå ±Ô¸ð 113¾ï ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 343¾ï 8,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 2023³â-2028³â 19.4%
±Þ¼ºÀå ºÎ¹® Å×½ºÆ® ÀÚµ¿È­
ÃÖ´ë ½ÃÀå ºÏ¹Ì

¼¼°è µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀåÀº µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µÀº AI ¹× ¸Ó½Å·¯´× ¸ðµ¨ °³¹ßÀÇ Áß¿äÇÑ ´Ü°èÀ̸ç, ÀÌ·¯ÇÑ ¸ðµ¨À» ±³À°Çϱâ À§ÇÑ µ¥ÀÌÅÍ ÁÖ¼® ¹× ÅÂ±× ÁöÁ¤ÀÌ Æ÷ÇԵ˴ϴÙ. ´Ù¾çÇÑ »ê¾÷¿¡¼­ AI ¹× ¸Ó½Å·¯´× ±â¼úÀÇ µµÀÔÀÌ ÁøÇàµÊ¿¡ µû¶ó °íǰÁúÀÇ ¶óº§¸µ µ¥ÀÌÅÍ¿¡ ´ëÇÑ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ Á¤È®Çϰí È¿À²ÀûÀ¸·Î ÁÖ¼® ¹× ¶óº§¸µÇÏ´Â µ¥ ÇÊ¿äÇÑ Àü¹® Áö½Ä°ú ¸®¼Ò½º¸¦ ±â¾÷¿¡ Á¦°øÇÕ´Ï´Ù. À̸¦ ÅëÇØ ±â¾÷Àº AI ¸ðµ¨À» È¿°úÀûÀ¸·Î ±³À°ÇÏ°í ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ¾î ´õ ³ªÀº ÀÇ»ç°áÁ¤°ú ºñÁî´Ï½º ¼º°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

ǰÁú º¸Áõ ¹× Á¤È®µµ

µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º´Â AI ¹× ¸Ó½Å·¯´× ¸ðµ¨ÀÇ Ç°Áú°ú Á¤È®¼ºÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨ÀÌ Á¤È®ÇÏ°Ô ÀÛµ¿ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¹ÃøÀ» ¼öÇàÇϱâ À§ÇÑ ±³À°À» À§Çؼ­´Â °íǰÁúÀÇ ¶óº§¸µµÈ µ¥ÀÌÅͰ¡ ÇʼöÀûÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º´Â ´Ù¾çÇÑ AI ¸ðµ¨ÀÇ Æ¯Á¤ ¿ä±¸ »çÇ×À» ÀÌÇØÇÏ´Â Àü¹® Áö½ÄÀ» º¸À¯Çϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó µ¥ÀÌÅ͸¦ Á¤È®ÇÏ°Ô ¶óº§¸µÇÒ ¼ö ÀÖ´Â ÈÆ·ÃµÈ Àü¹®°¡¸¦ äÅÃÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µÀÇ ¼¼ºÎ »çÇ×°ú Á¤È®¼º¿¡ ´ëÇÑ ÀÌ·¯ÇÑ °í·Á »çÇ×Àº Á¶Á÷ÀÌ °ß°íÇϰí Á¤È®ÇÑ AI ¸ðµ¨À» ±¸ÃàÇÏ°í ¿À·ùÀÇ À§ÇèÀ» ÁÙÀÌ°í ¸ðµ¨ÀÇ Àü¹ÝÀûÀÎ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

È®À强°ú À¯¿¬¼º

µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º°¡ Á¦°øÇÏ´Â È®À强°ú À¯¿¬¼ºÀº ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. Á¶Á÷ÀÌ ´Ã¾î³ª´Â µ¥ÀÌÅÍ ¾çÀ» ó¸®ÇÔ¿¡ µû¶ó È®Àå °¡´ÉÇÑ µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º´Â ´ë±Ô¸ð µ¥ÀÌÅÍ ¶óº§¸µ ÇÁ·ÎÁ§Æ®¸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ ÀÎÇÁ¶ó¿Í ¸®¼Ò½º¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼­ºñ½º´Â ÇÁ·ÎÁ§Æ® ¿ä±¸»çÇ׿¡ µû¶ó ½Å¼ÓÇÏ°Ô ½ºÄÉÀϾ÷ ¶Ç´Â ½ºÄÉÀÏ´Ù¿îÇÒ ¼ö ÀÖÀ¸¹Ç·Î ±â¾÷Àº µ¥ÀÌÅÍ ¶óº§¸µ ¿ä±¸¸¦ È¿°úÀûÀ¸·Î ÃæÁ·½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º´Â ¶óº§¸µ °¡´ÉÇÑ µ¥ÀÌÅÍ À¯Çü¿¡ ´ëÇØ À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÅØ½ºÆ®, À̹ÌÁö, À½¼º, µ¿¿µ»ó µ¥ÀÌÅÍ µî µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º´Â ´Ù¾çÇÑ µ¥ÀÌÅÍ À¯ÇüÀ» Áö¿øÇϰí Á¤È®ÇÑ ÁÖ¼®°ú ¶óº§À» Á¦°øÇÏ¿© ´Ù¾çÇÑ AI ¸ðµ¨ÀÇ Æ¯Á¤ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÕ´Ï´Ù.

Áö¿ª Àü¹® Áö½Ä°ú Àü¹® ¼­ºñ½º

µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º Á¦°ø¾÷ü´Â Á¾Á¾ ƯÁ¤ »ê¾÷ ¹× ¿ëµµ¿¡ ´ëÇÑ Àü¹® Áö½ÄÀ» º¸À¯Çϰí ÀÖ½À´Ï´Ù. ÀÌ Àü¹® Áö½ÄÀ» ÅëÇØ ÀÌ·¯ÇÑ µµ¸ÞÀÎÀÇ µ¥ÀÌÅÍÀÇ ´µ¾Ó½º¿Í º¹À⼺À» ÀÌÇØÇϰí Àü¹®ÀûÀÎ ¶óº§¸µ ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÇ·á »ê¾÷¿¡¼­ µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º´Â ÀÇ·á À̹ÌÁö¿Í ÀÓ»ó µ¥ÀÌÅÍ¿¡ Á¤È®ÇÑ ÁÖ¼®À» ´Þ ¼ö ÀÖÀ¸¸ç, ÀÌ ¶óº§¸µµÈ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÈÆ·ÃµÈ AI ¸ðµ¨ÀÌ Á¤È®ÇÑ Áø´Ü ¹× ¿¹ÃøÀ» ¼öÇàÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ÀÚÀ² ÁÖÇà ¾÷°è¿¡¼­´Â µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º¸¦ ÅëÇØ µµ·Î Àå¸é°ú ¹°Ã¼¿¡ Á¤È®ÇÑ ÁÖ¼®À» ´Þ ¼ö ÀÖÀ¸¸ç AI ¸ðµ¨À» ¾ÈÀüÇÏ°Ô Å½»öÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º Á¦°ø¾÷ü°¡ Á¦°øÇÏ´Â Àü¹® Áö½Ä°ú Àü¹® ¼­ºñ½º´Â ¶óº§¸µµÈ µ¥ÀÌÅÍÀÇ Á¤È®¼º°ú °ü·Ã¼ºÀ» º¸ÀåÇÔÀ¸·Î½á Á¶Á÷¿¡ ºÎ°¡°¡Ä¡¸¦ Á¦°øÇÕ´Ï´Ù.

