½ÃÀ庸°í¼
»óÇ°ÄÚµå
1383887
»ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ© ½Ã½ºÅÛ ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, µ¿Çâ, ±âȸ, ¿¹Ãø - ½Ã½ºÅÛ À¯Çüº°, ÃßÁø À¯Çüº°, Áö¿ªº°, °æÀï(2018-2028³â)Commercial Vehicles Regenerative Braking System Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By System Type (Electric, Hydraulics, Kinetic), By Propulsion Type (BEV, HEV, PHEV), By Region, Competition, 2018-2028 |
¼¼°èÀÇ »ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ© ½Ã½ºÅÛ ½ÃÀåÀº 2022³â¿¡ 22¾ï ´Þ·¯·Î Æò°¡µÇ¸ç, 2028³â±îÁöÀÇ CAGRÀº 6.63%·Î, ¿¹Ãø ±â°£ Áß °ß°íÇÑ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù.
ȸ»ýÁ¦µ¿À̶ó°í ºÒ¸®´Â ¿îµ¿¿¡³ÊÁö ȸ»ý±â¼úÀº ÁÖ·Î Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µåÂ÷¿¡ »ç¿ëµÇ¸ç, Á¦µ¿ ¹× °¨¼Ó½Ã ¼Õ½ÇµÈ ¿¡³ÊÁö¸¦ ȸ¼öÇÏ¿© ¹èÅ͸®¸¦ ÀçÃæÀüÇÏ´Â µ¥ »ç¿ëÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛ¿¡¼ ¿£ÁøÀº ÀüÁøÇϰųª ¼øÇ×ÇÒ ¶§ ¹ÙÄû¸¦ ÃßÁøÇϸç, °¨¼ÓÇÒ ¶§ ¹ÙÄû°¡ ¸ðÅ͸¦ ÃßÁøÇÕ´Ï´Ù. ¿£ÁøÀº ¹ÙÄûÀÇ È¸Àü¿¡ ´ëÇ×ÇÏ¿© ¹ßÀü±â ¿ªÇÒÀ» Çϸç, ÀÌ·¯ÇÑ ¾ç¹æÇâ ¿¡³ÊÁö È帧 ´öºÐ¿¡ Â÷·®ÀÇ ¹èÅ͸®¿¡ ¿¬·á¸¦ °ø±ÞÇÏ´Â Àü·ÂÀ» »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯ÇüÀÇ Á¦µ¿ ½Ã½ºÅÛÀ» »ç¿ëÇϸé Àü¼Û ¿¡³ÊÁöÀÇ 5-10%¿¡ °¡±î¿î ¿¡³ÊÁö¸¦ ȸ¼öÇÒ ¼ö ÀÖ½À´Ï´Ù. ȸ¼öµÇ´Â ¿¡³ÊÁöÀÇ ¾çÀº Â÷·®ÀÇ ¼Óµµ¿Í Á¦µ¿ ½ºÅ¸ÀÏ¿¡ µû¶ó ´Þ¶óÁý´Ï´Ù. ÇöÀç ¿¡³ÊÁö ȸ»ý ½Ã½ºÅÛÀº ½Â¿ëÂ÷¿Í »ó¿ëÂ÷ ¸ðµÎ ¿¬ºñ¸¦ °³¼±ÇÏ°í ÀÚµ¿Â÷ ¹è±â°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¼¼°è ÀÚµ¿Â÷ ¾÷°è´Â ¿¬ºñ Çâ»ó¿¡ µµ¿òÀÌ µÇ´Â ÀÌ·¯ÇÑ Á¦µ¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÇöÀç ÀÚµ¿Â÷ »ê¾÷ ¼ö¿ä´Â ÀÚµ¿Â÷, ƯÈ÷ Àü±âÀÚµ¿Â÷ ¹× ±× ºÎÇ°ÀÇ ¼¼°è ÆǸŸ¦ ÃËÁøÇÏ°í ÀÖÀ¸¸ç, ÀÌ´Â ¿À¿°¹°Áú ¹èÃâ·® Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °¢±¹ Á¤ºÎ´Â ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ¿¬·á ¼Òºñ¿Í ¹è±â°¡½º ¹èÃâÀ» ÁÙÀÏ ¼ö Àִ ÷´Ü ±â¼úÀ» äÅÃÇϵµ·Ï ¾Ð·ÂÀ» °¡ÇÏ°í ÀÖ½À´Ï´Ù. À̴ ȸ»ýÁ¦µ¿½Ã½ºÅÛ ¼¼°è ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
2022³â ½ÃÀå ±Ô¸ð | 22¾ï ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 32¾ï 1,000¸¸ ´Þ·¯ |
CAGR 2023-2028 | 6.63% |
±Þ¼ºÀå ºÎ¹® | PHEV |
ÃÖ´ë ½ÃÀå | ¾Æ½Ã¾ÆÅÂÆò¾ç |
»ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ© ¼¼°è ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ȯ°æ ±ÔÁ¦ °È¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡ÀÔ´Ï´Ù. °¢±¹ Á¤ºÎ¿Í ±¹Á¦±â±¸´Â ±âÈÄ º¯È¿¡ ´ëÀÀÇÏ°í ¿À¿° ¼öÁØÀ» ³·Ãß±â À§ÇØ ´õ ¾ö°ÝÇÑ ¹èÃâ ±âÁØÀ» ºÎ°úÇÏ°í ģȯ°æ ¿î¼Û ¼Ö·ç¼ÇÀ» ¿ËÈ£ÇÏ°í ÀÖ½À´Ï´Ù. ¹èÃâ°¡½º ±ÔÁ¦´Â ¼¼°è¿¡¼ ÀÌ»êÈź¼Ò(CO2) ¹× ±âŸ À¯ÇØÇÑ ¿À¿°¹°ÁúÀÇ °¨¼Ò¿¡ ÁßÁ¡À» µÎ°í Á¡Â÷ °ÈµÇ°í ÀÖ½À´Ï´Ù. Æ®·°, ¹ö½º µî »ó¾÷¿ë Â÷·®Àº µµ½Ã ´ë±â¿À¿°°ú ¿Â½Ç°¡½º ¹èÃâÀÇ ÁÖ¿ä ¿øÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó °¢±¹ Á¤ºÎ´Â À̵é Â÷·®¿¡ ´ëÇØ ¾ö°ÝÇÑ ¹èÃâ ±âÁØÀ» Àû¿ëÇÏ°í ȸ»ýÁ¦µ¿ ½Ã½ºÅÛ Ã¤ÅÃÀ» Àå·ÁÇÏ°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ Áؼö¿¡ ±×Ä¡Áö ¾Ê°í, »ó¿ëÂ÷ ¾÷°è´Â Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Àνİú ³ë·ÂÀÌ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. Â÷·® ¿î¿µÀÚ, ±â¾÷ ¹× Á¤ºÎ´Â Á¡Á¡ ´õ ź¼Ò ¹èÃâ·®À» ÁÙÀ̴ ģȯ°æ ¿î¼Û ¼ö´ÜÀ» ¿ä±¸ÇÏ°í ÀÖ½À´Ï´Ù. ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀº ¿¬·á È¿À²À» °³¼±ÇÏ°í ¹è±â°¡½º ¹èÃâÀ» ÁÙÀÓÀ¸·Î½á ÀÌ·¯ÇÑ Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇÒ ¼ö ÀÖ´Â ÇÙ½É ±â¼ú·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù.