µ¥ÀÌÅÍ º¸¾È ¹× ±â¹Ð¼º

µ¥ÀÌÅÍ º¸¾È ¹× ±â¹Ð¼ºÀº µ¥ÀÌÅÍ ¶óº§¸µ ÇÁ·Î¼¼½º¿¡¼­ Áß¿äÇÑ °í·Á »çÇ×ÀÔ´Ï´Ù. Á¶Á÷Àº µ¥ÀÌÅͰ¡ ¾ÈÀüÇÏ°Ô Ã³¸®µÇ°í ±â¹Ð Á¤º¸°¡ º¸È£µÇ´ÂÁö È®ÀÎÇØ¾ß ÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º Á¦°ø¾÷ü´Â µ¥ÀÌÅÍ º¸¾ÈÀÇ Á߿伺À» ÀÌÇØÇϰí ó¸®ÇÒ µ¥ÀÌÅ͸¦ º¸È£Çϱâ À§ÇÑ °­·ÂÇÑ Á¶Ä¡¸¦ ÃëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Ä¡¿¡´Â º¸¾È µ¥ÀÌÅÍ Àü¼Û ÇÁ·ÎÅäÄÝ, ¾Ïȣȭ ±â¼ú, ¾×¼¼½º Á¦¾î, ±â¹Ð À¯Áö °è¾à µîÀÌ Æ÷ÇԵ˴ϴÙ. ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼­ºñ½º Á¦°ø¾÷ü¿¡ µ¥ÀÌÅÍ ¶óº§¸µÀ» ¾Æ¿ô¼Ò½ÌÇÔÀ¸·Î½á ±â¾÷Àº µ¥ÀÌÅÍ º¸¾È ¹× ±â¹Ð À¯Áö¿Í °ü·ÃµÈ À§ÇèÀ» ÁÙÀ̰í ÇÙ½É ºñÁî´Ï½º Ȱµ¿¿¡ ÁýÁßÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå °úÁ¦

Ç¥ÁØÈ­¿Í ǰÁú°ü¸® ºÎÁ·

¼¼°è µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀåÀÌ Á÷¸éÇÑ ÁÖ¿ä °úÁ¦ Áß Çϳª´Â Ç¥ÁØÈ­¿Í ǰÁú °ü¸® ´ëÃ¥ÀÇ ºÎÁ·ÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µÀº ¸Ó½Å·¯´× ¸ðµ¨ÀÇ ÈÆ·Ã¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ¶óº§¸µ ÇÁ·Î¼¼½ºÀÇ ºÒÀÏÄ¡¿Í ºÎÁ¤È®¼ºÀº ÀÌ·¯ÇÑ ¸ðµ¨ÀÇ ¼º´É°ú ½Å·Ú¼º¿¡ Å« ¿µÇâÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­µÈ °¡À̵å¶óÀÎÀ̳ª ǰÁú °ü¸® ¸ÞÄ¿´ÏÁòÀÌ ¾øÀ¸¸é ¼­·Î ´Ù¸¥ µ¥ÀÌÅÍ ¼¼Æ®¿Í ¶óº§¸µ ¼­ºñ½º °ø±ÞÀÚ °£¿¡ Àϰü¼º ¾ø´Â ¶óº§¸µÀÌ ¹ß»ýÇÒ À§ÇèÀÌ ÀÖ½À´Ï´Ù. ÀÌ´Â ½Å·ÚÇÒ ¼ö ¾ø´Â °á°ú¸¦ ÃÊ·¡ÇÏ¿© ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â Ç¥ÁØÈ­µÈ ¶óº§¸µ ±â¹ýÀ» ¼ö¸³Çϰí, ǰÁú Æò°¡ ÁöÇ¥¸¦ Á¤ÀÇÇϰí, ¾ö°ÝÇÑ Ç°Áú °ü¸® ÇÁ·Î¼¼½º¸¦ µµÀÔÇϱâ À§ÇÑ ¾÷°è Àü¹ÝÀÇ ³ë·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º Á¦°ø¾÷ü, ¾÷°è Àü¹®°¡ ¹× ±ÔÁ¦ ±â°üÀÌ Çù·ÂÇÏ¿© ÀϰüµÈ °íǰÁú ¶óº§¸µ µ¥ÀÌÅÍ ¼¼Æ®¸¦ È®º¸ÇÏ°í ¸Ó½Å·¯´× ¿ëµµ¿¡ ´ëÇÑ ½Å·Ú¿Í ½Å¿ëÀ» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

È®À强°ú È¿À²¼º

µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½ºÀÇ È®À强°ú È¿À²¼ºÀº Á¶Á÷¿¡ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¾çÀÌ ±Þ°ÝÈ÷ Áõ°¡ÇÔ¿¡ µû¶ó Á¦ÇÑµÈ ÀÏÁ¤À¸·Î ¾öû³­ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ¶óº§¸µÇÏ´Â °ÍÀº ¾î·Á¿î ÀÛ¾÷ÀÔ´Ï´Ù. ¼öµ¿ ¶óº§¸µ ÇÁ·Î¼¼½º´Â ƯÈ÷ ¸¹Àº ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â °æ¿ì ½Ã°£ÀÌ ¸¹ÀÌ °É¸®°í ½Ç¼ö°¡ ¹ß»ýÇϱ⠽±°í ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÀÌ ¹®Á¦¸¦ ±Øº¹Çϱâ À§Çؼ­´Â ÀÚµ¿È­ ¹× ¹ÝÀÚµ¿È­µÈ µ¥ÀÌÅÍ ¶óº§¸µ ±â¼úÀ» °³¹ßÇÏ°í ±¸ÇöÇØ¾ß ÇÕ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ¹× ÀÚ¿¬ ¾ð¾î ó¸®¿Í °°Àº AI ±â¼úÀ» Ȱ¿ëÇÏ¿© ¶óº§¸µ ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­Çϰí ÇÊ¿äÇÑ ½Ã°£°ú ³ë·ÂÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ È¿À²ÀûÀÎ ÇÁ·ÎÁ§Æ® °ü¸® µµ±¸¿Í ¿öÅ©Ç÷ο츦 µµÀÔÇÏ¿© ¶óº§¸µ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÏ°í ¸®¼Ò½º¸¦ È¿°úÀûÀ¸·Î ÇÒ´çÇÏ°í ¶óº§¸µµÈ µ¥ÀÌÅÍ ¼¼Æ®¸¦ Àû½Ã¿¡ Á¦°øÇÒ ¼ö ÀÖ¾î¾ß ÇÕ´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ´ëÇÑ ¿ì·Á´Â µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå¿¡¼­ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ¶óº§ÀÌ ºÙÀº µ¥ÀÌÅͼ¼Æ®¿¡´Â ¹Î°¨ÇÑ Á¤º¸¿Í °³ÀÎÁ¤º¸°¡ Æ÷ÇԵǾî ÀÖ¾î ¾ÇÀÇÀûÀÎ ÇàÀ§ÀÚ¿¡°Ô ¸Å·ÂÀûÀΠǥÀûÀÌ µË´Ï´Ù. Á¶Á÷Àº ¾ÈÀüÇÑ µ¥ÀÌÅÍ ÀúÀå, ¾×¼¼½º Á¦¾î, À͸íÈ­ ±â¼ú µî ¶óº§¸µ ÇÁ·Î¼¼½º Àü¹Ý¿¡ °ÉÃÄ ÀûÀýÇÑ µ¥ÀÌÅÍ º¸È£ ´ëÃ¥À» È®½ÇÈ÷ ½ÃÇàÇØ¾ß ÇÕ´Ï´Ù. ÀÏ¹Ý µ¥ÀÌÅÍ º¸È£ ±ÔÄ¢(GDPR)°ú °°Àº µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤À» ÁؼöÇÏ´Â °ÍÀº °í°´ÀÇ ½Å·Ú¸¦ À¯ÁöÇÏ°í ¹ýÀû ¿µÇâÀ» ÇÇÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. °ß°íÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È ÇÁ·ÎÅäÄÝÀ» µµÀÔÇϰí, Á¤±âÀûÀÎ °¨»ç¸¦ ¼öÇàÇϰí, µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â ¹æ¹ý¿¡ ´ëÇÑ °í°´¿¡°Ô Åõ¸í¼ºÀ» Á¦°øÇÏ´Â °ÍÀº ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí ÀáÀçÀû À§ÇèÀ» ¿ÏÈ­ÇÕ´Ï´Ù. µµ¿òÀÌ µË´Ï´Ù.

¿µ¿ªÀÇ Àü¹®¼º°ú ÁÖ°ü¼º

µ¥ÀÌÅÍ ¶óº§¸µÀº µ¥ÀÌÅ͸¦ Á¤È®ÇÏ°Ô ÁÖ¼®À» ´Þ°í ºÐ·ùÇϱâ À§ÇØ ¿µ¿ªº° Áö½Ä°ú Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ´Ù¾çÇÑ ¶óº§¸µ ÀÛ¾÷¿¡´Â ÁÖ°üÀûÀÎ ÇØ¼®ÀÌ Æ÷Ç﵃ ¼ö ÀÖÀ¸¸ç ƯÁ¤ µµ¸ÞÀο¡ ƯȭµÈ Áö½ÄÀ» °¡Áø Àΰ£ ÁÖ¼®ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼÷·ÃµÈ ¾î³ëÅ×ÀÌÅÍÀÇ ´Ù¾çÇÑ Ç®À» ȹµæÇϰí À¯ÁöÇÏ´Â °ÍÀº ƯÈ÷ Æ´»õ »ê¾÷°ú ½Å±â¼ú¿¡ ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. ÀÌ °úÁ¦¸¦ ±Øº¹Çϱâ À§ÇØ µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º Á¦°ø¾÷ü´Â ¾î³ëÅ×ÀÌÅÍÀÇ Àü¹® Áö½ÄÀ» ³ôÀ̱â À§ÇÑ ±³À° ÇÁ·Î±×·¥ ¹× Áö½Ä °øÀ¯ Ç÷§Æû¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ ¾÷°è Àü¹®°¡ ¹× µµ¸ÞÀÎ Àü¹®°¡¿Í Çù·ÂÇÏ¿© Á¤È®ÇÏ°í ¹®¸Æ °ü·Ã ¶óº§¸µÀ» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý ¶óº§¸µ Ç÷§ÆûÀ» Ȱ¿ëÇϰí ǰÁú °ü¸® ¸ÞÄ¿´ÏÁòÀ» µµÀÔÇÔÀ¸·Î½á ÁÖ°üÀûÀÎ ¶óº§¸µ ÀÛ¾÷¿¡¼­ Àϰü¼º°ú ½Å·Ú¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå µ¿Çâ

µ¥ÀÌÅÍ ¶óº§¸µ º¹ÀâÈ­

µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ¼¼°è ½ÃÀå¿¡¼­ µ¥ÀÌÅÍ ¶óº§¸µÀÇ º¹À⼺ÀÌ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ ´Ù¾çÇÏ°í ±¸Á¶È­µÇÁö ¾ÊÀº µ¥ÀÌÅ͸¦ »ý¼ºÇÏ°í ¼öÁýÇÔ¿¡ µû¶ó Á¤È®Çϰí ÄÁÅØ½ºÆ®¸¦ °í·ÁÇÑ µ¥ÀÌÅÍ ¶óº§¸µÀÇ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº ¸ÖƼ¸ð´Þ µ¥ÀÌÅÍ(ÅØ½ºÆ®, À̹ÌÁö, À½¼º, µ¿¿µ»ó µî), µµ¸ÞÀκ° ¿ä±¸»çÇ×(ÇコÄɾî, ÀÚÀ²ÁÖÇàÂ÷, ±ÝÀ¶ µî), ¹Ì¹¦ÇÑ µ¥ÀÌÅÍ ÀǹÌ(¼¾Æ¼¸ÕÆ® ºÐ¼® ¹× °³Ã¼ °¨Áö µî) µî ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ¹ß»ýÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º Á¦°ø¾÷ü´Â º¹ÀâÇÑ ¶óº§¸µ ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖ´Â Àü¹® Áö½Ä°ú µµ±¸ °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ´Éµ¿ ÇнÀÀ̳ª ¹Ý±³»ç ÷ºÎ ÇнÀ µîÀÇ °íµµÀÇ ¾î³ëÅ×ÀÌ¼Ç ±â¼úÀ» ä¿ëÇÏ´Â °ÍÀ¸·Î, ¶óº§¸µÀÇ È¿À²°ú Á¤¹Ðµµ¸¦ Çâ»ó½ÃŰ´Â °Í°ú µ¿½Ã¿¡, ¼öÀÛ¾÷ÀÇ ³ë·ÂÀ» °æ°¨Çϰí ÀÖ½À´Ï´Ù.

AIº° µ¥ÀÌÅÍ ¶óº§¸µ

ÀΰøÁö´É(AI) ¹× ¸Ó½Å·¯´×(ML) ±â¼úÀ» µ¥ÀÌÅÍ ¶óº§¸µ ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÏ´Â °ÍÀº ½ÃÀåÀÇ ÇöÀúÇÑ µ¿ÇâÀÔ´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ¹Ýº¹ ÀÛ¾÷ ÀÚµ¿È­, ¾î³ëÅ×ÀÌ¼Ç Á¦¾È, ¶óº§ ǰÁú °ËÁõÀ» ÅëÇØ Àΰ£ ¾î³ëÅ×ÀÌ¼Ç ´ã´çÀÚ¸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¸ðµ¨Àº Àΰ£ÀÇ ÁÖ¼®¿¡¼­ ÇнÀÇÏ°í ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ¶óº§¸µ Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ AI¸¦ Ȱ¿ëÇÑ µ¥ÀÌÅÍ ¶óº§¸µ Á¢±Ù¹ýÀº ¶óº§¸µ ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈ­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó Àϰü¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º Á¦°ø¾÷ü´Â AI°¡ žÀçµÈ Åø°ú Ç÷§ÆûÀ» Ȱ¿ëÇÏ¿© ±¤¹üÀ§ÇÑ »ê¾÷ ¹× µ¥ÀÌÅÍ À¯Çü¿¡¼­ º¸´Ù È¿À²ÀûÀ̰í Á¤È®ÇÑ ¶óº§¸µ ¼­ºñ½º¸¦ Á¦°øÇÕ´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× ±ÔÁ¤ Áؼö

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í ÄÄÇöóÀ̾𽺴 µ¥ÀÌÅÍ ¶óº§¸µ ¾÷°è¿¡¼­ °¡Àå Áß¿äÇÑ °ü½É»ç°¡ µÇ¾ú½À´Ï´Ù. GDPR ¹× CCPA¿Í °°Àº ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤À» ½ÃÇàÇÔÀ¸·Î½á ±â¾÷Àº ¶óº§¸µ ÇÁ·Î¼¼½º¿¡¼­ °³ÀÎ µ¥ÀÌÅÍ¿Í ±â¹Ð µ¥ÀÌÅ͸¦ Ã¥ÀÓÁö°í ó¸®ÇØ¾ß ÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼­ºñ½º Á¦°ø¾÷ü´Â ±â¹Ð Á¤º¸¸¦ º¸È£Çϱâ À§ÇØ À͸íÈ­ ¹× ¾Ïȣȭ¸¦ Æ÷ÇÔÇÑ °ß°íÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ´ëÃ¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °Ç°­ °ü¸® ºÐ¾ßÀÇ HIPAA ¹× ±ÝÀ¶ ºÐ¾ßÀÇ ±ÝÀ¶ ±ÔÁ¦ µî ¾÷°è ƯÀ¯ÀÇ ±ÔÁ¦ Áؼöµµ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¼­ºñ½º Á¦°ø¾÷ü´Â ÀÌ·¯ÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÏ°í °í°´¿¡°Ô ½Å·Ú¿Í ÄÄÇöóÀ̾𽺸¦ °®Ãá µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ À§ÇØ º¸¾È ÀÎÇÁ¶ó, ±³À° ¹× °¨»ç ÇÁ·Î¼¼½º¿¡ ÅõÀÚÇÕ´Ï´Ù.