ȸ»ýÁ¦µ¿½Ã½ºÅÛÀº »ó¿ëÂ÷ »ç¾÷ÀÚ¿¡°Ô »ó´çÇÑ ºñ¿ë Àý°¨°ú ¿¬·á È¿À² Çâ»óÀ» °¡Á®´ÙÁÖ¸ç, ȸ»ýÁ¦µ¿½Ã½ºÅÛ µµÀÔÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ȸ»ý ºê·¹ÀÌÅ©ÀÇ ÁÖ¿ä ÀåÁ¡ Áß Çϳª´Â Á¦µ¿½Ã ¿îµ¿ ¿¡³ÊÁö¸¦ ȸ¼öÇÏ°í Àç»ç¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ¿°ú ¿¡³ÊÁö ³¶ºñ¸¦ À¯¹ßÇÏ´Â ±âÁ¸ÀÇ ¸¶Âû ±â¹Ý Á¦µ¿¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÏ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö ȸ»ýÀº »ó¿ëÂ÷ÀÇ ¿¬ºñ Çâ»óÀ¸·Î À̾îÁý´Ï´Ù. ¿¬·á ¼Òºñ¸¦ ÁÙÀÌ¸é »ó¿ëÂ÷ÀÇ ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¬·á °¡°ÝÀÌ »ó½ÂÇÏ°í ¿î¿µ È¿À²¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ Â÷·® ¿î¿µÀÚµéÀº Àå±âÀûÀÎ ¿î¿µ ºñ¿ë Àý°¨¿¡ µµ¿òÀÌ µÇ´Â ȸ»ý Á¦µ¿ ½Ã½ºÅÛ°ú °°Àº ±â¼úÀ» Àû±ØÀûÀ¸·Î ã°í ÀÖ½À´Ï´Ù. ȸ»ýÁ¦µ¿½Ã½ºÅÛÀº À¯Áöº¸¼ö ºñ¿ë Àý°¨¿¡µµ ±â¿©ÇÕ´Ï´Ù. ȸ»ýÁ¦µ¿ ½Ã½ºÅÛÀº ÀÚÁÖ ±³Ã¼ÇØ¾ß ÇÏ´Â ºê·¹ÀÌÅ© Æеå¿Í µð½ºÅ©¿Í °°Àº ±âÁ¸ ºê·¹ÀÌÅ© ºÎÇ°ÀÇ ¸¶¸ð¿Í ¼Õ»óÀ» ÁÙ¿©ÁÝ´Ï´Ù. ºê·¹ÀÌÅ© ±³Ã¼ Ƚ¼ö°¡ ÁÙ¾îµç´Ù´Â °ÍÀº À¯Áöº¸¼ö ºñ¿ëÀÇ °¨¼Ò¸¦ ÀǹÌÇϸç, ÀÌ´Â ºñ¿ë Àý°¨À» ´õ¿í ÃËÁøÇÕ´Ï´Ù.
»ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ© ½ÃÀåÀº ¾÷°èÀÇ Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß ³ë·Â¿¡ ÈûÀÔ¾î ±Þ¼ÓÇÑ ±â¼ú ¹ßÀüÀ» °æÇèÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÇ È¿À²¼º, ¼º´É ¹× ½Å·Ú¼ºÀ» Çâ»ó½ÃÅ°´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº Àü±â ¸ðÅÍ ¹× ¹ßÀü±â, ÀιöÅÍ, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿Í °°Àº ȸ»ý Á¦µ¿ ºÎÇ°ÀÇ ¼³°è¿Í Àç·á¸¦ Áö¼ÓÀûÀ¸·Î °³¼±ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±Àº ¼º´É ÀúÇÏ ¾øÀÌ »ó¿ëÂ÷¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖ´Â ´õ ÀÛ°í °¡º±°í È¿À²ÀûÀÎ ºÎÇ°À» ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù. ÷´Ü ¼¾¼¿Í Á¦¾î ¾Ë°í¸®ÁòÀº ȸ»ýÁ¦µ¿ ÃÖÀûÈ¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¼Óµµ, ºÎÇÏ, ÁÖÇà Á¶°Ç°ú °°Àº ´Ù¾çÇÑ Â÷·® ¸Å°³º¯¼ö¸¦ ¸ð´ÏÅ͸µÇÏ°í ȸ»ýÁ¦µ¿ ÇÁ·Î¼¼½º¸¦ ½Ç½Ã°£À¸·Î Á¶Á¤ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀûÀÀ¼ºÀº ¿¡³ÊÁö ȸ¼öÀÇ È¿À²¼ºÀ» ³ôÀÌ°í Àüü ½Ã½ºÅÛ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀº ¿¹Áö Á¤ºñ ½Ã½ºÅÛ, ÅÚ·¹¸Åƽ½º, ÀÚÀ²ÁÖÇà ±â´É µî ´Ù¸¥ ÷´Ü ±â¼ú°ú ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº ¿¡³ÊÁö ȸ»ýÀ» °ÈÇÒ »Ó¸¸ ¾Æ´Ï¶ó º¸´Ù ¾ÈÀüÇÏ°í È¿À²ÀûÀÎ »ó¿ëÂ÷ »ýÅ°迡 ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù.
»ó¿ëÂ÷ÀÇ Àü±â ¹× ÇÏÀ̺긮µå Â÷·®À¸·ÎÀÇ ¼¼°è ÀüȯÀº »ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ© ½ÃÀåÀ» Çü¼ºÇÏ´Â ¶Ç ´Ù¸¥ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. Àü±â »ó¿ëÂ÷¿Í ÇÏÀ̺긮µå »ó¿ëÂ÷´Â ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈÇÏ°í ÁÖÇà°Å¸®¸¦ ´Ã¸®±â À§ÇØ È¸»ýÁ¦µ¿¿¡ Å©°Ô ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. Àü±â »ó¿ëÂ÷¿Í ÇÏÀ̺긮µå »ó¿ëÂ÷´Â Å×ÀÏ ÆÄÀÌÇÁ ¹èÃâÀÌ ÀüÇô ¾ø±â ¶§¹®¿¡ ȯ°æ¿¡ ¹Î°¨ÇÑ Â÷·® ¿î¿µÀÚ¿Í µµ½Ã ¿À¿°À» ÁÙÀ̱â À§ÇØ ³ë·ÂÇÏ´Â Á¤ºÎ¿¡ ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ȸ»ýÁ¦µ¿Àº ÀÌ·¯ÇÑ Â÷·®ÀÇ È¿À²¼º°ú ȯ°æ ÀûÇÕ¼º¿¡ ±â¿©ÇÏ´Â ÇʼöÀûÀÎ ±â¼úÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µå »ó¿ëÂ÷¿¡¼ ȸ»ýÁ¦µ¿ ½Ã½ºÅÛÀº °¨¼Ó ¹× Á¦µ¿½Ã ¿îµ¿ ¿¡³ÊÁö¸¦ ȸ¼öÇÏ¿© Àü±â ¿¡³ÊÁö·Î º¯È¯ÇÏ¿© Â÷·®ÀÇ ¹èÅ͸®¸¦ ÃæÀüÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö ȸ¼ö¸¦ ÅëÇØ Â÷·®ÀÇ ÁÖÇà°Å¸®¸¦ ´Ã¸± ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó Àüü ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Àü±â »ó¿ëÂ÷ ½ÃÀåÀº ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É, Á¤ºÎÀÇ Àμ¾Æ¼ºê, ¹èÅ͸® ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ºü¸£°Ô ¼ºÀåÇÏ°í ÀÖ½À´Ï´Ù. Àü±â »ó¿ëÂ÷ÀÇ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó ȸ»ý Á¦µ¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í ±ÔÁ¦´Â »ó¿ëÂ÷ÀÇ È¸»ý Á¦µ¿ ½Ã½ºÅÛ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡¿Í Áö¿ªÀÌ »ó¿ëÂ÷¿¡ ´ëÇØ ¾ö°ÝÇÑ ¹è±â°¡½º ¹èÃâ ±âÁØÀ» ºÎ°úÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±âÁØÀ» ÁؼöÇϱâ À§Çؼ´Â ¹èÃâ·®À» ÁÙÀÌ°í ¿¬ºñ¸¦ °³¼±Çϱâ À§ÇØ È¸»ý Á¦µ¿ ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ Ã·´Ü ±â¼úÀÇ ÅëÇÕÀÌ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â ģȯ°æ »ó¿ëÂ÷ µµÀÔÀ» Àå·ÁÇϱâ À§ÇØ ÀçÁ¤Àû Àμ¾Æ¼ºê¿Í º¸Á¶±ÝÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àμ¾Æ¼ºê´Â ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÇ Ãʱâ ÅõÀÚ ºñ¿ëÀ» Å©°Ô »ó¼âÇÒ ¼ö ÀÖ½À´Ï´Ù. Â÷·® ¿î¿µÀڴ ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÌ ÀåÂøµÈ Â÷·®¿¡ ÅõÀÚÇÒ °æ¿ì ¼¼Á¦ ÇýÅðú ¸®º£ÀÌÆ®¸¦ ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû Àμ¾Æ¼ºê´Â ÀÌ ±â¼úÀ» ´õ¿í ¸Å·ÂÀûÀÌ°í ÀçÁ¤ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ±â¼ú·Î ¸¸µé ¼ö ÀÖ½À´Ï´Ù.
»ó¿ëÂ÷ ȸ»ýÁ¦µ¿½Ã½ºÅÛ ¼¼°è ½ÃÀå¿¡¼ °¡Àå Å« ¹®Á¦´Â µµÀÔ ºñ¿ë°ú Â÷·® ¿î¿µÀÚÀÇ ÅõÀÚ¸ÅÃâ·ü(ROI)ÀÔ´Ï´Ù. ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀº Àü±â ¸ðÅÍ ¹ßÀü±â, ÀιöÅÍ, Á¦¾î ½Ã½ºÅÛ°ú °°Àº Ư¼ö ºÎÇ°ÀÇ ÅëÇÕÀ» Æ÷ÇÔÇÏ¿© »ó´çÇÑ Ãʱ⠺ñ¿ëÀÌ ¹ß»ýÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº ƯÈ÷ Áß¼Ò±â¾÷À̳ª ¿¹»êÀÌ ºÎÁ·ÇÑ Â÷·® °ü¸®ÀÚ¿¡°Ô´Â Å« À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. »ó¿ëÂ÷¿¡ ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀ» ¼³Ä¡Çϰųª °³Á¶ÇÏ´Â °ÍÀº ƯÈ÷ ´ë±Ô¸ð Â÷·®¿¡´Â Å« ºñ¿ëÀÌ ¼Ò¿äµÉ ¼ö ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ½Ã½ºÅÛ ÄÄÆ÷³ÍÆ®ÀÇ ±¸¸Å»Ó¸¸ ¾Æ´Ï¶ó ¼³Ä¡¿¡ ÇÊ¿äÇÑ ³ëµ¿·Â°ú ´Ù¿îŸÀÓµµ Æ÷ÇԵ˴ϴÙ. Â÷·® ¿î¿µÀÚ´Â ÀϹÝÀûÀ¸·Î ¿¬·á Àý°¨, À¯Áöº¸¼ö ºñ¿ë Àý°¨, Â÷·® ¼ö¸í ¿¬Àå µîÀÇ ¿äÀο¡ µû¶ó ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÇ ROI¸¦ Æò°¡ÇÕ´Ï´Ù. ±×·¯³ª Ãʱâ ÅõÀÚ¸¦ ȸ¼öÇÏ´Â µ¥ °É¸®´Â ½Ã°£Àº Å©°Ô ´Ù¸¦ ¼ö ÀÖÀ¸¸ç, ÀϺΠ¿î¿µÀÚ´Â ¸íÈ®ÇÏ°í ºü¸¥ ROI°¡ ¾ø´Â ÇÑ ÀÌ ±â¼úÀ» »ç¿ëÇÏ´Â °ÍÀ» ÁÖÀúÇÒ ¼ö ÀÖ½À´Ï´Ù. ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀº Àå±âÀûÀ¸·Î À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖÁö¸¸, Àü¹®ÀûÀÎ À¯Áöº¸¼ö ¹× ¼ö¸® ¼ºñ½º°¡ ÇÊ¿äÇÒ ¼ö ÀÖÀ¸¸ç, À̸¦ ½±°Ô ÀÌ¿ëÇÒ ¼ö ¾ø´Â °æ¿ì ºñ¿ëÀÌ ¸¹ÀÌ µé ¼ö ÀÖ½À´Ï´Ù.
ȸ»ý Á¦µ¿ ±â¼úÀÇ º¹À⼺Àº »ó¿ëÂ÷¿¡ Å« µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±âÁ¸ Â÷·® ÄÄÆ÷³ÍÆ® ¹× ½Ã½ºÅÛ°ú ¿øÈ°ÇÏ°Ô ÅëÇյǾî¾ß Çϸç, ÀÌ´Â ±â¼úÀûÀ¸·Î ±î´Ù·Î¿ï ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±âÁ¸ÀÇ ºê·¹ÀÌÅ© ½Ã½ºÅÛ, º¯¼Ó±â ¹× ±âŸ Â÷·® ÄÄÆ÷³ÍÆ®¿Í ÅëÇÕÀûÀ¸·Î ÀÛµ¿ÇØ¾ß Çϱ⠶§¹®¿¡ ±âÁ¸ »ó¿ëÂ÷¿¡ ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ´Â °ÍÀº º¹ÀâÇÒ ¼ö ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ Â÷·® Á¦Á¶¾÷ü ¹× ¸ðµ¨ °£ÀÇ È£È¯¼ºÀ» º¸ÀåÇÏ´Â °ÍÀº ´õ¿í º¹ÀâÇØÁý´Ï´Ù. »ó¾÷¿ë Â÷·®Àº Å©±â, ¹«°Ô, »ç¿ë ¹æ½ÄÀÌ ¸Å¿ì ´Ù¾çÇÕ´Ï´Ù. ´Ù¾çÇÑ Â÷·® ¸ðµ¨ÀÇ Æ¯Á¤ ¿ä±¸ »çÇ׿¡ ¸Â°Ô ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀ» »ç¿ëÀÚ Á¤ÀÇÇÏ´Â °ÍÀº Á¦Á¶¾÷ü¿Í ¼³Ä¡ ¾÷ü¿¡°Ô µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. »ó¾÷¿ë Â÷·®Àº °¡È¤ÇÏ°í °¡È¤ÇÑ ¿îÀü Á¶°ÇÀ» °ßµ®³À´Ï´Ù. ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀº Áö¼ÓÀûÀÎ »ç¿ëÀ» °ßµð°í ¾ÈÀüÀ» À§ÇùÇÏ°í ÀÛ¾÷À» ÁߴܽÃų ¼ö ÀÖ´Â ½Ã½ºÅÛ °íÀåÀ» ¹æÁöÇϱâ À§ÇØ ³ôÀº ½Å·Ú¼º°ú ³»±¸¼ºÀÌ ¿ä±¸µË´Ï´Ù.
»ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ©ÀÇ ÀáÀçÀû ÀÌÁ¡¿¡µµ ºÒ±¸ÇÏ°í, Â÷·® ¿î¿µÀÚ¿Í °ü¸®ÀÚµéÀº ÀÌ ±â¼ú¿¡ ´ëÇÑ Àνİú ÀÌÇØ°¡ ºÎÁ·ÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¸¹Àº Â÷·® ¿î¿µÀÚµéÀº ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÌ ¾î¶»°Ô ÀÛµ¿ÇÏ°í ¾î¶² ÀÌÁ¡À» Á¦°øÇÏ´ÂÁö¿¡ ´ëÇÑ Áö½ÄÀÌ ºÎÁ·ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Áö½Ä °ÝÂ÷´Â ¿îÀüÀÚ°¡ ÃæºÐÈ÷ ÀÌÇØÇÏÁö ¸øÇÏ´Â ±â¼ú¿¡ ÅõÀÚÇÏ´Â °ÍÀ» ²¨·ÁÇÒ ¼ö ÀÖÀ¸¹Ç·Î äÅÃÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü¿Í ¾÷°è ÀÌÇØ °ü°èÀÚ´Â »ó¿ëÂ÷ ¿îÀüÀÚ¿¡°Ô ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÇ °¡Ä¡ Á¦¾ÈÀ» È¿°úÀûÀ¸·Î Àü´ÞÇØ¾ß ÇÏ´Â °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀνÄÀÇ °ÝÂ÷¸¦ ÇؼÒÇϱâ À§Çؼ´Â °·ÂÇÑ ¸¶ÄÉÆà ¹× ±³À° ³ë·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¿îÀüÀÚµéÀº ½Ã½ºÅÛÀÇ ½Å·Ú¼º, À¯Áöº¸¼ö ºñ¿ë ¶Ç´Â ƯÁ¤ Â÷·®°úÀÇ È£È¯¼º¿¡ ´ëÇÑ ¿ì·Á µî ȸ»ýÁ¦µ¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ÀÇظ¦ °¡Áö°í ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ÀÇظ¦ ÇؼÒÇÏ´Â °ÍÀº ±â¼ú¿¡ ´ëÇÑ ½Å·Ú¸¦ ±¸ÃàÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
»ó¿ëÂ÷¿¡¼ ȸ»ýÁ¦µ¿½Ã½ºÅÛÀÇ È¿À²¼ºÀº À̸¦ Áö¿øÇÏ´Â ÀÎÇÁ¶óÀÇ °¡¿ë¼º¿¡ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó °ü·Ã ¹®Á¦·Î´Â ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀ» ÀåÂøÇÑ »ó¿ëÂ÷´Â ¿¡³ÊÁö ÀúÀåÀ» À§ÇÑ ÃæÀü ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¢±ÙÀÌ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ÃæÀü¼Ò°¡ Á¦ÇѵǾî Àְųª Àü·Â¸Á¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ ºÎÁ·ÇÑ Áö¿ª¿¡¼´Â ȸ»ýÁ¦µ¿½Ã½ºÅÛÀÇ ÀÌÁ¡À» ÃæºÐÈ÷ È°¿ëÇÏÁö ¸øÇÒ ¼ö ÀÖ½À´Ï´Ù. ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀº Àü±â ¿¡³ÊÁö¸¦ Â÷·®ÀÇ ¹èÅ͸® ¶Ç´Â Àü±â ÀúÀå Àåºñ·Î µÇµ¹¸³´Ï´Ù. Àü·Â¸ÁÀÌ ºÎÁ·Çϰųª ¿ë·®ÀÌ ÀÛÀº Áö¿ª¿¡¼´Â ¹èÅ͸®¸¦ È¿À²ÀûÀ¸·Î ÃæÀüÇÏ´Â °ÍÀÌ ¹®Á¦°¡ µÉ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ¿îÇà Áß´ÜÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÌ ÀåÂøµÈ »ó¿ëÂ÷´Â Àü¹®ÀûÀÎ À¯Áöº¸¼ö ¹× ¼ö¸® ½Ã¼³ÀÌ ÇÊ¿äÇÒ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ¿Üµý Áö¿ª¿¡¼´Â ¼÷·ÃµÈ ±â¼úÀÚ°¡ ÀÖ´Â ÃæºÐÇÑ ¼ºñ½º ¼¾Å͸¦ È®º¸ÇÏ´Â °ÍÀÌ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù.
±ÔÁ¦ ¹× ±âÁØÀÇ º¹À⼺À» ±Øº¹ÇÏ´Â °Íµµ ¼¼°è »ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ© ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦ÀÔ´Ï´Ù. ±¹°¡¿Í Áö¿ª¿¡ µû¶ó »ó¿ëÂ÷ ¹è±â°¡½º ¹èÃâ ±âÁØÀº ´Ù¾çÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØÀ» ÁؼöÇϱâ À§Çؼ´Â ȸ»ýÁ¦µ¿ ½Ã½ºÅÛÀ» Á¶Á¤ÇØ¾ß Çϸç, ÀÌ´Â ÀáÀçÀûÀ¸·Î °³¹ß ¹× Á¦Á¶ ºñ¿ëÀ» Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù. »ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ©ÀÇ ¾ÈÀü ¹× ÀÎÁõ ±âÁØÀ» ÃæÁ·ÇÏ´Â °ÍÀº º¹ÀâÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¹Àº °æ¿ì ´ë±Ô¸ð Å×½ºÆ®¿Í ¹®¼È°¡ ÇÊ¿äÇÏ¸ç ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ ¼Ò¿äµÉ ¼ö ÀÖ½À´Ï´Ù. ģȯ°æ ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í º¸Á¶±ÝÀº Áö¿ª¸¶´Ù ´Ù¸¦ ¼ö ÀÖ½À´Ï´Ù. ÀÏ°ü¼º ¾ø´Â Àμ¾Æ¼ºê´Â »ó¾÷¿ë Â÷·®¿¡ ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀ» Àû¿ëÇÏ´Â °æÁ¦¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
¼¼°è »ó¿ëÂ÷ ȸ»ýÁ¦µ¿½Ã½ºÅÛ ½ÃÀåÀÇ °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ȯ°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦ ½ÃÇàÀÔ´Ï´Ù. ±âÈÄ º¯È¿Í ´ë±â ÁúÀÌ °¡Àå Áß¿äÇÑ À̽´·Î ¶°¿À¸£¸é¼ ¼¼°è °¢±¹ Á¤ºÎ´Â ¾ö°ÝÇÑ ¹èÃâ°¡½º ±ÔÁ¦¸¦ ½ÃÇàÇÏ°í ÀÖÀ¸¸ç, ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â º¸´Ù ģȯ°æÀûÀÎ ÀÚµ¿Â÷¸¦ °³¹ßÇØ¾ß ÇÕ´Ï´Ù. ȸ»ýÁ¦µ¿½Ã½ºÅÛÀº ½Â¿ëÂ÷ÀÇ ¹è±â°¡½º °¨Ãà°ú ¿¬ºñ Çâ»ó¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº Á¦µ¿½Ã ¿îµ¿¿¡³ÊÁö¸¦ ȸ¼öÇÏ°í ÃàÀûÇÏ¿© Â÷·® µ¿·ÂÀ¸·Î È°¿ëÇÔÀ¸·Î½á ¿À» ¹ß»ý½ÃÅ°°í ¿¡³ÊÁö¸¦ ³¶ºñÇÏ´Â ±âÁ¸ÀÇ ¸¶Âû Á¦µ¿¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¹è±â°¡½º ±ÔÁ¦°¡ °ÈµÊ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ È¸»ý Á¦µ¿ ½Ã½ºÅÛÀ» Á¡Á¡ ´õ ¸¹ÀÌ Ã¤ÅÃÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î À¯·Î Ç¥ÁØÀ¸·Î ¾Ë·ÁÁø À¯·´ ¿¬ÇÕÀÇ ¹è±â °¡½º ±ÔÁ¦´Â ¼ö³â°£ ´Ü°èÀûÀ¸·Î °ÈµÇ¾ú½À´Ï´Ù. ³»°¡ ¸¶Áö¸·À¸·Î Áö½ÄÀ» ¾÷µ¥ÀÌÆ® ÇÑ 2021³â9¿ùÇöÀç ÃֽŠǥÁØ ÀÎ À¯·Î 6d´Â CO2 ¹èÃâ·® °¨¼Ò¸¦ Àǹ«ÈÇÏ°í ȸ»ý Á¦µ¿°ú °°Àº ±â¼úÀ» »ç¿ëÇÏ¿© ÀûÇÕ¼ºÀ» ´Þ¼ºÇϵµ·Ï Àå·ÁÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ¹Ì±¹°ú Áß±¹À» Æ÷ÇÔÇÑ ´Ù¸¥ ¸¹Àº ±¹°¡¿Í Áö¿ª¿¡¼µµ ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¸¦ µµÀÔÇ߰ųª µµÀÔÇÒ °èȹÀÌ¾î¼ ½Â¿ëÂ÷¿¡ ȸ»ý Á¦µ¿ ½Ã½ºÅÛ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.
Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µåÂ÷·ÎÀÇ ÀüȯÀº »ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ© ½ÃÀåÀ» Çü¼ºÇÏ´Â Å« È帧À̱⵵ ÇÕ´Ï´Ù. Àü±â ¹× ÇÏÀ̺긮µå Â÷·®Àº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ Àû°í ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³·±â ¶§¹®¿¡ Å« ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. À̵é Â÷·®Àº ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈÇÏ°í ÁÖÇà°Å¸®¸¦ ´Ã¸®±â À§ÇØ È¸»ý Á¦µ¿ ½Ã½ºÅÛ¿¡ Å©°Ô ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µåÂ÷¿¡¼ ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀº ¿îµ¿ ¿¡³ÊÁö¸¦ Àü±â ¿¡³ÊÁö·Î º¯È¯ÇÏ¿© ³ªÁß¿¡ »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ¹èÅ͸®¿Í ½´ÆÛÄ¿ÆнÃÅÍ¿¡ ÀúÀåÇÕ´Ï´Ù. ÀÌ ¿¡³ÊÁö´Â Â÷·®ÀÇ Àü±â ¸ðÅÍ¿¡ Àü·ÂÀ» °ø±ÞÇÏ¿© ¹èÅ͸®¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ ¼ö¿ä¸¦ ÁÙÀÌ°í Â÷·®ÀÇ ÁÖÇà °Å¸®¸¦ ´Ã¸± ¼ö ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀÌ Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µåÂ÷¸¦ Á¡Á¡ ´õ ¸¹ÀÌ ¼ö¿ëÇÔ¿¡ µû¶ó È¿À²ÀûÀÌ°í Áøº¸µÈ ȸ»ý Á¦µ¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ¸¹Àº ±¹°¡¿¡¼ Á¤ºÎ°¡ Àü±âÀÚµ¿Â÷ µµÀÔÀ» ÃËÁøÇϱâ À§ÇØ Àμ¾Æ¼ºê¿Í º¸Á¶±ÝÀ» Á¦°øÇÏ¿© ȸ»ý Á¦µ¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ³ë¸£¿þÀÌ¿Í ³×´ú¶õµå¿Í °°Àº ±¹°¡´Â Àü±âÀÚµ¿Â÷ ±¸¸ÅÀÚ¿¡°Ô ¼¼Á¦ ÇýÅðú ¸®º£ÀÌÆ®¸¦ Á¦°øÇÏ¿© ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µå Â÷·®ÀÇ ÀÌÁ¡À» ±Ø´ëÈÇϱâ À§ÇØ È¸»ýÁ¦µ¿ ±â¼úÀ» °ÈÇÒ ¼ö ÀÖ´Â Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù.
»ó¿ëÂ÷¿ë ȸ»ý ºê·¹ÀÌÅ© ½ÃÀåÀº ¾÷°èÀÇ Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß ³ë·Â¿¡ ÈûÀÔ¾î ±Þ¼ÓÇÑ ±â¼ú ¹ßÀüÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÇ È¿À²¼º, ¼º´É ¹× ½Å·Ú¼ºÀ» Çâ»ó½ÃÅ°´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ°í ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ µ¿Çâ Áß Çϳª´Â ȸ»ýÁ¦µ¿À» ´Ù¸¥ ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS) ¹× ÀÚÀ²ÁÖÇà ±â¼ú°ú ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ȸ»ýÁ¦µ¿À» ÀûÀÀÇü Å©·çÁî ÄÁÆ®·Ñ, ¿¹Ãø Á¦µ¿, ȸ»ý ÄÚ±ë°ú °°Àº ±â´É°ú ¿øÈ°ÇÏ°Ô °áÇÕÇÔÀ¸·Î½á ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ¿¡³ÊÁö ȸ»ýÀ» °ÈÇÏ°í ¿¬ºñ¸¦ ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕ ½Ã½ºÅÛÀº º¸´Ù ºÎµå·´°í Æí¾ÈÇÑ ¿îÀü °æÇè¿¡µµ ±â¿©ÇÕ´Ï´Ù. ¶ÇÇÑ Àç·á ¹× ¼³°èÀÇ ¹ßÀüÀ¸·Î ´õ ÀÛ°í °¡º¿î ȸ»ýÁ¦µ¿ ºÎÇ°À» °³¹ßÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ´Â Àüü Â÷·®ÀÇ ¹«°Ô¸¦ ÁÙÀÏ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó ¿¡³ÊÁö ȸ¼ö È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ã·´Ü ¼¾¼¿Í Á¦¾î ¾Ë°í¸®ÁòÀÇ »ç¿ëÀº ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÌ ´Ù¾çÇÑ ÁÖÇà Á¶°Ç°ú ÃËÁø¿äÀÎÀÇ Çൿ¿¡ ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ±× È¿°ú¸¦ ´õ¿í Çâ»ó½ÃÅ°°í ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ »ê¾÷ÀÇ °æÀïÀº ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ±â¼ú °ø±Þ¾÷üµéÀÇ ¿¬±¸°³¹ß(R&D)¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ƯÈ÷ ȸ»ý Á¦µ¿ ½Ã½ºÅÛ ºÐ¾ß¿¡¼ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖÀ¸¸ç, °¢ ¾÷üµéÀº Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ» °³¹ßÇÏ¿© °æÀï·ÂÀ» È®º¸Çϱâ À§ÇØ ³ë·ÂÇÏ°í ÀÖ½À´Ï´Ù. ¸¹Àº ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ȸ»ý Á¦µ¿ ±â¼ú °³¹ßÀ» °¡¼ÓÈÇϱâ À§ÇØ ±â¼ú ±â¾÷ ¹× ¿¬±¸ ±â°ü°ú ÆÄÆ®³Ê½ÊÀ» ¸Î°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦ÈÞ´Â ´õ ¸¹Àº ÀÚµ¿Â÷¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Â º¸´Ù È¿À²ÀûÀÌ°í Áö´ÉÀûÀÎ ½Ã½ºÅÛÀ» ¸¸µå´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î µµ¿äŸ´Â ȸ»ýÁ¦µ¿ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ°í ÀÖÀ¸¸ç, ÷´Ü ȸ»ýÁ¦µ¿ ±â¼úÀ» ÅëÇÕÇÑ µµ¿äŸ ÇÏÀ̺긮µå ½Ã½ºÅÛ II(THS II)¸¦ °³¹ßÇß½À´Ï´Ù. ÀüÅëÀûÀÎ ÀÚµ¿Â÷ Á¦Á¶¾÷ü»Ó¸¸ ¾Æ´Ï¶ó, ½Å»ý±â¾÷°ú ÇÏÀÌÅ×Å© ±â¾÷µµ »õ·Î¿î ȸ»ýÁ¦µ¿ ¼Ö·ç¼ÇÀ¸·Î ½ÃÀå¿¡ ÁøÀÔÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Å±Ô ½ÃÀå ÁøÃâ±â¾÷ÀÇ À¯ÀÔÀº °æÀï°ú Çõ½ÅÀ» ÃËÁøÇÏ°í, ±Ã±ØÀûÀ¸·Î ½Ã½ºÅÛ ¼º´É°ú ºñ¿ë È¿À²¼º Çâ»óÀ» ÅëÇØ ¼ÒºñÀÚ¿¡°Ô ÀÌÀÍÀ» °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù.