Å©¶ó¿ìµå¼Ò½Ì ¹× ¿ø°Ý ¶óº§¸µ

µ¥ÀÌÅÍ ¶óº§¸µ ½ÃÀå¿¡¼­´Â Å©¶ó¿ìµå¼Ò½Ì°ú ¿ø°Ý ¶óº§¸µÀÌ ±â¼¼¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. Å©¶ó¿ìµå¼Ò½Ì°ú ¿ø°Ý ¶óº§¸µÀº µ¥ÀÌÅÍ ¶óº§¸µ ½ÃÀå¿¡¼­ ±â¼¼¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼¼°èÀûÀÎ ÀÎÀç Ç®À» Ȱ¿ëÇÏ¿© ¿ø°ÝÀ¸·Î µ¥ÀÌÅÍ¿¡ ¶óº§À» ºÙÀÏ ¼ö ÀÖ´Â ´Ù¾çÇÑ ¾î³ëÅ×ÀÌÅÍ¿¡ ¾×¼¼½ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº È®À强, ºñ¿ë È¿À²¼º ¹× ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ½Å¼ÓÇÏ°Ô Ã³¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ Ç÷§Æû°ú ¸¶ÄÏÇ÷¹À̽º´Â ¼¼°è ¼÷·ÃµÈ ¾î³ëÅ×ÀÌÅÍ¿Í Á¶Á÷À» ¿¬°áÇÏ¿© ¶óº§¸µ ÀÛ¾÷À» È¿À²ÀûÀ¸·Î Ŭ¶ó¿ìµå ¼Ò½ÌÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ±×·¯³ª Å©¶ó¿ìµå¼Ò½ÌÀ» ÅëÇÑ µ¥ÀÌÅÍ ¶óº§¸µ ¸ðµ¨¿¡¼­´Â ǰÁú°ü¸®¿Í ¾î³ëÅ×ÀÌÅÍ Àü¹®¼º È®º¸°¡ ¿©ÀüÈ÷ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ¼­ºñ½º Á¦°ø¾÷ü´Â ÀÌ·¯ÇÑ ¿ì·Á¸¦ ÇØ°áÇϱâ À§ÇÑ Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ» °³¹ßÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù.

ºÎ¹®º° ÀλçÀÌÆ®

¼Ò½Ì À¯Çü ÀλçÀÌÆ®

¾Æ¿ô¼Ò½Ì ºÎ¹®Àº ½ÃÀåÀ» µ¶Á¡ÇßÀ¸¸ç 2022³â ¸ÅÃâÀÇ 84.1%¸¦ Â÷ÁöÇß½À´Ï´Ù. ¶ÇÇÑ ¾Æ¿ô¼Ò½Ì ºÎ¹®Àº À¯¸ÁÇÑ ¼ºÀå Àü¸ÁÀ» Á¦°øÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·ü·Î È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾Æ¿ô¼Ò½Ì ±â¾÷ÀÇ °æ¿ì ºñ¿ë È¿°úÀûÀÌ°í ´Ü±âÀûÀÎ Çå½ÅÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù. ¾Æ¿ô¼Ò½Ì ȸ»ç´Â ÁÖ¼® ÀÛ¼º ´É·Â °³¹ß, °ß°íÇÑ º¸¾È ÇÁ·ÎÅäÄÝ, ¶óº§¸µ ¿ä±¸¿¡ ´ëÇÑ ÄÁ¼³ÆÃ ±¸Çö µî À¯¿¬ÇÑ ¹æ½ÄÀ¸·Î Á¶Á÷À» Áö¿øÇÕ´Ï´Ù.

À¯Çüº° ÀλçÀÌÆ®

À̹ÌÁö ºÎ¹®Àº ½ÃÀåÀ» ¼±µµÇßÀ¸¸ç 2022³â¿¡´Â 36.6%¸¦ ÃʰúÇÏ´Â ÃÖ´ë ¼öÀÍ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ ³ôÀº Á¡À¯À²Àº ÀÚµ¿Â÷, ÇコÄɾî, ¹Ìµð¾î, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÄÄÇ»ÅÍ ºñÀüÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ÀÇ·á À̹ÌÁö´Â Áß¿äÇÑ À̹ÌÁö ¶óº§¸µ ¾ÖÇø®ÄÉÀÌ¼Ç Áß ÇϳªÀÔ´Ï´Ù.

°Ô´Ù°¡, È­»ó¡¤¿µ»ó ºÐ¾ßÀÇ ¼ºÀåÀ» ÁöÁöÇϰí ÀÖ´Â °ÍÀº ÀÌ ºÐ¾ß¿¡¼­ »ç¿ëµÇ°í Àִ ÷´Ü ±â¼úÀÔ´Ï´Ù. ¶ÇÇÑ X ¼±, ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µ(CT) ½ºÄµ, Àڱ⠰ø¸í À̹Ì¡(MRI), ȯÀÚ Ä¡·á µî °Ç°­ °ü¸® »ê¾÷¿¡¼­ ÄÄÇ»ÅÍ ¾ÖÇø®ÄÉÀ̼ÇÀÇ »ç¿ëÀÌ È®´ëµÇ°íÀÖ´Â °Íµµ °°Àº ºÎ¹® ¼ºÀåÀ» µÞ¹ÞħÇÕ´Ï´Ù. ¶ÇÇÑ, ÅØ½ºÆ® ºÐ¾ß´Â ÀÓ»ó ¿¬±¸ ¹× ÀüÀÚ»ó°Å·¡ ºÐ¾ß¿¡¼­ ¿ëµµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó 2022³â¿¡ Å« Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È À½¼º ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¶óº§¸µ À¯Çü ÀλçÀÌÆ®

2022³â¿¡´Â ¼öµ¿ ºÎ¹®ÀÌ ½ÃÀåÀ» µ¶Á¡ÇßÀ¸¸ç 76.9% ÀÌ»óÀÇ ¼öÀÍ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º´Â ¼öµ¿, ÁØÁöµµ ÇнÀ, ÀÚµ¿ ¶óº§¸µ À¯ÇüÀ¸·Î ±¸ºÐµË´Ï´Ù. ¼öµ¿ µ¥ÀÌÅÍ ¶óº§¸µÀº »ç¶÷ÀÌ ¸ðµç µ¥ÀÌÅ͸¦ ºÐ·ùÇϰųª ¶óº§¸µÇÏ´Â °úÁ¤ÀÔ´Ï´Ù. ÀÚµ¿ ¶óº§¸µ°ú´Â ´Þ¸®, ÀÌ ¹æ¹ýÀº ³ôÀº ¹«°á¼º, Àϰü¼º, µ¥ÀÌÅÍ ÁÖ¼®ÀÇ ¹ø°Å·Î¿ò µîÀÇ ÀÌÁ¡ÀÌ Àֱ⠶§¹®¿¡ ¸Å·ÂÀûÀÔ´Ï´Ù. ±×·¯³ª ¼öÀÛ¾÷ ÁÖ¼®Àº ºñ¿ë°ú ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ¹Ç·Î Ŭ¶ó¿ìµå ¼Ò½Ì Ȱµ¿À» ÅëÇØ ¼öÁýµÈ ¶óº§¸µµÈ µ¥ÀÌÅͰ¡ ´Ù¾çÇÑ ¸ñÀûÀ¸·Î Ȱ¿ëµË´Ï´Ù.

ÀÚµ¿ ¶óº§¸µ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÏ°Ô »ó½ÂÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¥ÀÌÅÍ ¶óº§¸µ ºÐ¾ß¿¡¼­´Â °èÃþÀû ÇнÀ ÇÁ·Î¼¼½º¸¦ ÅëÇØ µ¥ÀÌÅͼ¼Æ®¿¡¼­ °íµµ·Î ³ôÀº ¼öÁØÀÇ ÀνÄÀ» Ãß»óÈ­ÇÏ´Â AI°¡ ºü¸£°Ô Áõ°¡Çϰí ÀÖÀ¸¸ç ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ´ë·®ÀÇ µ¥ÀÌÅÍ¿¡¼­ ÀÇ¹Ì ÀÖ´Â ÆÐÅÏÀ» ä±¼Çϰí ÃßÃâÇÒ Çʿ伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀÚµ¿ µ¥ÀÌÅÍ ÁÖ¼® µµ±¸¿¡ ´ëÇÑ »õ·Î¿î ¼ö¿ä°¡ ³ô¾ÆÁú °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ÁØÁöµµ ÇнÀ ½Ã½ºÅÛÀº ¶óº§¸µµÇÁö ¾ÊÀº µ¥ÀÌÅ͸¦ ºÐ·ùÇϰųª ƯÁ¤ ¶óº§¸µµÈ µ¥ÀÌÅ͸¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ÁÖ¼® À¯ÇüÀÇ ¿ëµµ´Â Á¦ÇÑÀûÀ̹ǷΠ½ÃÀå Á¡À¯À²Àº Áß°£ Á¤µµ·Î À¯ÁöµË´Ï´Ù.