ȯ°æ ¹®Á¦¿Í ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÇ ÀåÁ¡¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ȸ»ýÁ¦µ¿ ±â¼úÀÌ Àû¿ëµÈ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº Á¡Á¡ ´õ ģȯ°æÀûÀÎ ±³Åë¼ö´ÜÀ» ã°í ÀÖÀ¸¸ç, ȸ»ýÁ¦µ¿Àº ÀÌ·¯ÇÑ ¼±È£¿¡ ºÎÇÕÇÏ´Â Áß¿äÇÑ ±â´ÉÀ¸·Î °£Áֵǰí ÀÖ½À´Ï´Ù. ¸¹Àº ¼ÒºñÀÚµéÀº ȸ»ý ºê·¹ÀÌÅ©°¡ ¿¬·á ¼Òºñ¸¦ ÁÙÀÏ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó Àå±âÀûÀ¸·Î ¿îÀü ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» ¾Ë°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀ» ÀÚµ¿Â÷ÀÇ ÆǸŠÆ÷ÀÎÆ®·Î Àû±ØÀûÀ¸·Î ¸¶ÄÉÆÃÇÏ°í ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ¿¡³ÊÁö Àý¾àÀÇ ÀÌÁ¡À» È«º¸ÇÏ°í ÀÌ ½Ã½ºÅÛÀÌ È¯°æ Ä£ÈÀûÀÌ°í Áö¼Ó°¡´ÉÇÑ ¹Ì·¡¿¡ ¾î¶»°Ô ±â¿©ÇÒ ¼ö ÀÖ´ÂÁö¸¦ °Á¶ÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ¼ÒºñÀÚ ¼ö¿ä°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº º¸´Ù ´Ù¾çÇÑ Â÷Á¾°ú °¡°Ý´ë¿¡¼ ȸ»ý Á¦µ¿ ½Ã½ºÅÛÀÇ °¡¿ë¼ºÀ» È®´ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¹èÃâ°¡½º ¾ø´Â ¼ø¼ö Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î BEV ¼ö¿ä Áõ°¡ ½ÃÀåÀº ÃßÁø·Â¿¡ µû¶ó PHEV, BEV, HEV·Î ³ª´¹´Ï´Ù. ¼¼°è ½ÃÀå¿¡¼ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â °ÍÀº BEV ºÎ¹®ÀÔ´Ï´Ù. ¿ÏÀü Àü±âÀÚµ¿Â÷´Â º¸Á¶±Ý, ±¸¸Å Àå·Á±Ý, ¾ö°ÝÇÑ ¿À¿° ±ÔÁ¦ ½ÃÇàÀ» ÅëÇØ Á¤ºÎÀÇ ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î µ¶ÀÏ, ¿µ±¹, ÇÁ¶û½º¿¡¼ BEV´Â PHEVº¸´Ù ÈξÀ ´õ ¸¹Àº ±¸¸Å Àμ¾Æ¼ºê¸¦ ¹Þ°í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº 2021³â ȸ»ý Á¦µ¿ ½Ã½ºÅÛ¿¡¼ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ Áß¿¡µµ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ±âŸ Áö¿ª¿¡ ºñÇØ °¡Àå ºü¸¥ ¼ºÀå·üÀ» º¸ÀÌ°í ÀÖ½À´Ï´Ù. ¿¹Ãø ±â°£ ÁßÀÌ Áö¿ªÀÇ ¹è±â °¡½º ±ÔÁ¦°¡ Á¡Á¡ ´õ ¾ö°Ý ÇØÁö¸é¼ BEV, PHEV ¹× FCV¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2021³â¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹èÅ͸® ¼ö¿ä Áõ°¡ÀÇ ÁÖ¿ä ¿äÀÎÀº Áß±¹ÀÔ´Ï´Ù. Áß±¹ÀÇ 2021³â Àü±âÀÚµ¿Â÷ ÆǸŷ®Àº ¼¼°è ±âŸ Áö¿ªÀÇ ÆǸŷ®º¸´Ù ¸¹Àº 330¸¸´ë ÀÌ»óÀÔ´Ï´Ù. ½ÃÀå¿¡¼ µÎ ¹ø°·Î Áß¿äÇÑ Áö¿ªÀº ºÏ¹ÌÀÔ´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ÀÚµ¿Â÷ÀÇ ¾ÈÀü ¿îÀü, ½ºÆ®·¹½º °¨¼Ò, È¿À²ÀûÀÎ ¿î¼Û¿¡ ´ëÇÑ »çȸÀû ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Àü±âÀÚµ¿Â÷ ȸ»ýÁ¦µ¿ÀåºñÀÇ º¸±ÞÀÌ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. À¯·´°ú ±âŸ Áö¿ª¿¡¼µµ ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇÏ°í ÀÖ½À´Ï´Ù. À¯·´Àº ¹«°øÇØ Â÷·® »ç¿ëÀ» Á¶±â¿¡ ÇÕ¹ýÈÇÏ´Â µîÀÇ Àü¼úÀ» ÅëÇØ ½ÃÀå ÁöÀ§¸¦ °ÈÇÏ´Â µ¥ ÁÖ·ÂÇÏ°í ÀÖ½À´Ï´Ù. Á¤ºÎ´Â À¶ÀÚ ¹× ÇÁ·Î±×·¥ Á¦°øÀ» ÅëÇØ ÀÚÀ²ÁÖÇàÂ÷ÀÇ ½Ç¿ëȸ¦ ´ã´çÇÏ°í ÀÖ½À´Ï´Ù.