Áö¿ªº° ÀλçÀÌÆ®

ºÏ¹Ì´Â ½ÃÀåÀ» ¼±µµÇϰí ÃÑ ¸ÅÃâÀÇ 31.0% ÀÌ»óÀ» Â÷ÁöÇß½À´Ï´Ù. ÀÌ Áö¿ªÀÇ µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç¿¡ ´ëÇÑ »õ·Î¿î ÅõÀÚ´Â ½ÃÀå ¼ºÀåÀ» À̲ø°í ÀÖ½À´Ï´Ù. ij³ª´Ù¿Í ¹Ì±¹°ú °°Àº ºÏ¹Ì ½ÃÀå¿¡¼­ AIÀÇ Ãʱ⠵µÀÔ ±¹°¡´Â µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½ºÀÇ ÃÖ÷´ÜÀ» ¿î¿µÇϰí ÀÖ½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È À¯·´ ½ÃÀåÀº °ßÁ¶ÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ Àå¾Ö¹° °¨Áö ±â¼úÀÇ »õ·Î¿î ¼ºÀåÀÌ ¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÇ ÀÚµ¿Â÷ ºÎ¹®¿¡¼­ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀº ¼¼°è ½ÃÀå¿¡¼­ Å« °ßÀηÂÀ» ȹµæÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 22.8%·Î È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ¼Ò±Ô¸ð ±â¼úÀÇ Áøº¸, ÈÞ´ëÆù ¹× ÅÂºí¸´ÀÇ ±Þ¼ÓÇÑ º¸±Þ, Àεµ¿Í Áß±¹ µî ½ÅÈï °æÁ¦ ±¹°¡¿¡¼­ ¼Ò¼È ³×Æ®¿öÅ·ÀÇ À¶¼ºÀ¸·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, Áß±¹ Á¤ºÎ°¡ ¾ö°ÝÇÏ°Ô ½Ç½ÃÇÏ´Â ½Ç¸í µî·Ï¹ý¿¡¼­´Â ¸ðµç ±¹¹ÎÀÌ Á¤ºÎÀÇ °ø½Ä ID¿Í ÀÎÅÍ³Ý °èÁ¤À» ¿¬°áÇÏ´Â °ÍÀÌ Àǹ«È­µÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥Àº Áß±¹ Àü¿ª¿¡¼­ µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼ÇÀÇ »ç¿ëÀ» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼¼°è µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå¿¡ À־ÀÇ COVID-19ÀÇ ¿µÇâ

Á¦5Àå °í°´ÀÇ ¸ñ¼Ò¸®

Á¦6Àå ¼¼°è µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå °³¿ä

Á¦7Àå ¼¼°è µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ¼Ò½Ì À¯Çüº°(ÀÎÇϿ콺, ¾Æ¿ô¼Ò½Ì)
    • À¯Çüº°(ÅØ½ºÆ®, À̹ÌÁö ¹× µ¿¿µ»ó, À½¼º)
    • ¶óº§¸µ À¯Çüº°(¼öµ¿, ¹Ý°¨½Ã, ÀÚµ¿)
    • ¾÷°èº°(IT, ÀÚµ¿Â÷, Á¤ºÎ, ÇコÄɾî, ±ÝÀ¶ ¼­ºñ½º, ¼Ò¸Å, ±âŸ)
    • Áö¿ªº°(ºÏ¹Ì, À¯·´, ³²¹Ì, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç)
  • ±â¾÷º°(2022³â)
  • ½ÃÀå ¸Ê

Á¦8Àå ºÏ¹ÌÀÇ µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ¼Ò½Ì À¯Çüº°
    • À¯Çüº°
    • ¶óº§¸µ À¯Çüº°
    • ¾÷°èº°
    • ±¹°¡º°
  • ºÏ¹Ì: ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ

Á¦9Àå À¯·´ÀÇ µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ¼Ò½Ì À¯Çüº°
    • À¯Çüº°
    • ¶óº§¸µ À¯Çüº°
    • ¾÷°èº°
    • ±¹°¡º°
  • À¯·´: ±¹°¡º° ºÐ¼®
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • º§±â¿¡

Á¦10Àå ³²¹ÌÀÇ µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • ¼Ò½Ì À¯Çüº°
    • À¯Çüº°
    • ¶óº§¸µ À¯Çüº°
    • ¾÷°èº°
    • ±¹°¡º°
  • ³²¹Ì : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ÄÝ·Òºñ¾Æ
    • ¾Æ¸£ÇîÆ¼³ª
    • Ä¥·¹
    • Æä·ç

Á¦11Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • Á¶´Þ À¯Çüº°
    • À¯Çüº°
    • ¶óº§¸µ À¯Çüº°
    • ¾÷°èº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«: ±¹°¡º° ºÐ¼®
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ³²¾ÆÇÁ¸®Ä«
    • ÅÍŰ
    • À̽º¶ó¿¤

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ¶óº§¸µ ¼Ö·ç¼Ç ¹× ¼­ºñ½º ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ¼Ò½Ì À¯Çüº°
    • À¯Çüº°
    • ¶óº§¸µ À¯Çüº°
    • ¾÷°èº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç: ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • º£Æ®³²

Á¦13Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • °úÁ¦

Á¦14Àå ½ÃÀå µ¿Çâ°ú °³Ã´

Á¦15Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Alegion
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Amazon Mechanical Turk, Inc.
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Appen Limited
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Clickworker GmbH
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • CloudApp
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • CloudFactory Limited
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Cogito Tech LLC
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Deep Systems, LLC
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • edgecase.ai
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Explosion AI GmbH
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Heex Technologies
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Labelbox, Inc
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Lotus Quality Assurance
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Mighty AI, Inc.
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Playment Inc.
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered

Á¦16Àå Àü·«Àû Á¦¾È

Á¦17Àå ±â¾÷ ¼Ò°³¿Í ¸éÃ¥»çÇ×

BJH 23.11.28

Global Data Labeling Solution and Services Market has valued at USD 11.3 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 19.4% through 2028. The Global Data Labeling Solution and Services Market is experiencing substantial growth driven by the escalating demand for high-quality labeled data across industries. Data labeling is a critical step in machine learning and artificial intelligence, as it involves the annotation and categorization of data to train algorithms effectively. This market's expansion is fueled by the increasing adoption of AI-driven applications and automation across sectors like healthcare, autonomous vehicles, e-commerce, and more. Data labeling services offer the expertise needed to accurately annotate images, videos, texts, and other data types, ensuring that AI models can make informed decisions. Additionally, the emergence of complex AI applications, including natural language processing and computer vision, requires diverse and accurately labeled datasets. As organizations seek to leverage AI for better insights, efficiency, and competitiveness, the demand for data labeling solutions and services is set to grow further. This market's future prospects are also influenced by innovations in labeling technologies, such as active learning and semi-supervised learning, which optimize the labeling process, reducing costs and increasing the efficiency of AI model development.

Key Market Drivers

Increased Demand for Data Labeling Services

Market Overview
Forecast Period2024-2028
Market Size 2022USD 11.3 Billion
Market Size 2028USD 34.38 Billion
CAGR 2023-202819.4%
Fastest Growing SegmentTest Automation
Largest MarketNorth America

The global data labeling solution and services market is experiencing significant growth due to the increased demand for data labeling services. Data labeling is a crucial step in the development of AI and machine learning models, as it involves the annotation and tagging of data to train these models. With the rising adoption of AI and machine learning technologies across various industries, the need for high-quality labeled data has become paramount. Data labeling services provide organizations with the expertise and resources required to annotate and label large volumes of data accurately and efficiently. This enables organizations to train their AI models effectively and improve their performance, leading to better decision-making and enhanced business outcomes.

Quality Assurance and Accuracy

Data labeling solution and services play a vital role in ensuring the quality and accuracy of AI and machine learning models. High-quality labeled data is essential for training these models to perform accurately and make reliable predictions. Data labeling services employ trained professionals who have expertise in understanding the specific requirements of different AI models and can accurately label the data accordingly. This attention to detail and precision in data labeling helps organizations build robust and accurate AI models, reducing the risk of errors and improving the overall performance of these models.

Scalability and Flexibility

The scalability and flexibility offered by data labeling solution and services are key market drivers. As organizations deal with ever-increasing volumes of data, the need for scalable data labeling solutions becomes crucial. Data labeling services provide the infrastructure and resources required to handle large-scale data labeling projects efficiently. These services can quickly scale up or down based on the project requirements, ensuring that organizations can meet their data labeling needs effectively. Additionally, data labeling services offer flexibility in terms of the types of data that can be labeled. Whether it is text, images, audio, or video data, data labeling services can handle diverse data types and provide accurate annotations and labels, catering to the specific requirements of different AI models.

Domain Expertise and Specialized Services

Data labeling solution and services providers often have domain expertise in specific industries or applications. This expertise allows them to understand the nuances and complexities of the data in those domains and provide specialized labeling services. For example, in the healthcare industry, data labeling services can accurately annotate medical images or clinical data, ensuring that AI models trained on this labeled data can make accurate diagnoses or predictions. Similarly, in the autonomous driving industry, data labeling services can provide precise annotations for road scenes or objects, enabling AI models to navigate safely. The availability of domain expertise and specialized services in data labeling solution and services providers adds value to organizations by ensuring the accuracy and relevance of the labeled data.

Data Security and Confidentiality

Data security and confidentiality are critical considerations in the data labeling process. Organizations need to ensure that their data is handled securely and that sensitive information is protected. Data labeling solution and services providers understand the importance of data security and have robust measures in place to safeguard the data they handle. These measures include secure data transfer protocols, encryption techniques, access controls, and confidentiality agreements. By outsourcing data labeling to trusted service providers, organizations can mitigate the risks associated with data security and confidentiality, allowing them to focus on their core business activities.

Key Market Challenges

Lack of Standardization and Quality Control

One of the primary challenges facing the global data labeling solution and services market is the lack of standardization and quality control measures. As data labeling plays a crucial role in training machine learning models, inconsistencies and inaccuracies in the labeling process can significantly impact the performance and reliability of these models. Without standardized guidelines and quality control mechanisms, there is a risk of inconsistent labeling practices across different datasets and labeling service providers. This can lead to unreliable results and hinder the adoption of machine learning solutions. To address this challenge, industry-wide efforts are needed to establish standardized labeling practices, define quality metrics, and implement rigorous quality control processes. Collaboration between data labeling service providers, industry experts, and regulatory bodies can help ensure consistent and high-quality labeled datasets, fostering trust and confidence in machine learning applications.

Scalability and Efficiency

The scalability and efficiency of data labeling solutions and services pose significant challenges for organizations. As the volume of data increases exponentially, labeling large datasets within tight timelines becomes a daunting task. Manual labeling processes can be time-consuming, error-prone, and costly, especially when dealing with massive amounts of data. To overcome this challenge, automated and semi-automated data labeling techniques need to be developed and implemented. Leveraging AI technologies, such as computer vision and natural language processing, can help automate the labeling process, reducing the time and effort required. Additionally, efficient project management tools and workflows should be in place to streamline the labeling process, allocate resources effectively, and ensure timely delivery of labeled datasets.

Data Privacy and Security

Data privacy and security concerns are critical challenges in the data labeling solution and services market. Labeled datasets often contain sensitive and personal information, making them attractive targets for malicious actors. Organizations must ensure that appropriate data protection measures are in place throughout the labeling process, including secure data storage, access controls, and anonymization techniques. Compliance with data protection regulations, such as the General Data Protection Regulation (GDPR), is essential to maintain customer trust and avoid legal repercussions. Implementing robust data privacy and security protocols, conducting regular audits, and providing transparency to customers regarding data handling practices can help address these challenges and mitigate potential risks.

Domain Expertise and Subjectivity

Data labeling often requires domain-specific knowledge and expertise to accurately annotate and classify data. Different labeling tasks may involve subjective interpretations, requiring human annotators with specialized knowledge in specific domains. Acquiring and retaining a diverse pool of skilled annotators can be challenging, especially for niche industries or emerging technologies. To overcome this challenge, data labeling service providers should invest in training programs and knowledge sharing platforms to enhance the expertise of their annotators. Collaborating with industry experts and domain specialists can also help ensure accurate and contextually relevant labeling. Additionally, leveraging crowd-based labeling platforms and implementing quality control mechanisms can help maintain consistency and reliability in subjective labeling tasks.

Key Market Trends

Rise in Data Labeling Complexity

The global market for data labeling solutions and services is witnessing a significant increase in data labeling complexity. As organizations generate and collect diverse and unstructured data, the need for precise and context-aware data labeling is growing. This complexity arises from various sources, including multi-modal data (e.g., text, images, audio, and video), domain-specific requirements (e.g., healthcare, autonomous vehicles, and finance), and nuanced data semantics (e.g., sentiment analysis and object detection). To address these challenges, data labeling service providers are focusing on developing specialized expertise and tools that can handle intricate labeling tasks. Advanced annotation techniques, such as active learning and semi-supervised learning, are being employed to improve labeling efficiency and accuracy while reducing the manual effort involved.

AI-Enhanced Data Labeling

The integration of artificial intelligence (AI) and machine learning (ML) technologies into data labeling processes is a prominent trend in the market. AI algorithms can assist human annotators by automating repetitive tasks, suggesting annotations, and verifying label quality. Machine learning models can learn from human annotations and improve their labeling accuracy over time. This AI-enhanced data labeling approach not only accelerates the labeling process but also enhances consistency and reduces costs. Data labeling service providers are increasingly leveraging AI-powered tools and platforms to deliver more efficient and accurate labeling services across a wide range of industries and data types.

Data Privacy and Compliance

Data privacy and compliance have become paramount concerns in the data labeling industry. With the enforcement of stringent data protection regulations like GDPR and CCPA, organizations must ensure that personal and sensitive data is handled responsibly during the labeling process. Data labeling service providers are implementing robust data privacy measures, including anonymization and encryption, to protect sensitive information. Additionally, compliance with industry-specific regulations, such as HIPAA in healthcare and financial regulations in the finance sector, is crucial. Service providers are investing in secure infrastructure, training, and auditing processes to align with these regulatory requirements and provide clients with trusted and compliant data labeling solutions.

Crowdsourcing and Remote Labeling

Crowdsourcing and remote labeling have gained momentum in the data labeling market. Organizations are tapping into global talent pools to access a diverse workforce of annotators who can label data remotely. This approach offers scalability, cost-effectiveness, and the ability to handle large volumes of data quickly. Data labeling platforms and marketplaces are connecting organizations with skilled annotators worldwide, enabling them to crowdsource labeling tasks efficiently. However, managing quality control and ensuring annotator expertise remain challenges in the crowdsourced data labeling model, prompting service providers to develop innovative solutions to address these concerns.

Segmental Insights

Sourcing type Insights

The outsourced segment dominated the market and accounted for 84.1% of revenue in 2022. The outsourced segment is also anticipated offer promising growth prospects, expanding at the highest growth rate during the forecast period. For outsourcing companies, cost-effectiveness and short-term commitments are top considerations. Outsourced companies support organizations in accomplishing a flexible method to developing annotative capacity, solid security protocols, and consulting practices for their labeling needs.

In-house segment is expected to witness moderate growth during the forecast period. Execution of in-house data labeling solutions allows businesses to advance reliable labeling processes and a replicable system for managing data. The vendors are also offering custom solutions aligned with the applications and requirements of the customers. Moreover, positioning in-house data labeling teams provides a deeper understanding and improved control of operational procedures, which will benefit the organization viewpoint.

Type Insights

The image segment led the market and accounted for the largest revenue share of over 36.6% in 2022. The high share can be ascribed to the growing use of computer vision in various industries, including automotive, healthcare, media, and entertainment. For instance, medical imaging is one of the significant image-labeling applications.

Moreover, a factor accredited to the growth of the image/video segment is the advanced technology used in the segment. Additionally, the growing use of computer applications in the healthcare industry for X-rays, computed tomography (CT) scans, magnetic resonance imaging (MRI), and patient treatments will propel the segment growth. Also, the text segment accounted for a significant share in 2022, owing to its rising applications in clinical research and e-commerce. Over the projected period, the audio segment is expected to grow at the highest rate.

Labeling Type Insights

In 2022, the manual segment dominated the market, with over 76.9% of the revenue share. The data labeling solution & services is segmented into manual, semi-supervised, and automatic labeling types. Manual data labeling is the process of humans classifying or labeling any data. In contrast to automatic labeling, the method is appealing due to benefits such as high integrity, consistency, and low data annotation efforts. However, because manual annotation is costly and time-consuming, labeled data collected through crowdsourcing activities are used for various purposes.

The automatic labeling segment is expected to rise favorably over the forecast period. Prominently increasing AI in the data labeling sector as it assists the abstraction of sophisticated and high-level perceptions from datasets over a hierarchical learning process is augmenting market growth. Emerging demand for automatic data annotation tools will likely increase as the need for mining and extracting meaningful patterns from large amounts of data grows. Semi-supervised systems can classify unlabeled data or identify specific labeled data. As a result of the restricted use of this annotation type, it will have a moderate market share.

Regional Insights

North America led the market, accounting for more than 31.0% of total revenue. Emerging investment in data labeling solutions in this region is leading the market growth. Early adopters of AI in the North American market, such as Canada and the U.S., are at the edges of data labeling solutions and services. During the forecast years, the European market is anticipated to increase steadily. In addition, emerging growth in automotive obstacle detection technologies are expected to fuel the market's growth in the European region's automobile sector over the forecast period.

The Asia Pacific regional market is anticipated to gain significant traction in the global market and expand at a CAGR of 22.8% over the forecast period. The growth is attributable to slight technological advancements, the rapidly increasing adoption of mobiles and tablets, and the increasing prominence of social networking in developing economies such as India and China. For instance, Real name registering laws, which the Chinese government has strictly implemented, require all citizens to connect their official government ID with an internet account. Such policies are augmenting the use of data labeling solutions across the country.

Key Market Players

  • Alegion
  • Amazon Mechanical Turk, Inc.
  • Appen Limited
  • Clickworker GmbH
  • CloudApp
  • CloudFactory Limited
  • Cogito Tech LLC
  • Deep Systems, LLC
  • edgecase.ai
  • Explosion AI GmbH
  • Heex Technologies
  • Labelbox, Inc
  • Lotus Quality Assurance
  • Mighty AI, Inc.
  • Playment Inc

Report Scope:

In this report, the Global Data Labeling Solution and Services Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Data Labeling Solution and Services Market, By Sourcing Type:

  • In-house
  • Outsourced

Data Labeling Solution and Services Market, By Type:

  • Text
  • Image/Video
  • Audio

Data Labeling Solution and Services Market, By Labeling Type:

  • Manual
  • Semi-Supervised
  • Automatic

Data Labeling Solution and Services Market, By Vertical:

  • IT
  • Automotive
  • Government
  • Healthcare
  • Financial Services
  • Retails
  • Others

Data Labeling Solution and Services Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Belgium
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • Indonesia
  • Vietnam
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Chile
  • Peru
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Turkey
  • Israel

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Data Labeling Solution and Services Market.

Available Customizations:

  • Global Data Labeling Solution and Services market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Impact of COVID-19 on Global Data Labeling Solution and Services Market

5. Voice of Customer

6. Global Data Labeling Solution and Services Market Overview

7. Global Data Labeling Solution and Services Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Sourcing Type (In-house, Outsourced)
    • 7.2.2. By Type (Text, Image/Video, Audio)
    • 7.2.3. By Labelling Type (Manual, Semi-Supervised, Automatic)
    • 7.2.4. By Vertical (IT, Automotive, Government, Healthcare, Financial Services, Retails, Others)
    • 7.2.5. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 7.3. By Company (2022)
  • 7.4. Market Map

8. North America Data Labeling Solution and Services Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Sourcing Type
    • 8.2.2. By Type
    • 8.2.3. By Labelling Type
    • 8.2.4. By Vertical
    • 8.2.5. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Data Labeling Solution and Services Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Sourcing Type
        • 8.3.1.2.2. By Type
        • 8.3.1.2.3. By Labelling Type
        • 8.3.1.2.4. By Vertical
    • 8.3.2. Canada Data Labeling Solution and Services Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Sourcing Type
        • 8.3.2.2.2. By Type
        • 8.3.2.2.3. By Labelling Type
        • 8.3.2.2.4. By Vertical
    • 8.3.3. Mexico Data Labeling Solution and Services Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Sourcing Type
        • 8.3.3.2.2. By Type
        • 8.3.3.2.3. By Labelling Type
        • 8.3.3.2.4. By Vertical

9. Europe Data Labeling Solution and Services Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Sourcing Type
    • 9.2.2. By Type
    • 9.2.3. By Labelling Type
    • 9.2.4. By Vertical
    • 9.2.5. By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1. Germany Data Labeling Solution and Services Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Sourcing Type
        • 9.3.1.2.2. By Type
        • 9.3.1.2.3. By Labelling Type
        • 9.3.1.2.4. By Vertical
    • 9.3.2. France Data Labeling Solution and Services Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Sourcing Type
        • 9.3.2.2.2. By Type
        • 9.3.2.2.3. By Labelling Type
        • 9.3.2.2.4. By Vertical
    • 9.3.3. United Kingdom Data Labeling Solution and Services Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Sourcing Type
        • 9.3.3.2.2. By Type
        • 9.3.3.2.3. By Labelling Type
        • 9.3.3.2.4. By Vertical
    • 9.3.4. Italy Data Labeling Solution and Services Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Sourcing Type
        • 9.3.4.2.2. By Type
        • 9.3.4.2.3. By Labelling Type
        • 9.3.4.2.4. By Vertical
    • 9.3.5. Spain Data Labeling Solution and Services Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Sourcing Type
        • 9.3.5.2.2. By Type
        • 9.3.5.2.3. By Labelling Type
        • 9.3.5.2.4. By Vertical
    • 9.3.6. Belgium Data Labeling Solution and Services Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Sourcing Type
        • 9.3.6.2.2. By Type
        • 9.3.6.2.3. By Labelling Type
        • 9.3.6.2.4. By Vertical

10. South America Data Labeling Solution and Services Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Sourcing Type
    • 10.2.2. By Type
    • 10.2.3. By Labelling Type
    • 10.2.4. By Vertical
    • 10.2.5. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Data Labeling Solution and Services Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Sourcing Type
        • 10.3.1.2.2. By Type
        • 10.3.1.2.3. By Labelling Type
        • 10.3.1.2.4. By Vertical
    • 10.3.2. Colombia Data Labeling Solution and Services Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Sourcing Type
        • 10.3.2.2.2. By Type
        • 10.3.2.2.3. By Labelling Type
        • 10.3.2.2.4. By Vertical
    • 10.3.3. Argentina Data Labeling Solution and Services Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Sourcing Type
        • 10.3.3.2.2. By Type
        • 10.3.3.2.3. By Labelling Type
        • 10.3.3.2.4. By Vertical
    • 10.3.4. Chile Data Labeling Solution and Services Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Sourcing Type
        • 10.3.4.2.2. By Type
        • 10.3.4.2.3. By Labelling Type
        • 10.3.4.2.4. By Vertical
    • 10.3.5. Peru Data Labeling Solution and Services Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Sourcing Type
        • 10.3.5.2.2. By Type
        • 10.3.5.2.3. By Labelling Type
        • 10.3.5.2.4. By Vertical

11. Middle East & Africa Data Labeling Solution and Services Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Sourcing Type
    • 11.2.2. By Type
    • 11.2.3. By Labelling Type
    • 11.2.4. By Vertical
    • 11.2.5. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Data Labeling Solution and Services Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Sourcing Type
        • 11.3.1.2.2. By Type
        • 11.3.1.2.3. By Labelling Type
        • 11.3.1.2.4. By Vertical
    • 11.3.2. UAE Data Labeling Solution and Services Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Sourcing Type
        • 11.3.2.2.2. By Type
        • 11.3.2.2.3. By Labelling Type
        • 11.3.2.2.4. By Vertical
    • 11.3.3. South Africa Data Labeling Solution and Services Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Sourcing Type
        • 11.3.3.2.2. By Type
        • 11.3.3.2.3. By Labelling Type
        • 11.3.3.2.4. By Vertical
    • 11.3.4. Turkey Data Labeling Solution and Services Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Sourcing Type
        • 11.3.4.2.2. By Type
        • 11.3.4.2.3. By Labelling Type
        • 11.3.4.2.4. By Vertical
    • 11.3.5. Israel Data Labeling Solution and Services Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Sourcing Type
        • 11.3.5.2.2. By Type
        • 11.3.5.2.3. By Labelling Type
        • 11.3.5.2.4. By Vertical

12. Asia Pacific Data Labeling Solution and Services Market Outlook

  • 12.1. Market Size & Forecast
    • 12.1.1. By Sourcing Type
    • 12.1.2. By Type
    • 12.1.3. By Labelling Type
    • 12.1.4. By Vertical
    • 12.1.5. By Country
  • 12.2. Asia-Pacific: Country Analysis
    • 12.2.1. China Data Labeling Solution and Services Market Outlook
      • 12.2.1.1. Market Size & Forecast
        • 12.2.1.1.1. By Value
      • 12.2.1.2. Market Share & Forecast
        • 12.2.1.2.1. By Sourcing Type
        • 12.2.1.2.2. By Type
        • 12.2.1.2.3. By Labelling Type
        • 12.2.1.2.4. By Vertical
    • 12.2.2. India Data Labeling Solution and Services Market Outlook
      • 12.2.2.1. Market Size & Forecast
        • 12.2.2.1.1. By Value
      • 12.2.2.2. Market Share & Forecast
        • 12.2.2.2.1. By Sourcing Type
        • 12.2.2.2.2. By Type
        • 12.2.2.2.3. By Labelling Type
        • 12.2.2.2.4. By Vertical
    • 12.2.3. Japan Data Labeling Solution and Services Market Outlook
      • 12.2.3.1. Market Size & Forecast
        • 12.2.3.1.1. By Value
      • 12.2.3.2. Market Share & Forecast
        • 12.2.3.2.1. By Sourcing Type
        • 12.2.3.2.2. By Type
        • 12.2.3.2.3. By Labelling Type
        • 12.2.3.2.4. By Vertical
    • 12.2.4. South Korea Data Labeling Solution and Services Market Outlook
      • 12.2.4.1. Market Size & Forecast
        • 12.2.4.1.1. By Value
      • 12.2.4.2. Market Share & Forecast
        • 12.2.4.2.1. By Sourcing Type
        • 12.2.4.2.2. By Type
        • 12.2.4.2.3. By Labelling Type
        • 12.2.4.2.4. By Vertical
    • 12.2.5. Australia Data Labeling Solution and Services Market Outlook
      • 12.2.5.1. Market Size & Forecast
        • 12.2.5.1.1. By Value
      • 12.2.5.2. Market Share & Forecast
        • 12.2.5.2.1. By Sourcing Type
        • 12.2.5.2.2. By Type
        • 12.2.5.2.3. By Labelling Type
        • 12.2.5.2.4. By Vertical
    • 12.2.6. Indonesia Data Labeling Solution and Services Market Outlook
      • 12.2.6.1. Market Size & Forecast
        • 12.2.6.1.1. By Value
      • 12.2.6.2. Market Share & Forecast
        • 12.2.6.2.1. By Sourcing Type
        • 12.2.6.2.2. By Type
        • 12.2.6.2.3. By Labelling Type
        • 12.2.6.2.4. By Vertical
    • 12.2.7. Vietnam Data Labeling Solution and Services Market Outlook
      • 12.2.7.1. Market Size & Forecast
        • 12.2.7.1.1. By Value
      • 12.2.7.2. Market Share & Forecast
        • 12.2.7.2.1. By Sourcing Type
        • 12.2.7.2.2. By Type
        • 12.2.7.2.3. By Labelling Type
        • 12.2.7.2.4. By Vertical

13. Market Dynamics

  • 13.1. Drivers
  • 13.2. Challenges

14. Market Trends and Developments

15. Company Profiles

  • 15.1. Alegion
    • 15.1.1. Business Overview
    • 15.1.2. Key Revenue and Financials
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel/Key Contact Person
    • 15.1.5. Key Product/Services Offered
  • 15.2. Amazon Mechanical Turk, Inc.
    • 15.2.1. Business Overview
    • 15.2.2. Key Revenue and Financials
    • 15.2.3. Recent Developments
    • 15.2.4. Key Personnel/Key Contact Person
    • 15.2.5. Key Product/Services Offered
  • 15.3. Appen Limited
    • 15.3.1. Business Overview
    • 15.3.2. Key Revenue and Financials
    • 15.3.3. Recent Developments
    • 15.3.4. Key Personnel/Key Contact Person
    • 15.3.5. Key Product/Services Offered
  • 15.4. Clickworker GmbH
    • 15.4.1. Business Overview
    • 15.4.2. Key Revenue and Financials
    • 15.4.3. Recent Developments
    • 15.4.4. Key Personnel/Key Contact Person
    • 15.4.5. Key Product/Services Offered
  • 15.5. CloudApp
    • 15.5.1. Business Overview
    • 15.5.2. Key Revenue and Financials
    • 15.5.3. Recent Developments
    • 15.5.4. Key Personnel/Key Contact Person
    • 15.5.5. Key Product/Services Offered
  • 15.6. CloudFactory Limited
    • 15.6.1. Business Overview
    • 15.6.2. Key Revenue and Financials
    • 15.6.3. Recent Developments
    • 15.6.4. Key Personnel/Key Contact Person
    • 15.6.5. Key Product/Services Offered
  • 15.7. Cogito Tech LLC
    • 15.7.1. Business Overview
    • 15.7.2. Key Revenue and Financials
    • 15.7.3. Recent Developments
    • 15.7.4. Key Personnel/Key Contact Person
    • 15.7.5. Key Product/Services Offered
  • 15.8. Deep Systems, LLC
    • 15.8.1. Business Overview
    • 15.8.2. Key Revenue and Financials
    • 15.8.3. Recent Developments
    • 15.8.4. Key Personnel/Key Contact Person
    • 15.8.5. Key Product/Services Offered
  • 15.9. edgecase.ai
    • 15.9.1. Business Overview
    • 15.9.2. Key Revenue and Financials
    • 15.9.3. Recent Developments
    • 15.9.4. Key Personnel/Key Contact Person
    • 15.9.5. Key Product/Services Offered
  • 15.10. Explosion AI GmbH
    • 15.10.1. Business Overview
    • 15.10.2. Key Revenue and Financials
    • 15.10.3. Recent Developments
    • 15.10.4. Key Personnel/Key Contact Person
    • 15.10.5. Key Product/Services Offered
  • 15.11. Heex Technologies
    • 15.11.1. Business Overview
    • 15.11.2. Key Revenue and Financials
    • 15.11.3. Recent Developments
    • 15.11.4. Key Personnel/Key Contact Person
    • 15.11.5. Key Product/Services Offered
  • 15.12. Labelbox, Inc
    • 15.12.1. Business Overview
    • 15.12.2. Key Revenue and Financials
    • 15.12.3. Recent Developments
    • 15.12.4. Key Personnel/Key Contact Person
    • 15.12.5. Key Product/Services Offered
  • 15.13. Lotus Quality Assurance
    • 15.13.1. Business Overview
    • 15.13.2. Key Revenue and Financials
    • 15.13.3. Recent Developments
    • 15.13.4. Key Personnel/Key Contact Person
    • 15.13.5. Key Product/Services Offered
  • 15.14. Mighty AI, Inc.
    • 15.14.1. Business Overview
    • 15.14.2. Key Revenue and Financials
    • 15.14.3. Recent Developments
    • 15.14.4. Key Personnel/Key Contact Person
    • 15.14.5. Key Product/Services Offered
  • 15.15. Playment Inc.
    • 15.15.1. Business Overview
    • 15.15.2. Key Revenue and Financials
    • 15.15.3. Recent Developments
    • 15.15.4. Key Personnel/Key Contact Person
    • 15.15.5. Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