Global Commercial Vehicles Regenerative Braking System Market has valued at USD 2.2 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 6.63% through 2028. A kinetic energy recovery technology called regenerative braking is used mostly on pure electric and hybrid vehicles to recover the energy lost during braking and deceleration and then use it to recharge the battery. In this system, when moving forward or cruising, the engine propels the wheels, and when slowing down, the wheels propel the motor. The engine can function as a generator by opposing the rotation of the wheels and generating power to refuel the vehicle's battery thanks to this two-way energy flow. Nearly 5%-10% of transmitted energy can be recovered by utilizing this type of braking system; the amount of energy recovered varies on the vehicle's speed and braking style. Currently, energy recovery systems are utilized in both passenger and commercial cars to increase fuel efficiency and lower vehicle emissions. As a result, the demand for such a braking system has increased in the worldwide car industry, leading to higher fuel efficiency. The demand from the industry is currently driving up global sales of automobiles, particularly electric vehicles, and their components, which is leading to an increase in pollutant emissions. Additionally, the government is pressuring automakers to use cutting-edge technologies that can lower fuel consumption and exhaust gas emissions. This may encourage the expansion of the global market for regenerative braking systems.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 2.2 Billion |
Market Size 2028F | USD 3.21 Billion |
CAGR 2023-2028 | 6.63% |
Fastest Growing Segment | PHEV |
Largest Market | Asia-Pacific |
One of the primary drivers influencing the Global Commercial Vehicle Regenerative Braking System Market is the increasing stringency of environmental regulations and the growing emphasis on sustainability. Governments and international organizations worldwide are imposing stricter emissions standards and advocating for eco-friendly transportation solutions to combat climate change and reduce pollution levels. Emissions regulations have been progressively tightened across the globe, with a particular focus on reducing carbon dioxide (CO2) and other harmful pollutants. Commercial vehicles, such as trucks and buses, are significant contributors to urban air pollution and greenhouse gas emissions. As a result, governments are imposing stringent emissions standards on these vehicles, driving the adoption of regenerative braking systems. Beyond regulatory compliance, there is a growing awareness and commitment to sustainability within the commercial vehicle industry. Fleet operators, businesses, and governments are increasingly seeking eco-friendly transportation options that reduce their carbon footprint. Regenerative braking systems are seen as a key technology to achieve these sustainability goals by improving fuel efficiency and reducing emissions.
Regenerative braking systems offer substantial cost savings and enhanced fuel efficiency for commercial vehicle operators, making them a compelling driver for adoption. One of the primary advantages of regenerative braking is its ability to recover and reuse kinetic energy during braking, reducing the reliance on traditional friction-based braking, which generates heat and energy wastage. This energy recuperation leads to improved fuel efficiency in commercial vehicles. Lower fuel consumption translates into significant cost savings for commercial fleets. With rising fuel prices and the increasing focus on operational efficiency, fleet operators are actively seeking technologies like regenerative braking systems that can help reduce operating costs over the long term. Regenerative braking systems also contribute to lower maintenance costs. They reduce wear and tear on traditional brake components, such as brake pads and discs, which require frequent replacement. Fewer brake replacements mean reduced maintenance expenses, further enhancing cost savings.
The commercial vehicle regenerative braking system market is experiencing rapid technological advancements, driven by continuous research and development efforts in the industry. These advancements are aimed at improving the efficiency, performance, and reliability of regenerative braking systems. Manufacturers are continually refining the design and materials of regenerative braking components, such as electric motor-generators, inverters, and power electronics. These improvements result in more compact, lightweight, and efficient components that can be seamlessly integrated into commercial vehicles without compromising performance. Advanced sensors and control algorithms play a pivotal role in optimizing regenerative braking. These systems monitor various vehicle parameters, such as speed, load, and driving conditions, to adapt the regenerative braking process in real-time. This adaptability enhances the effectiveness of energy recovery and improves overall system performance. Regenerative braking systems are increasingly integrated with other advanced technologies, such as predictive maintenance systems, telematics, and autonomous driving features. This integration not only enhances energy recuperation but also contributes to a safer and more efficient commercial vehicle ecosystem.
The global shift towards electric and hybrid commercial vehicles is another major driver shaping the commercial vehicle regenerative braking system market. Electric and hybrid commercial vehicles rely heavily on regenerative braking to optimize energy usage and extend their range. Electric and hybrid commercial vehicles produce zero tailpipe emissions, making them an attractive choice for environmentally conscious fleet operators and governments aiming to reduce urban pollution. Regenerative braking is an essential technology that contributes to the efficiency and eco-friendliness of these vehicles. In electric and hybrid commercial vehicles, regenerative braking systems capture kinetic energy during deceleration and braking, converting it into electrical energy to recharge the vehicle's battery. This energy recovery not only extends the vehicle's range but also reduces overall energy consumption. The electric commercial vehicle market is growing rapidly, driven by a combination of environmental concerns, government incentives, and advancements in battery technology. As electric commercial vehicles become more prevalent, the demand for regenerative braking systems is expected to surge.
Government incentives and regulations play a significant role in driving the adoption of regenerative braking systems in commercial vehicles. Many countries and regions are imposing strict emissions standards on commercial vehicles. Compliance with these standards often requires the integration of advanced technologies, including regenerative braking systems, to reduce emissions and improve fuel efficiency. Governments in various parts of the world provide financial incentives and subsidies to encourage the adoption of eco-friendly commercial vehicles. These incentives can significantly offset the initial investment cost of regenerative braking systems. Fleet operators may be eligible for tax benefits and rebates when they invest in vehicles equipped with regenerative braking systems. These financial incentives can make the technology more appealing and financially viable.
The foremost challenge in the Global Commercial Vehicle Regenerative Braking System Market is the cost of implementation and the return on investment (ROI) for fleet operators. Regenerative braking systems involve substantial upfront costs, including the integration of specialized components such as electric motor-generators, inverters, and control systems. These costs can be a significant barrier for fleet managers, especially for smaller businesses or those operating on tight budgets. The installation and retrofitting of regenerative braking systems in commercial vehicles can be expensive, particularly for larger fleets. This includes not only the purchase of the system components but also the labor and downtime required for installation. Fleet operators typically evaluate the ROI of regenerative braking systems based on factors like fuel savings, maintenance cost reduction, and increased vehicle longevity. However, the time it takes to recoup the initial investment can vary widely, and some operators may be hesitant to commit to the technology without a clear and swift ROI. While regenerative braking systems can reduce maintenance costs in the long run, they may require specialized maintenance and repair services, which can be costly if not readily available.
The complexity of regenerative braking technology poses significant challenges for commercial vehicles. These systems must seamlessly integrate with existing vehicle components and systems, which can be technically demanding. Retrofitting regenerative braking systems into existing commercial vehicles can be intricate, as these systems need to work cohesively with traditional braking systems, transmissions, and other vehicle components. Ensuring compatibility across various vehicle makes and models adds another layer of complexity. Commercial vehicles vary widely in terms of size, weight, and usage. Customizing regenerative braking systems to suit the specific requirements of different vehicle types presents challenges for manufacturers and installers. Commercial vehicles endure rigorous and demanding operating conditions. Regenerative braking systems must be highly reliable and durable to withstand constant use and prevent system failures that could jeopardize safety and disrupt operations.
Despite the potential benefits of regenerative braking systems for commercial vehicles, there is often limited awareness and understanding of this technology among fleet operators and managers. Many fleet operators lack knowledge about how regenerative braking systems work and the advantages they offer. This knowledge gap can hinder adoption, as operators may be reluctant to invest in technology they do not fully understand. Manufacturers and industry stakeholders face the challenge of effectively communicating the value proposition of regenerative braking systems to commercial vehicle operators. Robust marketing and educational efforts are necessary to bridge the awareness gap. Operators may have misconceptions about regenerative braking, such as concerns about system reliability, maintenance costs, or compatibility with their specific vehicles. Addressing these misconceptions is essential to building trust in technology.
The effectiveness of regenerative braking systems in commercial vehicles can be influenced by the availability of infrastructure to support them. Challenges related to infrastructure can include commercial vehicles with regenerative braking systems often require access to charging infrastructure for energy storage. In regions with limited charging stations or inadequate access to electrical grids, the benefits of regenerative braking may not be fully realized. Regenerative braking systems return electrical energy to the vehicle's battery or storage unit. In regions with an insufficient electrical grid or low capacity, recharging the battery efficiently may be a challenge, potentially leading to operational disruptions. Commercial vehicles equipped with regenerative braking systems may require specialized maintenance and repair facilities. Ensuring that there are sufficient service centers with trained technicians can be a challenge, especially in remote areas.
Navigating a complex landscape of regulations and standards is another challenge in the Global Commercial Vehicle Regenerative Braking System Market. Different countries and regions have varying emissions standards for commercial vehicles. Compliance with these standards can necessitate adjustments to regenerative braking systems, potentially increasing development and manufacturing costs. Meeting safety and certification standards for regenerative braking systems in commercial vehicles can be intricate. It often involves extensive testing and documentation, which can be time-consuming and costly. Government incentives and subsidies for eco-friendly technologies can vary from one location to another. Inconsistent incentives can impact the economic feasibility of adopting regenerative braking systems in commercial fleets.
One of the most significant trends in the global Commercial Vehicles regenerative braking system market is the growing concern for environmental sustainability and the implementation of strict emission regulations. With climate change and air quality becoming paramount concerns, governments around the world are enacting stringent emissions standards, pushing automakers to develop more eco-friendly vehicles. Regenerative braking systems play a pivotal role in reducing emissions and enhancing fuel efficiency in passenger cars. By recovering and storing kinetic energy during braking and subsequently using it to power the vehicle, these systems reduce the reliance on traditional friction-based braking, which generates heat and wastes energy. As emission standards become more rigorous, automakers are increasingly adopting regenerative braking systems to meet these requirements. For example, the European Union's emission standards, known as Euro standards, have been progressively tightened over the years. Euro 6d, the latest standard as of my last knowledge update in September 2021, mandates lower CO2 emissions and encourages the use of technologies like regenerative braking to achieve compliance. Similarly, many other countries and regions, including the United States and China, have introduced or are planning to introduce stringent emissions regulations, further driving the adoption of regenerative braking systems in passenger cars.
The global shift towards electric and hybrid vehicles is another major trend shaping the Commercial Vehicles regenerative braking system market. Electric and hybrid vehicles have gained significant traction due to their lower environmental impact and reduced reliance on fossil fuels. These vehicles rely heavily on regenerative braking systems to optimize energy usage and extend their range. In electric and hybrid vehicles, regenerative braking systems convert kinetic energy into electrical energy, which is then stored in batteries or supercapacitors for later use. This energy can power the vehicle's electric motor, reducing the overall demand on the battery and extending the vehicle's range. As consumers increasingly embrace electric and hybrid cars, the demand for efficient and advanced regenerative braking systems is expected to soar. Moreover, governments in many countries are offering incentives and subsidies to promote the adoption of electric vehicles, further fueling the demand for regenerative braking systems. For instance, countries like Norway and the Netherlands have introduced tax benefits and rebates for electric vehicle buyers, incentivizing automakers to enhance regenerative braking technology to maximize the benefits of electric and hybrid vehicles.
The Commercial Vehicles regenerative braking system market is experiencing rapid technological advancements, driven by continuous research and development efforts in the industry. These advancements are aimed at improving the efficiency, performance, and reliability of regenerative braking systems. One notable trend is the integration of regenerative braking with other advanced driver assistance systems (ADAS) and autonomous driving technologies. By seamlessly combining regenerative braking with features like adaptive cruise control, predictive braking, and regenerative coasting, automakers can enhance energy recuperation and optimize fuel efficiency. These integrated systems also contribute to a smoother and more comfortable driving experience. Additionally, advancements in materials and design are enabling the development of more compact and lightweight regenerative braking components. This not only reduces the overall weight of the vehicle but also improves the efficiency of energy recovery. Furthermore, the use of advanced sensors and control algorithms allows regenerative braking systems to adapt to different driving conditions and driver behaviors, further enhancing their effectiveness.
The competitive nature of the industry has led to increased investment in research and development (R&D) by automakers and technology suppliers. This trend is particularly evident in the field of regenerative braking systems, as companies seek to gain a competitive edge by developing innovative solutions. Many automakers are establishing partnerships with technology companies and research institutions to accelerate the development of regenerative braking technology. These collaborations aim to create more efficient and intelligent systems that can be applied across a broader range of vehicles. For example, Toyota has been investing heavily in R&D for regenerative braking and has developed its Toyota Hybrid System II (THS II), which incorporates advanced regenerative braking technology. In addition to traditional automakers, startups and tech companies are entering the market with novel regenerative braking solutions. This influx of new players is fostering competition and innovation, ultimately benefiting consumers through improved system performance and cost-effectiveness.
Consumer awareness of environmental issues and the benefits of regenerative braking systems is on the rise. As a result, there is a growing demand among consumers for vehicles equipped with regenerative braking technology. Consumers are increasingly seeking out eco-friendly transportation options, and regenerative braking is seen as a key feature that aligns with these preferences. Many consumers recognize that regenerative braking can not only reduce fuel consumption but also save them money on operating costs over the long term. Furthermore, automakers are actively marketing regenerative braking systems as a selling point for their vehicles. This includes promoting the energy-saving benefits and highlighting how these systems contribute to a greener and more sustainable future. As consumer demand continues to grow, automakers are likely to expand the availability of regenerative braking systems across a wider range of vehicle models and price points.
rising trend for emissions-free pure electric vehicles Driven BEV Demand The market is segmented into PHEV, BEV, and HEV based on propulsion. The largest market share of the global market was held by the BEV segment. Fully electric vehicles are being favored by the government through subsidies, buying incentives, and the enforcement of strict pollution rules. For instance, in Germany, the United Kingdom, and France, BEVs receive much more purchase incentives than PHEVs.
For instance, BEV sales accounted for over 75% of new EV sales in the U.S., up 55% from 2016. Similar to that, BEVs sold more than 2.9 million units in 2021 in China, where they made up about 82% of current EV sales. After BEVs, PEVs are the second fastest-growing market sector. In 2021, PHEV batteries will typically have a 15 kWh capacity. Using Level 1 or Level 2 chargers comfortably results in noticeably shorter charging periods. The demand for solutions will therefore increase as SUVs become more prevalent.
Asia Pacific held the largest market share for regenerative braking systems in 2021 and is predicted to increase during the forecast period. Additionally, compared to other regions, it exhibits the quickest growth rate. Over the projected period, it is anticipated that this region's increasingly strict emission standards would increase demand for BEVs, PHEVs, and FCVs. In 2021, China was mostly responsible for the rise in battery demand in Asia Pacific. China sold more electric vehicles in 2021 than the rest of the world combined, at more than 3.3 million. The market's second most important region is North America. Regenerative braking in electric vehicles is becoming more and more popular in the area as a result of rising public demand for safe vehicle operation, reduced stress, and effective transportation. The market has grown remarkably in both Europe and the rest of the world. Europe is concentrating on strengthening its position in the market using tactics like early legalization of the usage of driverless vehicles. The government is in charge of putting autonomous vehicles into use by offering financing and programs.
In this report, the Global Commercial Vehicles Regenerative Braking System Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: