½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1383910

½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ ±âȸ, ¿¹Ãø : ±¸µ¿ À¯Çüº°, ºÎÇ° À¯Çüº°, Â÷Á¾º°, Áö¿ªº°, °æÀï(2018-2028³â)

Passenger Car Powertrain Systems Market - Global Industry Size, Share, Trends Opportunity, and Forecast, Segmented By Drive Type, By Component Type, By Vehicle Type, By Region, Competition, 2018-2028

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå ±Ô¸ð´Â 2022³â¿¡ 2,983¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ÀÇ CAGRÀº 7.72%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀåÀº ÀÚµ¿Â÷ »ê¾÷ÀÇ Áß¿äÇÑ ÄÄÆ÷³ÍÆ®À̸ç, ½Â¿ëÂ÷ ¿£Áø¿¡¼­ ¹ÙÄû·Î µ¿·ÂÀ» »ý¼ºÇÏ°í Àü´ÞÇÏ´Â º¹ÀâÇÑ ±â¼ú ³×Æ®¿öÅ©¸¦ Æ÷ÇÔÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ÇöÀç ¸ðºô¸®Æ¼ÀÇ ¹Ì·¡¸¦ À籸¼ºÇÏ´Â ´Ù¾çÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ Å« º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇÏ°í ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ ½ÃÀå º¯È­ÀÇ ÁÖ¿ä Ã˸ÅÁ¦ Áß Çϳª´Â ȯ°æÀÇ Áö¼Ó°¡´É¼ºÀ» Ãß±¸ÇÏ´Â ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀÔ´Ï´Ù. ¼¼°è Á¤ºÎ¿Í ±ÔÁ¦±â°üÀº ´ë±â ¿À¿°°ú ½Î¿ì°í ¿Â½Ç °¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇØ Á¡Á¡ ´õ ¾ö°ÝÇÑ ¹èÃâ ±âÁØÀ» ºÎ°úÇÏ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÚµ¿Â÷ ¾÷°è´Â ´õ ±ú²ýÇÏ°í È¿À²ÀûÀÎ ÆÄ¿öÆ®·¹ÀÎ ±â¼ú·Î ºü¸£°Ô ÀüȯÇÏ°í ÀÖ½À´Ï´Ù. Àü±â ¹× ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀº ¹èÃâ·® °¨¼Ò, ¿î¿µ ºñ¿ë Àý°¨ ¹× Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇϱ⠶§¹®¿¡ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2024-2028³â
2022³â ½ÃÀå ±Ô¸ð 2,983¾ï 7,000¸¸ ´Þ·¯
2028³â ½ÃÀå ±Ô¸ð 4,625¾ï ´Þ·¯
CAGR 2023-2028³â 7.72%
±Þ¼ºÀå ºÎ¹® SUV
ÃÖ´ë ½ÃÀå ¾Æ½Ã¾ÆÅÂÆò¾ç

±â¼úÀÇ ¹ßÀüÀº ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛÀÇ Çõ½ÅÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù. ÷´Ü ¼ÒÀç, °æ·®È­ ºÎÇ°, µðÁöÅÐÈ­ÀÇ ÅëÇÕÀ¸·Î Àü¹ÝÀûÀÎ ¼º´É°ú È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Á÷ºÐ»ç, Åͺ¸ °ú±Þ, ¹«´Ü º¯¼Ó±â(CVT) µîÀÇ ±â¼úÀº µ¿·Â °ø±Þ°ú ¿¬·á È¿À²À» ÃÖÀûÈ­ÇÏ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

¾ö°ÝÇØÁø ¹èÃâ°¡½º ±ÔÁ¦

´ë±â¿À¿°°ú ±âÈÄ º¯È­¿¡ ´ëÀÀÇϱâ À§ÇØ °¢±¹ Á¤ºÎ¿Í ±ÔÁ¦±â°üÀº ÀÚµ¿Â÷ ¹è±â°¡½º °¨ÃàÀ» ÃßÁøÇÏ°í ÀÖÀ¸¸ç, ¼¼°è¿¡¼­ ¹è±â°¡½º ±ÔÁ¦°¡ Á¡Á¡ ´õ ¾ö°ÝÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ±â¼ú Çõ½ÅÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ´õ ±ú²ýÇÏ°í È¿À²ÀûÀÎ ±â¼úÀ» °³¹ßÇؾ߸¸ ÇÕ´Ï´Ù. Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀº ¹è±â°¡½º¸¦ Å©°Ô ÁÙÀÌ°í ÀÌ·¯ÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ÃæÁ·½Ãų ¼ö ÀÖ´Â ´É·ÂÀ» °®Ãß°í ÀÖÀ¸¸ç, °¢±¤¹Þ°í ÀÖ½À´Ï´Ù.

È¿À²¼º¿¡ ´ëÇÑ ¼ÒºñÀÚ ¿ä±¸

¼ÒºñÀÚµéÀÌ ÀÚµ¿Â÷¸¦ ±¸¸ÅÇÒ ¶§ ¿¬ºñ È¿À²°ú ȯ°æÀû Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÏ´Â °æÇâÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¿¬·á °¡°Ý »ó½Â°ú ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ¿¬ºñ°¡ ÁÁ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Â ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº È¿À²À» ³ôÀÌ´Â ÆÄ¿öÆ®·¹ÀÎ ±â¼ú¿¡ ÅõÀÚÇÏ¿© ¼ÒºñÀÚÀÇ ±â´ë¿¡ ºÎÀÀÇÏ°í ÀÖ½À´Ï´Ù.

Àü±âÀÚµ¿Â÷ Çõ¸í

Àü±âÀÚµ¿Â÷(EV)ÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀº ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀåÀÇ ¸Å¿ì Áß¿äÇÑ ÃËÁøÁ¦ÀÔ´Ï´Ù. ¹èÅ͸® ±â¼úÀÇ ¹ßÀü°ú ÃæÀü ÀÎÇÁ¶óÀÇ È®ÀåÀ¸·Î EV´Â ¼ÒºñÀڵ鿡°Ô ´õ¿í Ä£¼÷ÇÏ°í ¸Å·ÂÀûÀ¸·Î ´Ù°¡°¥ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿Â÷´Â ¹«°øÇØ ÁÖÇàÀÌ °¡´ÉÇÏ¿© º¸´Ù ģȯ°æÀûÀÎ ¿î¼Û ¼Ö·ç¼ÇÀ» Ãß±¸ÇÏ´Â ¼¼°è Ãß¼¼¿¡ ºÎÇÕÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀÌ·¯ÇÑ Ãß¼¼¿¡ ´ëÀÀÇϱâ À§ÇØ EV ÆÄ¿öÆ®·¹ÀÎ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ°í ÀÖ½À´Ï´Ù.

º¯¼Ó±â ±â¼úÀÇ Áøº¸

º¯¼Ó±â ½Ã½ºÅÛÀº ÀÚµ¿Â÷ÀÇ È¿À²¼º°ú ¼º´É¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. µà¾ó Ŭ·¯Ä¡ º¯¼Ó±â, ¹«´Üº¯¼Ó±â(CVT), ÀÚµ¿ ¼öµ¿º¯¼Ó±â(AMT) µîÀÇ ±â¼ú ¹ßÀüÀº ¿¬ºñ È¿À²À» ³ôÀÌ°í ¿îÀü °æÇèÀ» Çâ»ó½ÃÅ°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ´õ ºÎµå·¯¿î ±â¾î º¯¼Ó°ú ´õ ³ªÀº µ¿·Â Àü´Þ ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ÇÏÀ̺긮µåÈ­

³»¿¬±â°ü ¿£Áø°ú Àü±â ºÎÇ°À» °áÇÕÇÑ ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀº ¿ÏÀü Àü±âÈ­¸¦ ÇâÇÑ °úµµ±âÀû ¼Ö·ç¼ÇÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå Â÷·®Àº ¿¬ºñ Çâ»ó°ú ¹è±â°¡½º ¹èÃâ·® °¨¼ÒÀÇ ÀÌÁ¡À» °¡Áö°í ÀÖÀ¸¸ç, ģȯ°æÀûÀÎ ¼±ÅÃÀ» ¿øÇÏ´Â ¼ÒºñÀڵ鿡°Ô ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÇÏÀ̺긮µå ±â¼úÀ» Æ÷Æ®Æú¸®¿À¿¡ ÅëÇÕÇÏ¿© º¸´Ù È¿À²ÀûÀÎ Â÷·®¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä¸¦ ÃæÁ·½ÃÅ°´Â µ¿½Ã¿¡ ȯ°æ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ÇÏÀ̺긮µå ±â¼úÀ» µµÀÔÇÏ°í ÀÖ½À´Ï´Ù.

±â¼ú ÅëÇÕ

ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ¿¡ ÷´Ü ±â¼úÀÇ ÅëÇÕÀÌ ÃßÁø·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ½ºÅ¸Æ®-½ºÅé ½Ã½ºÅÛ, ȸ»ý Á¦µ¿, ÷´Ü ¿£Áø °ü¸® ½Ã½ºÅÛ µîÀÇ Çõ½ÅÀº Àü¹ÝÀûÀÎ È¿À²¼º°ú ¼º´ÉÀ» Çâ»ó½ÃÅ°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×Àº ÆÄ¿öÆ®·¹ÀÎ ¿îÀüÀ» ´õ¿í ÃÖÀûÈ­Çϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ µµ½ÃÈ­

µµ½ÃÈ­ Ãß¼¼´Â ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ °³¹ß¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. µµ½Ã¿¡ °ÅÁÖÇÏ´Â Àα¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó È¥ÀâÇÑ µµ½Ã ±³ÅëÀ» È¿À²ÀûÀ¸·Î À̵¿ÇÒ ¼ö ÀÖ´Â ÀÛ°í ¹ÎøÇÑ Â÷·®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÆÄ¿öÆ®·¹ÀÎÀº Á¤Áö ¹× À̵¿ ±³Åë ±â´ÉÀ» Áß½ÃÇÏ°í µµ½Ã Åë±ÙÀÚÀÇ °íÀ¯ÇÑ ¿ä±¸¿¡ ¸Â°Ô Á¶Á¤µÇ°í ÀÖ½À´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷ÀÇ µîÀå

ÀÚÀ²ÁÖÇàÂ÷ÀÇ ÃâÇöÀº ÆÄ¿öÆ®·¹ÀÎÀÇ Àü¸ÁÀ» À籸¼ºÇÏ°í ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà Â÷·®Àº ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ°ú ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖ´Â °í±Þ ÆÄ¿öÆ®·¹ÀÎÀÌ ÇÊ¿äÇÕ´Ï´Ù. Â÷·® Á¦¾î¸¦ °­È­ÇÏ°í ÀÚÀ²ÁÖÇà ¸ðµå¿¡ ÀûÀÀÇÏ´Â ÆÄ¿öÆ®·¹ÀÎ ±â¼ú °³¹ßÀº ¾÷°èÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°á·ÐÀûÀ¸·Î ¼¼°è ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀåÀº ¾ö°ÝÇÑ ±ÔÁ¦, È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ» Ãß±¸ÇÏ´Â ¼ÒºñÀÚ ¼±È£µµ, Àü±âÀÚµ¿Â÷ÀÇ ±Þ¼ÓÇÑ È®´ë, º¯¼Ó±â ±â¼ú ¹ßÀü, ÇÏÀ̺긮µåÈ­, ±â¼ú ÅëÇÕ, µµ½ÃÈ­ Ãß¼¼, ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷ÀÇ ºÎ»óÀ¸·Î ÀÎÇØ º¯È­ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ Á¾ÇÕÀûÀ¸·Î ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ¿© º¸´Ù ±ú²ýÇÏ°í È¿À²ÀûÀÌ¸ç ±â¼úÀûÀ¸·Î Áøº¸µÈ ½Â¿ëÂ÷ ½Ã´ë¸¦ ¿­°Ô µÉ °ÍÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå °úÁ¦

±ÔÁ¦ »óȲÀÇ ÁøÈ­

¹èÃâ°¡½º ¹× ¿¬ºñ ±âÁØ °­È­´Â ¼¼°è¿¡¼­ Áö¼ÓÀûÀ¸·Î ¹ßÀüÇÏ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ÀÌ·¯ÇÑ ¾ö°ÝÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛÀ» ¼³°èÇÏ°í »ý»êÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß Çϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ±ÔÁ¦¿¡ ´ëÀÀÇÏ´Â °ÍÀº ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡°Ô Å« µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â Á¾Á¾ »ý»ê ºñ¿ë Áõ°¡·Î À̾îÁ® ¸ÅÃâ·ü¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

³ôÀº °³¹ßºñ¿ë

Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µå ½Ã½ºÅÛ°ú °°Àº Çõ½ÅÀûÀÎ ÆÄ¿öÆ®·¹ÀÎ ±â¼ú °³¹ß¿¡´Â ¸·´ëÇÑ ÀÚ±Ý ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¿©±â¿¡´Â ¿¬±¸, °³¹ß, ±×¸®°í ÀÌ·¯ÇÑ ±â¼úÀ» Áö¿øÇϱâ À§ÇÑ ÀÎÇÁ¶ó ±¸ÃàÀ» À§ÇÑ ÀÚ±ÝÀÌ Æ÷ÇԵ˴ϴÙ. ¿¬±¸°³¹ß ¹× ÀÎÇÁ¶ó ±¸Ãà¿¡ µû¸¥ ¼±Çà ºñ¿ëÀº ƯÈ÷ °æÀïÀÌ Ä¡¿­ÇÑ ½ÃÀå¿¡¼­´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡°Ô Å« À庮ÀÌ µË´Ï´Ù.

¹èÅ͸® ±â¼úÀÇ ÇÑ°è

Àü±âÀÚµ¿Â÷(EV)ÀÇ ÀαⰡ ³ô¾ÆÁö°í ÀÖÁö¸¸, ¹èÅ͸® ±â¼ú¿¡´Â ÇÑ°è°¡ ÀÖ½À´Ï´Ù. ÁÖÇà°Å¸® ºÒ¾È, ±ä ÃæÀü ½Ã°£, ¹èÅ͸® »ý»êÀ¸·Î ÀÎÇÑ È¯°æ ¿µÇâ µî ¿©·¯ °¡Áö ¹®Á¦µéÀÌ EVÀÇ º¸±ÞÀ» °¡·Î¸·°í ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ÀÌ·¯ÇÑ ÇѰ踦 ±Øº¹Çϱâ À§ÇØ ³ë·ÂÇÏ°í ÀÖÁö¸¸, ÁøÀüÀº Á¡ÁøÀûÀ¸·Î ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

¼ÒºñÀÚ ¼ö¿ë¼º

Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ¼ÒºñÀÚ ¼ö¿ëÀº ¿©ÀüÈ÷ °úÁ¦ÀÔ´Ï´Ù. ÃæÀü ÀÎÇÁ¶ó, ÁÖÇà°Å¸®, Àü±âÀÚµ¿Â÷ÀÇ ³ôÀº Ãʱ⠺ñ¿ë µî¿¡ ´ëÇÑ ¿ì·Á´Â ÀáÀçÀû ±¸¸ÅÀÚÀÇ ÀüȯÀ» ÁÖÀúÇÏ°Ô ¸¸µì´Ï´Ù. ¼ÒºñÀÚµéÀÌ ÀÌ·¯ÇÑ »õ·Î¿î ±â¼úÀ» ¹Þ¾ÆµéÀ̵µ·Ï ¼³µæÇϱâ À§Çؼ­´Â Á¾ÇÕÀûÀÎ ±³À° ¹× ¸¶ÄÉÆà ³ë·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù.

°ø±Þ¸ÁÀÇ È¥¶õ

COVID-19 ÆÒµ¥¹Í°ú °°Àº ÃÖ±Ù ¼¼°è »ç°ÇÀº ÀÚµ¿Â÷ °ø±Þ¸ÁÀÇ Ãë¾à¼ºÀ» µå·¯³»°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼¿Í ¹èÅ͸®¸¦ Æ÷ÇÔÇÑ ÇÙ½É ºÎÇ°°ø±Þ Áß´ÜÀº »ý»ê Áö¿¬°ú ºñ¿ë Áõ°¡·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ź·ÂÀûÀÌ°í ´Ù¾çÇÑ °ø±Þ¸ÁÀ» È®º¸ÇÏ´Â °ÍÀº »ê¾÷ÀÇ ¾ÈÁ¤¼ºÀ» À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

±â¼úÀÇ º¹À⼺

ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛÀÌ ±â¼úÀûÀ¸·Î °íµµÈ­µÊ¿¡ µû¶ó À¯Áöº¸¼ö ¹× ¼ö¸®°¡ Á¡Á¡ ´õ º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÑ ½Ã½ºÅÛÀ» ´Ù·ê ¼ö ÀÖ´Â ±â¼úÀÚ¸¦ ¾ç¼ºÇÏ´Â °ÍÀº ƯÈ÷ ¼÷·ÃµÈ ±â¼úÀÚ°¡ ºÎÁ·ÇÑ Áö¿ª¿¡¼­´Â Å« µµÀüÀÔ´Ï´Ù. ÀÌ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀº ÀÚµ¿Â÷ÀÇ Áö¼ÓÀûÀÎ ±â´É°ú °í°´ ¸¸Á·À» º¸ÀåÇϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

ÀÎÇÁ¶ó ±¸Ãà

Àü±âÀÚµ¿Â÷ÀÇ ¼ºÀåÀº ÃæÀü ÀÎÇÁ¶óÀÇ È®Àå¿¡ Å©°Ô ÀÇÁ¸ÇÏ°í ÀÖ½À´Ï´Ù. Æí¸®ÇÏ°í ÀÌ¿ëÇϱ⠽¬¿î ÃæÀü¼Ò ºÎÁ·Àº Àü±âÀÚµ¿Â÷ º¸±Þ¿¡ Å« À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Á¤ºÎ, ÀÚµ¿Â÷ Á¦Á¶¾÷ü ¹× ±âŸ ÀÌÇØ°ü°èÀÚ°¡ Çù·ÂÇÏ¿© Àü±âÀÚµ¿Â÷ º¸±ÞÀ» Áö¿øÇÏ´Â ±¤¹üÀ§ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÃæÀü ³×Æ®¿öÅ© ±¸ÃàÀ» °¡¼ÓÈ­ÇØ¾ß ÇÕ´Ï´Ù.

ȯ°æ¿¡ ´ëÇÑ °ü½É

Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µåÂ÷ÀÇ ÆÄ¿öÆ®·¹ÀÎÀº ±âÁ¸ ³»¿¬±â°üÂ÷º¸´Ù ȯ°æ ģȭÀûÀ̶ó°í ¿©°ÜÁöÁö¸¸, ¿©ÀüÈ÷ ȯ°æ ¹®Á¦°¡ ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ¹èÅ͸® »ý»êÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ, ¼ö¸íÁÖ±â Á¾·á½Ã ¹èÅ͸® Æó±â, ¹èÅ͸® ¿ø·á Á¶´Þ µîÀÌ Æ÷ÇԵǸç, ÀÌ´Â ÀÚ¿ø °ü·Ã ¹®Á¦ ¹× »ýÅ°迡 ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

°á·ÐÀûÀ¸·Î ¼¼°è ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀåÀº ±ÔÁ¦ Áؼö¿Í ³ôÀº °³¹ß ºñ¿ëºÎÅÍ ±â¼úÀû ÇÑ°è¿Í ¼ÒºñÀÚ ¼ö¿ë¼º ¹®Á¦±îÁö º¹ÀâÇÑ µµÀü °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â Á¤ºÎ, ÀÚµ¿Â÷ Á¦Á¶¾÷ü, °ø±Þ¾÷ü ¹× ±âŸ ÀÌÇØ°ü°èÀÚµéÀÌ Çù·ÂÇÏ¿© Çõ½Å, ÀÎÇÁ¶ó ±¸Ãà ¹× ¸ðºô¸®Æ¼ÀÇ ¹Ì·¡¸¦ À§ÇÑ Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ÃßÁøÇØ¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå µ¿Çâ

Àüµ¿È­ Çõ¸í

Àü±â ÆÄ¿öÆ®·¹ÀÎÀº ÀÚµ¿Â÷ »ê¾÷ÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)¿Í Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(PHEV)ÀÇ Ã¤ÅÃÀº ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ Àüµ¿È­ Ç÷§Æû¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϸ鼭 ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¹èÃâ°¡½º °¨Ãà°ú ¿¡³ÊÁö È¿À²À» ³ôÀÌ·Á´Â ¼¼°èÀûÀÎ ¿òÁ÷ÀÓ°ú ¸Â¹°·Á ÀÖ½À´Ï´Ù.

ÇÏÀ̺긮µåÈ­ÀÇ È®»ê

³»¿¬±â°ü°ú Àü±â ºÎÇ°À» °áÇÕÇÑ ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀÇ ÀαⰡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¸¶Àϵå ÇÏÀ̺긮µå, Ç® ÇÏÀ̺긮µå, ½ÉÁö¾î ¸¶Àϵå ÇÏÀ̺긮µå ½Ã½ºÅÛÀº ¿¬ºñ¸¦ °³¼±ÇÏ°í ¹è±â°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇØ ´Ù¾çÇÑ Â÷Á¾¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù.

÷´Ü º¯¼Ó±â ±â¼ú

÷´Ü º¯¼Ó±â ±â¼úÀÇ ¹ßÀüÀº ÀÚµ¿Â÷ÀÇ È¿À²¼º°ú ¼º´ÉÀ» Áö¼ÓÀûÀ¸·Î Çâ»ó½ÃÅ°°í ÀÖ½À´Ï´Ù. µà¾ó Ŭ·¯Ä¡ º¯¼Ó±â(DCT), ¹«´Ü º¯¼Ó±â(CVT), ÀÚµ¿ ¼öµ¿ º¯¼Ó±â(AMT)°¡ º¸ÆíÈ­µÇ¾î º¸´Ù ºÎµå·¯¿î ±â¾î º¯¼Ó°ú µ¿·Â Àü´ÞÀÇ ÃÖÀûÈ­¸¦ ½ÇÇöÇÏ°í ÀÖ½À´Ï´Ù.

°æ·®È­ Àü·«

°æ·®È­´Â ÆÄ¿öÆ®·¹ÀÎ ¼³°è¿¡¼­ Áß¿äÇÑ ÃÊÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº °í°­µµ °­Ã¶, ¾Ë·ç¹Ì´½ ÇÕ±Ý µî °æ·® ¼ÒÀ縦 »ç¿ëÇÏ¿© Â÷·® ¹«°Ô¸¦ ÁÙÀÌ°í ¿¬ºñ¸¦ °³¼±ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÆÄ¿öÆ®·¹ÀÎ ºÎÇ°¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, °æ·®È­ ¼ÒÀç´Â Â÷·® ÀüüÀÇ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î ±¸µ¿ ½Ã½ºÅÛ

ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ¿¡ ¼ÒÇÁÆ®¿þ¾î¿Í ÀüÀÚÀåºñ¸¦ ÅëÇÕÇÏ¿© Â÷·®ÀÇ ¼º´É, ÀÀ´ä¼º, È¿À²¼ºÀ» Çâ»ó½ÃÅ°°í ÀÖ½À´Ï´Ù. °í±Þ ¿£Áø °ü¸® ½Ã½ºÅÛ, ¿¹Ãø ºÐ¼® ¹× ¹«¼± ¾÷µ¥ÀÌÆ®°¡ Ç¥ÁØ ±â´ÉÀÌ µÇ¾î ÆÄ¿öÆ®·¹ÀÎ ¼º´ÉÀ» ½Ç½Ã°£À¸·Î ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¿¡³ÊÁö ¹Ðµµ°¡ ³ôÀº ¹èÅ͸®

¹èÅ͸® ±â¼úÀº ºü¸£°Ô ¹ßÀüÇÏ°í ÀÖÀ¸¸ç, ¿¡³ÊÁö ¹Ðµµ°¡ ³ô°í ºñ¿ë È¿À²ÀûÀÎ ¹èÅ͸® ÆÑÀ» »ý»êÇÏ°í ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ Àü±âÀÚµ¿Â÷´Â 1ȸ ÃæÀüÀ¸·Î ´õ ±ä ÁÖÇà°Å¸®¸¦ ´Þ¼ºÇÒ ¼ö ÀÖÀ¸¸ç, µ¿½Ã¿¡ Àü±âÀÚµ¿Â÷ ¼ÒÀ¯¿¡ µå´Â ÃÑ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¹èÅ͸®´Â ¶ÇÇÑ ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¸¦ ¾à¼ÓÇÕ´Ï´Ù.

V2G(Vehicle-to-Grid) ÅëÇÕ

V2G ±â¼úÀ» ÅëÇØ Àü±âÀÚµ¿Â÷´Â ¿¡³ÊÁö¸¦ ¼ÒºñÇÒ »Ó¸¸ ¾Æ´Ï¶ó À׿© ¿¡³ÊÁö¸¦ Àü·Â¸Á¿¡ ´Ù½Ã °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¾ç¹æÇâ ±â´ÉÀº EV¸¦ À̵¿½Ä ¿¡³ÊÁö ÀúÀå Àåºñ·Î ÀüȯÇÏ¿© Â÷·® ¼ÒÀ¯ÀÚ¿Í Àü·Â¸Á ¸ðµÎ¿¡°Ô ÇýÅÃÀ» °¡Á®´ÙÁÝ´Ï´Ù.

Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Áö¼ÓÀû ³ë·Â

ȯ°æÀÇ Áö¼Ó°¡´É¼ºÀº ÆÄ¿öÆ®·¹ÀÎ °³¹ßÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ºÎÇ° Á¦Á¶ÀÇ Ä£È¯°æ ¼ÒÀçºÎÅÍ »ý»ê °øÁ¤ÀÇ ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿¡ À̸£±â±îÁö ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀÚµ¿Â÷°¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ ³ë·ÂÇÏ°í ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ Ãß¼¼´Â ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀåÀ» Çü¼ºÇÏ°í ÀÖÀ¸¸ç, ¼¼°è ¼ÒºñÀÚµéÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿Í ±â´ë¿¡ ºÎÀÀÇÏ´Â ´õ ±ú²ýÇÏ°í È¿À²ÀûÀÌ¸ç ±â¼úÀûÀ¸·Î Áøº¸µÈ ÀÚµ¿Â÷¸¦ ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù.

ºÎ¹®º° ÀλçÀÌÆ®

±¸µ¿¹æ½Äº°

¼¼°èÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå³» ±¸µ¿¹æ½Äº° ºÎ¹®Àº °¢±â ´Ù¸¥ Ư¡À» °¡Áø ´Ù¾çÇÑ ±¸¼ºÀ» Æ÷ÇÔÇÕ´Ï´Ù. Àü·û±¸µ¿(FWD)Àº ´Ü¼ø¼º, ºñ¿ë È¿À²¼º, °ø°£ È°¿ë¼º µîÀ¸·Î ÀÎÇØ ¿©ÀüÈ÷ ¸¹Àº ½Â¿ëÂ÷¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÈÄ·û±¸µ¿(RWD)Àº ¼º´É¿¡ ÁßÁ¡À» µÐ °í±Þ Â÷·®¿¡ ¼±È£µÇ¸ç, Çڵ鸵ÀÌ Çâ»óµÇ°í ±ÕÇü ÀâÈù ¹«°Ô ¹èºÐÀ» Á¦°øÇÕ´Ï´Ù. ¹Ý¸é Àü·û±¸µ¿(AWD)°ú »ç·û±¸µ¿(4WD) ½Ã½ºÅÛÀº ¾ÇõÈÄ¿Í ¿ÀÇÁ·Îµå µî ´Ù¾çÇÑ ÁÖÇà Á¶°Ç¿¡¼­ °ßÀη°ú ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃÄÑ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. Àü±â ¹× ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀÇ ÀαⰡ ³ô¾ÆÁü¿¡ µû¶ó Â÷·® ¾ÆÅ°ÅØó¿¡ µû¶ó Àü·û±¸µ¿, ÈÄ·û±¸µ¿, »ç·û±¸µ¿ µî ´Ù¾çÇÑ º¯ÇüÀ» µµÀÔÇÏ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ Çõ½ÅÀ» °ÅµìÇÏ°í ´Ù¾çÇÑ ±¸µ¿ ¹æ½ÄÀ» Á¦°øÇÔ¿¡ µû¶ó ¼ÒºñÀÚµéÀº ÀÚ½ÅÀÇ ÃëÇâ, ¿îÀü ¿ä±¸ »çÇ×, ȯ°æ º¸È£¿¡ ¸Â´Â ÆÄ¿öÆ®·¹ÀÎÀ» ¼±ÅÃÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ºÎÇ° À¯Çüº°

¼¼°èÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå¿¡¼­ ºÎÇ° À¯Çü ºÎ¹®Àº ÀÚµ¿Â÷ÀÇ ÆÄ¿ö¿Í ¿îÀü ÆíÀǼº¿¡ ±â¿©ÇÏ´Â Áß¿äÇÑ ¿ä¼ÒµéÀ» Æ÷ÇÔÇÏ°í ÀÖ½À´Ï´Ù. ¿£Áø ¾î¼Àºí¸®´Â ÆÄ¿öÆ®·¹ÀÎÀÇ ÇÙ½ÉÀÌ¸ç ³»¿¬±â°ü, Àü±â ¸ðÅÍ ¶Ç´Â ÇÏÀ̺긮µå ±¸¼ºÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ÀÚµ¿, ¼öµ¿, µà¾ó Ŭ·¯Ä¡, ¹«´Üº¯¼Ó±â(CVT)¿Í °°Àº º¯¼Ó±â´Â ¿£Áø¿¡¼­ ¹ÙÄû·ÎÀÇ µ¿·Â ºÐ¹è¸¦ Á¦¾îÇÕ´Ï´Ù. ¶ÇÇÑ Â÷Ãà, Â÷µ¿ Àåºñ ¹× ±¸µ¿Ãà°ú °°Àº µå¶óÀÌºê ¶óÀÎ ºÎÇ°Àº µ¿·ÂÀ» ¹ÙÄû¿¡ Àü´ÞÇÏ°í ¿øÈ°ÇÏ°í È¿À²ÀûÀÎ ¿òÁ÷ÀÓÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹è±â °¡½º Á¦¾î ±â¼úÀ» Æ÷ÇÔÇÑ ¿¬·á ½Ã½ºÅÛ ¹× ¹è±â ½Ã½ºÅÛÀº Â÷·®ÀÇ ¼º´É, ¿¬ºñ ¹× ¹è±â °¡½º ±ÔÁ¦ Áؼö¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Åͺ¸Â÷Àú¿Í ½´ÆÛÂ÷Àú¿Í °°Àº Çõ½ÅÀûÀÎ ±â¼úÀº ¿£Áø È¿À²°ú Ãâ·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù. Àü±â ¹× ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀÇ ¼ºÀåÀ¸·Î Àü±â Á¦¾î Àåºñ(ECU), ¹èÅ͸® ¹× Àü·Â ºÐ¹è ½Ã½ºÅÛÀÌ Çʼö ºÎÇ°À¸·Î µµÀԵǾî ÃֽŠÀÚµ¿Â÷ÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ ÆÄ¿öÆ®·¹ÀÎ ºÎÇ°ÀÇ »óȲÀÌ ´õ¿í ´Ù¾çÇØÁö°í ÀÖ½À´Ï´Ù.

Â÷Á¾º°

¼¼°èÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå³» Â÷Á¾º° ºÎ¹®Àº ´Ù¾çÇÑ Â÷·® Ä«Å×°í¸®¸¦ Æ÷°ýÇÏ°í ÀÖÀ¸¸ç, °¢ ºÎ¹®Àº ƯÁ¤ ¼ÒºñÀÚ ¼±È£µµ¿Í ½ÃÀå ¼ö¿ä¿¡ ¸ÂÃß¾î Á¶Á¤µË´Ï´Ù. ¼ÒÇüÂ÷¿Í ÃʼÒÇüÂ÷´Â ¿¬ºñ°¡ ÁÁ°í µµ½É¿¡¼­ÀÇ ±âµ¿¼ºÀÌ ¶Ù¾î³ª¸ç, ¼Ò¹è±â·® ¿£Áø°ú Àü±â ÆÄ¿öÆ®·¹ÀÎÀ» žÀçÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¼¼´Ü°ú ÇØÄ¡¹éÀº Æí¾ÈÇÔ°ú ¼º´ÉÀÇ ±ÕÇüÀ» Á¦°øÇÏ°í ´Ù¾çÇÑ °í°´ÀÇ ¿ä±¸¸¦ ÃæÁ·½ÃÅ°±â À§ÇØ ´Ù¾çÇÑ ¿£Áø ¿É¼ÇÀ» °®Ãß°í ÀÖ½À´Ï´Ù. ½ºÆ÷Ã÷Ä« ¹× ÆÛÆ÷¸Õ½º ÀÚµ¿Â÷´Â °íÃâ·Â ¿£Áø¿¡ ÁßÁ¡À» µÎ°í ¿ªµ¿ÀûÀÎ ÁÖÇà °æÇèÀ» À§ÇØ ÈÄ·û±¸µ¿ ¶Ç´Â Àü·û±¸µ¿ ¼³Á¤À» Ư¡À¸·Î ÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç, SUV ¹× Å©·Î½º¿À¹ö ºÐ¾ß´Â ³ÐÀº ½Ç³» °ø°£, ³ôÀº ¿îÀü À§Ä¡, ¹ü¿ë¼º¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä¿¡ µû¶ó ±âÁ¸ ³»¿¬±â°üºÎÅÍ ÇÏÀ̺긮µå, Àü±âÀÚµ¿Â÷ µî ´Ù¾çÇÑ ÆÄ¿öÆ®·¹ÀÎÀ» žÀçÇÏ¸ç °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀåÀ» º¸ÀÌ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î °í±ÞÂ÷ ¹× ÇÁ¸®¹Ì¾ö ÀÚµ¿Â÷ ºÎ¹®Àº °í¼º´É ¿£Áø°ú ÷´Ü ÆÄ¿öÆ®·¹ÀÎ ±â¼úÀÇ Á¶ÇÕÀ» ÅëÇØ ÆÄ¿ö¿Í Á¤±³ÇÔÀ» Áß½ÃÇÏ´Â ¾È¸ñ ³ôÀº °í°´ÀÇ ±â´ë¿¡ ºÎÀÀÇÏ´Â °í±ÞÂ÷ ½ÃÀåÀ» Çü¼ºÇÏ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ ¹ßÀüÇÔ¿¡ µû¶ó °¢ Â÷Á¾º° ºÎ¹®Àº Áö¼ÓÀûÀ¸·Î È®´ëµÇ°í ÀÖÀ¸¸ç, ¼¼°è ¼ÒºñÀÚµéÀÇ ´Ù¾çÇÑ ¼ö¿ä¸¦ ÃæÁ·½ÃÅ°±â À§ÇØ ´Ù¾çÇÑ ÆÄ¿öÆ®·¹ÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

Áö¿ªº° ÀλçÀÌÆ®

ºÏ¹Ì ½ÃÀå Ư¡Àº SUV¿Í ÇȾ÷Æ®·°¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼­ °­·ÂÇÑ ³»¿¬±â°ü ¿£Áø°ú ÷´Ü º¯¼Ó±â¸¦ žÀçÇÏ´Â °æ¿ì°¡ ¸¹´Ù´Â Á¡ÀÔ´Ï´Ù. ±×·¯³ª ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¿Í ȯ°æ¿¡ ´ëÇÑ ÀνĿ¡ ÈûÀÔ¾î ÇÏÀ̺긮µå¿Í Àü±âÀÚµ¿Â÷ÀÇ Á¸Àç°¨ÀÌ °­ÇØÁö¸é¼­ Àüµ¿È­°¡ Å©°Ô ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹Àº ÆÄ¿öÆ®·¹ÀÎ Çõ½ÅÀÇ ÁÖ¿ä °ÅÁ¡À̸ç, ¿©·¯ ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ Àü±âÀÚµ¿Â÷ »ý»ê ¼³ºñ¿¡ ÅõÀÚÇÏ°í ÀÖ½À´Ï´Ù.

À¯·´Àº ¿¬ºñ È¿À²°ú ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¼ÒÇü Åͺ¸Â÷Àú ¿£Áø°ú °°Àº µðÁ© ¹× °¡¼Ö¸° ¿£ÁøÀÇ ¹ßÀüÀ» ¼±µµÇØ ¿Ô½À´Ï´Ù. À¯·´ Á¤ºÎµµ Àμ¾Æ¼ºê¿Í ¾ö°ÝÇÑ ¹èÃâ·® ¸ñÇ¥¸¦ ÅëÇØ Àü±â ¸ðºô¸®Æ¼¸¦ Àû±ØÀûÀ¸·Î Àå·ÁÇÏ°í ÀÖ½À´Ï´Ù. °­·ÂÇÑ ¿£Áø°ú ÷´Ü µå¶óÀ̺ê Æ®·¹ÀÎÀ» °®Ãá °í±Þ ¹× °í¼º´É ÀÚµ¿Â÷ ºÎ¹®Àº °è¼ÓÇؼ­ ¹øâÇÏ°í ÀÖ½À´Ï´Ù.

Áß±¹À» Áß½ÉÀ¸·Î ÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è ÀÚµ¿Â÷ »ý»ê°ú ¼ÒºñÀÇ Áß½ÉÁö´Ù. µµ½ÃÈ­¿Í ¿¬ºñ¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ¼Ò¹è±â·® ¿£ÁøÀÌ ÀåÂøµÈ ¼ÒÇüÂ÷ ¹× ÃʼÒÇü ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. Áß±¹Àº Àü±âÀÚµ¿Â÷ ½ÃÀåÀÇ ÁÖ¿ä ÁøÃâ±¹À̸ç, ¼¼°è Àü±âÀÚµ¿Â÷ º¸±Þ¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀÇ Çõ½ÅÀ¸·Î À¯¸íÇϸç, ´Ù¾çÇÑ ¼ÒºñÀÚ ´ÏÁ ÃæÁ·½ÃÅ°°í ÀÖ½À´Ï´Ù.

¶óƾ¾Æ¸Þ¸®Ä«´Â ÀÛ°í È¿À²ÀûÀÎ ¿£ÁøÀ» žÀçÇÑ ¼ÒÇüÂ÷ ¹× ¼ÒÇüÂ÷ÀÇ Á¸Àç°¨ÀÌ °­ÇÕ´Ï´Ù. ÀÌ ½ÃÀåÀº ³·Àº Ãʱ⠺ñ¿ëÀ¸·Î ÀÎÇØ ³»¿¬±â°ü¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ôÁö¸¸, ÇÏÀ̺긮µå ¹× Àü±âÀÚµ¿Â÷µµ Á¡Â÷ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â °æÁ¦¼º°ú ¿¬ºñ°¡ ¿©ÀüÈ÷ Áß¿äÇÑ ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù.

Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡¼­´Â SUV, Æ®·° µî ÇèÇÑ ÁöÇü¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÈ °­·ÂÇÑ ¿£ÁøÀÌ ÀåÂøµÈ ´ëÇü Â÷·®ÀÌ ÁÖ·Î ¼±È£µË´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µå ÆÄ¿öÆ®·¹ÀÎÀÇ Ã¤ÅÃÀÌ »ó´ëÀûÀ¸·Î ´Ê¾ú´Âµ¥, ÀÌ´Â ÁÖ·Î ÀÎÇÁ¶óÀÇ Á¦¾à°ú ¼ÒÇü ¹× Àú¿¬ºñ Â÷·®¿¡ ´ëÇÑ ³·Àº ¼ö¿ä·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù.

Àεµ, µ¿³²¾Æ½Ã¾Æ µî ½ÅÈï ½ÃÀå¿¡¼­´Â ±Þ¼ÓÇÑ µµ½ÃÈ­¿Í Áß»êÃþ Áõ°¡°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¼ÒÇüÂ÷ ¹× ºñ¿ë È¿À²ÀûÀÎ ÆÄ¿öÆ®·¹Àο¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå¿Í Àü±âÀÚµ¿Â÷´Â Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É¿¡ ÈûÀÔ¾î ÀÌµé ½ÃÀå¿¡¼­ Á¡Â÷ È®»êµÇ°í ÀÖ½À´Ï´Ù.

Á¾ÇÕÇÏ¸é ¼¼°è ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀåÀº ¼ÒºñÀÚ ¼±È£µµ, Á¤ºÎ Á¤Ã¥ ¹× °æÁ¦Àû ¿äÀÎÀÇ ¿µÇâÀ» ¹Þ¾Æ Áö¿ªº°·Î Â÷À̸¦ º¸ÀÌ°í ÀÖ½À´Ï´Ù. ¸¹Àº Áö¿ª¿¡¼­ ³»¿¬±â°ü ¿£ÁøÀÌ ¿©ÀüÈ÷ ÁÖ·ù¸¦ ÀÌ·ç°í ÀÖÁö¸¸, Àü±âÈ­ ¹× ÷´Ü ÆÄ¿öÆ®·¹ÀÎ ±â¼ú·ÎÀÇ ÀüȯÀº ¼¼°è¿¡¼­ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖÀ¸¸ç, °¢ Áö¿ª¸¶´Ù °íÀ¯ÇÑ µµÀü°ú ±âȸ¿¡ ÀûÀÀÇÏ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼¼°èÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå¿¡¼­ COVID-19ÀÇ ¿µÇâ

Á¦5Àå ¼¼°èÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • ±¸µ¿ À¯Çüº°(Àü·û±¸µ¿, ÈÄ·û±¸µ¿, ÃÑ·û±¸µ¿)
    • ºÎÇ° À¯Çüº°(¿£Áø, º¯¼Ó±â, µðÆÛ·»¼È, µå¶óÀ̺ê»þÇÁÆ®)
    • Â÷Á¾º°(SUV, ¼¼´Ü, ÇØÄ¡¹é, MUV)
    • Áö¿ªº°
    • ±â¾÷º°(»óÀ§ 5»ç, ±âŸ - ±Ý¾× ±â¹Ý, 2022³â)
  • ¼¼°èÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå ¸ÅÇΰú ±âȸ Æò°¡
    • ±¸µ¿ À¯Çüº°
    • ºÎÇ° À¯Çüº°
    • Â÷Á¾º°
    • Áö¿ªº°

Á¦6Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • ±¸µ¿ À¯Çüº°
    • ºÎÇ° À¯Çüº°
    • Â÷Á¾º°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Àεµ³×½Ã¾Æ
    • ű¹
    • Çѱ¹
    • È£ÁÖ

Á¦7Àå À¯·´¡¤CIS ±¹°¡ÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • ±¸µ¿ À¯Çüº°
    • ºÎÇ° À¯Çüº°
    • Â÷Á¾º°
    • ±¹°¡º°
  • À¯·´¡¤CIS ±¹°¡ : ±¹°¡º° ºÐ¼®
    • µ¶ÀÏ
    • ½ºÆäÀÎ
    • ÇÁ¶û½º
    • ·¯½Ã¾Æ
    • ÀÌÅ»¸®¾Æ
    • ¿µ±¹
    • º§±â¿¡

Á¦8Àå ºÏ¹ÌÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • ±¸µ¿ À¯Çüº°
    • ºÎÇ° À¯Çüº°
    • Â÷Á¾º°
    • ±¹°¡º°
  • ºÏ¹Ì : ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ¸ß½ÃÄÚ
    • ij³ª´Ù

Á¦9Àå ³²¹ÌÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ¼ö·®¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • ±¸µ¿ À¯Çüº°
    • ºÎÇ° À¯Çüº°
    • Â÷Á¾º°
    • ±¹°¡º°
  • ³²¹Ì : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ÄÝ·Òºñ¾Æ
    • ¾Æ¸£ÇîƼ³ª

Á¦10Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½Â¿ëÂ÷¿ë ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¡¤¿¹Ãø
    • ´ë¼ö¡¤±Ý¾×º°
  • ½ÃÀå Á¡À¯À²¡¤¿¹Ãø
    • ±¸µ¿ À¯Çüº°
    • ºÎÇ° À¯Çüº°
    • Â÷Á¾º°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º° ºÐ¼®
    • ÅÍÅ°
    • À̶õ
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®

Á¦11Àå SWOT ºÐ¼®

  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦12Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ÃËÁø¿äÀÎ
  • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦

Á¦13Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

Á¦14Àå °æÀï ±¸µµ

  • Toyota Motor Corporation
  • Hyundai Motor Company
  • JTEKT Corporation
  • ZF Friedrichshafen AG
  • Volkswagen AG
  • Ford Motor Company
  • General Motors Company
  • GKN plc
  • Borgwarner Inc.
  • Aisin Seiki Co. Ltd.

Á¦15Àå Àü·«Àû Á¦¾È

  • ÁßÁ¡ Áö¿ª
    • ´ë»ó Áö¿ª
    • ´ë»ó ºÎÇ° À¯Çü
    • ´ë»ó Â÷Á¾

Á¦16Àå Á¶»çȸ»ç¡¤¸éÃ¥»çÇ×

KSA 23.11.30

The Global Passenger Car Powertrain Systems Market size reached USD 298.37 billion in 2022 and is expected to grow with a CAGR of 7.72% in the forecast period.

The Global Passenger Car Powertrain Systems Market is a vital component of the automotive industry, encompassing the intricate network of technologies responsible for generating and transmitting power from the engine to the wheels in passenger vehicles. This market is currently undergoing a significant transformation driven by various factors that are reshaping the future of mobility.

One of the primary catalysts for change in this market is the global push for environmental sustainability. Governments and regulatory bodies worldwide are imposing increasingly stringent emissions standards to combat air pollution and reduce greenhouse gas emissions. Consequently, the automotive industry is witnessing a rapid shift towards cleaner and more efficient powertrain technologies. Electric and hybrid powertrains are gaining prominence due to their reduced emissions, lower operational costs, and alignment with sustainability goals.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 298.37 Billion
Market Size 2028FUSD 462.50 Billion
CAGR 2023-20287.72%
Fastest Growing SegmentSUV
Largest MarketAsia-Pacific

Technological advancements are also driving innovations in powertrain systems. The integration of advanced materials, lightweight components, and digitalization is enhancing overall performance and efficiency. Technologies such as direct injection, turbocharging, and continuously variable transmissions (CVTs) are optimizing power delivery and fuel efficiency.

Furthermore, the dynamics of this market are influenced by changing consumer preferences and the evolving landscape of mobility. With urbanization on the rise, there is an increasing demand for compact and agile passenger cars that excel in stop-and-go city traffic. Additionally, the growth of ride-sharing, autonomous vehicles, and connectivity is prompting the development of powertrain systems that can seamlessly adapt to these emerging mobility trends.

In conclusion, the Global Passenger Car Powertrain Systems Market is undergoing a profound transformation marked by a focus on reducing environmental impact, enhancing efficiency, and aligning with evolving mobility trends. The industry's response to stricter emissions regulations and consumer demands for cleaner, more advanced vehicles is driving innovation and reshaping the way passenger cars.

Key Market Drivers

Stringent Emissions Regulations

Emissions standards have become increasingly stringent globally, with governments and regulatory bodies pushing for lower vehicle emissions to combat air pollution and climate change. These regulations are a primary driver of innovation in powertrain systems, compelling automakers to develop cleaner and more efficient technologies. Electric and hybrid powertrains have gained prominence due to their ability to reduce emissions significantly and comply with these strict standards.

Consumer Demand for Efficiency

Consumers are increasingly prioritizing fuel efficiency and environmental sustainability when purchasing vehicles. Rising fuel prices, coupled with a growing awareness of environmental issues, have led to a strong demand for cars that offer better mileage and reduced operational costs. Automakers are responding by investing in powertrain technologies that enhance efficiency, meeting consumer expectations.

Electric Vehicle Revolution

The rapid growth of electric vehicles (EVs) is a pivotal driver in the powertrain systems market. Advances in battery technology, coupled with expanding charging infrastructure, have made EVs more accessible and appealing to consumers. These vehicles offer zero-emission driving, aligning with the global push for greener transportation solutions. Automakers are heavily investing in EV powertrain development to capitalize on this trend.

Transmission Technology Advancements

Transmission systems play a crucial role in vehicle efficiency and performance. Technological advancements, including dual-clutch transmissions, continuously variable transmissions (CVTs), and automated manual transmissions (AMTs), have improved the driving experience while enhancing fuel efficiency. These innovations enable smoother gear changes and better optimization of power delivery.

Hybridization

Hybrid powertrains, which combine internal combustion engines with electric components, are gaining traction as a transitional solution toward full electrification. Hybrids offer the benefits of improved fuel efficiency and reduced emissions, making them an attractive option for consumers seeking greener alternatives. Automakers are incorporating hybrid technology into their portfolios to meet environmental targets while satisfying consumer demand for more efficient vehicles.

Technological Integration

The integration of advanced technologies into powertrain systems is a driving force. Innovations such as start-stop systems, regenerative braking, and advanced engine management systems are enhancing overall efficiency and performance. Additionally, artificial intelligence (AI) and machine learning are being employed to optimize powertrain operation further.

Global Urbanization

The trend of urbanization is influencing powertrain system development. With a growing number of people residing in cities, there is an increasing demand for compact and agile vehicles that can navigate congested urban traffic efficiently. Powertrains are being tailored to meet the specific needs of urban commuters, emphasizing stop-and-go traffic capabilities.

Rise of Autonomous Vehicles

The emergence of autonomous vehicles is reshaping the powertrain landscape. Self-driving cars require advanced powertrains that can seamlessly integrate with autonomous systems. The development of powertrain technologies that enhance vehicle control and adapt to autonomous driving modes is a significant driver in the industry.

In conclusion, the Global Passenger Car Powertrain Systems Market is undergoing a transformation driven by stringent regulations, consumer preferences for efficiency and sustainability, the rapid expansion of electric vehicles, transmission technology advancements, hybridization, technological integration, urbanization trends, and the rise of autonomous vehicles. These factors collectively shape the future of powertrain systems, ushering in an era of cleaner, more efficient, and technologically advanced passenger vehicles.

Key Market Challenges

Evolving Regulatory Landscape

Stricter emissions and fuel efficiency standards are continually evolving on a global scale. Compliance with these regulations poses a substantial challenge for automakers, as they must invest heavily in research and development to design and produce powertrain systems that meet these stringent requirements. This often leads to increased production costs, which can impact profit margins.

High Development Costs

The development of innovative powertrain technologies, such as electric and hybrid systems, demands substantial financial investments. This includes funding for research, development, and the creation of infrastructure to support these technologies. The upfront costs associated with R&D and infrastructure development are significant barriers for automakers, particularly in a highly competitive market.

Battery Technology Limitations

While electric vehicles (EVs) are gaining popularity, they are still limited by the current state of battery technology. Challenges such as range anxiety, long charging times, and the environmental impact of battery production continue to hamper broader EV adoption. Researchers are working to overcome these limitations, but progress is incremental.

Consumer Acceptance

Despite growing interest in electric vehicles, consumer acceptance remains a challenge. Concerns about the availability of charging infrastructure, vehicle range, and the higher upfront costs of EVs can deter potential buyers from making the transition. Convincing consumers to embrace these new technologies requires comprehensive education and marketing efforts.

Supply Chain Disruptions

Recent global events, such as the COVID-19 pandemic, have exposed vulnerabilities in the automotive supply chain. Disruptions in the supply of critical components, including semiconductors and batteries, can lead to production delays and increased costs. Ensuring a resilient and diverse supply chain is essential for the industry's stability.

Technological Complexity

As powertrain systems become more technologically advanced, the complexity of maintenance and repair also increases. Training technicians to work on these intricate systems is a significant challenge, particularly in regions where there is a shortage of skilled personnel. Addressing this challenge is crucial to ensure the continued functionality of vehicles and customer satisfaction.

Infrastructure Development

The growth of electric vehicles heavily relies on the expansion of charging infrastructure. The lack of convenient and accessible charging stations can be a significant barrier to EV adoption. Governments, automakers, and other stakeholders must collaborate to accelerate the development of an extensive and reliable charging network to support the increasing number of EVs on the road.

Environmental Concerns

While electric and hybrid powertrains are considered more environmentally friendly than traditional internal combustion engines, there are still environmental concerns. These include the environmental impact of battery production, the disposal of batteries at the end of their life cycle, and the sourcing of raw materials for batteries, which can lead to resource-related challenges and ecological consequences.

In conclusion, the Global Passenger Car Powertrain Systems Market faces a complex array of challenges, from regulatory compliance and high development costs to technological limitations and consumer acceptance hurdles. Addressing these challenges requires a coordinated effort involving governments, automakers, suppliers, and other stakeholders to drive innovation, infrastructure development, and sustainable solutions for the future of mobility.

Key Market Trends

Electrification Revolution

Electric powertrains are at the forefront of the automotive industry. The adoption of battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) is growing rapidly as automakers invest heavily in electrified platforms. This trend aligns with the global push for reduced emissions and increased energy efficiency.

Hybridization Proliferation

Hybrid powertrains, which combine internal combustion engines with electric components, are gaining popularity. Mild hybrids, full hybrids, and even mild-hybrid systems are being integrated into various vehicle models to enhance fuel efficiency and reduce emissions.

Advanced Transmission Technologies

The development of advanced transmission technologies continues to improve the efficiency and performance of vehicles. Dual-clutch transmissions (DCTs), continuously variable transmissions (CVTs), and automated manual transmissions (AMTs) are becoming increasingly common, offering smoother gear shifts and optimizing power delivery.

Lightweighting Strategies

Weight reduction is a key focus in powertrain design. Automakers are using lightweight materials, such as high-strength steel and aluminum alloys, to reduce vehicle weight and improve fuel efficiency. This trend also extends to powertrain components, where lightweight materials enhance overall vehicle performance.

Software-Driven Systems

The integration of software and electronics into powertrain systems is enhancing vehicle performance, responsiveness, and efficiency. Advanced engine management systems, predictive analytics, and over-the-air updates are becoming standard features, enabling real-time optimization of powertrain performance.

Energy-Dense Batteries

Battery technology is advancing rapidly, resulting in more energy-dense and cost-effective battery packs. This enables electric vehicles to achieve longer ranges on a single charge while reducing the overall cost of EV ownership. Solid-state batteries are also on the horizon, promising even higher energy densities.

Vehicle-to-Grid (V2G) Integration

V2G technology allows electric vehicles to not only consume energy but also feed excess energy back into the grid. This bidirectional capability is transforming EVs into mobile energy storage units, offering benefits for both vehicle owners and the grid.

Continued Focus on Sustainability

Environmental sustainability remains a driving force in powertrain development. From eco-friendly materials in component manufacturing to reducing the carbon footprint of production processes, automakers are committed to reducing the environmental impact of their vehicles.

These trends collectively shape the passenger car powertrain systems market, leading to cleaner, more efficient, and technologically advanced vehicles that meet the evolving needs and expectations of consumers worldwide.

Segmental Insights

By Drive Type

The Drive Type segment in the Global Passenger Car Powertrain Systems Market encompasses various configurations, each with distinct characteristics. Front-wheel drive (FWD) remains the dominant choice for many passenger cars due to its simplicity, cost-effectiveness, and efficient use of space. Rear-wheel drive (RWD) is favored in performance-oriented and luxury vehicles, offering improved handling and balanced weight distribution. Meanwhile, all-wheel drive (AWD) and four-wheel drive (4WD) systems are gaining traction, providing enhanced traction and stability in various driving conditions, including adverse weather and off-road terrain. The growing popularity of electric and hybrid powertrains introduces front-wheel, rear-wheel, and all-wheel drive variations, depending on the vehicle's architecture. As automakers continue to innovate, offering a diverse range of drive type options, consumers can choose powertrains that align with their preferences, driving needs, and environmental considerations.

By Component Type

The Component Type segment within the Global Passenger Car Powertrain Systems Market encompasses a range of crucial elements that collectively contribute to a vehicle's power and drivability. The engine assembly is the heart of the powertrain, featuring internal combustion engines, electric motors, or hybrid configurations. Transmissions, including automatic, manual, dual-clutch, and continuously variable transmissions (CVTs), control the power distribution from the engine to the wheels. Additionally, driveline components such as axles, differentials, and drive shafts play a pivotal role in transmitting power to the wheels and ensuring smooth, efficient motion. Fuel systems and exhaust systems, including emissions control technologies, influence the vehicle's performance, fuel efficiency, and compliance with emissions regulations. Innovative technologies like turbochargers and superchargers enhance engine efficiency and power output. The growth of electric and hybrid powertrains introduces electric control units (ECUs), batteries, and electric power distribution systems as essential components, further diversifying the landscape of powertrain components to meet the evolving needs of modern vehicles.

By Vehicle Type

The Vehicle Type segment within the Global Passenger Car Powertrain Systems Market encompasses a wide array of vehicle categories, each tailored to specific consumer preferences and market demands. Compact cars and subcompact cars are known for their fuel efficiency and urban maneuverability, often featuring smaller-displacement engines or electric powertrains. Sedans and hatchbacks offer a balance of comfort and performance, with various engine options to cater to diverse customer needs. Sports cars and performance vehicles focus on high-powered engines, often featuring rear-wheel or all-wheel drive configurations for dynamic driving experiences. The SUV and crossover segment has witnessed remarkable growth, driven by consumer demand for spacious interiors, elevated driving positions, and versatility, with powertrains ranging from traditional internal combustion engines to hybrid and electric options. Finally, the luxury and premium vehicle segment places a strong emphasis on both power and refinement, offering a combination of high-performance engines and advanced powertrain technologies to meet the expectations of discerning customers. As the automotive industry evolves, the Vehicle Type segment continues to expand, accommodating a broad spectrum of powertrain solutions to meet the diverse demands of global consumers.

Regional Insights

The North American market is characterized by a growing preference for SUVs and pickup trucks, which often feature powerful internal combustion engines and advanced transmissions. However, there's a significant push toward electrification, with a strong presence of hybrid and electric vehicles, driven by stringent emissions regulations and environmental consciousness. The U.S. is a major hub for powertrain innovation, with several automakers investing in electric vehicle production facilities.

Europe places a strong emphasis on fuel efficiency and reducing carbon emissions. This region has been at the forefront of diesel and gasoline engine advancements, including downsized turbocharged engines. European governments are also actively promoting electric mobility through incentives and stringent emissions targets. The luxury and performance car segment, with powerful engines and advanced drivetrains, continues to thrive.

The Asia-Pacific region, led by China, is a global powerhouse for automotive production and consumption. There's a growing demand for compact and subcompact cars powered by small-displacement engines due to urbanization and fuel efficiency concerns. China is a major player in the electric vehicle market, contributing to the global adoption of EVs. Additionally, the Asia-Pacific region is known for its innovation in hybrid powertrains, catering to diverse consumer needs.

Latin America has a strong presence of compact and subcompact vehicles, often equipped with small, efficient engines. The market leans heavily towards internal combustion engines due to lower initial costs, while hybrid and electric vehicles are gradually gaining popularity. Economic factors and fuel efficiency remain significant drivers in this region.

The Middle East and Africa predominantly favor larger vehicles, such as SUVs and trucks, equipped with powerful engines designed to handle harsh terrains. The region has been relatively slower in adopting electric and hybrid powertrains, primarily due to infrastructure limitations and lower demand for small, fuel-efficient cars.

Emerging markets, including India and Southeast Asia, are experiencing rapid urbanization and a growing middle class. This has led to increased demand for compact cars and cost-effective powertrains. Hybrid and electric vehicles are gradually gaining traction in these markets, driven by government incentives and environmental concerns.

In summary, the global passenger car powertrain systems market exhibits regional variations influenced by consumer preferences, government policies, and economic factors. While internal combustion engines still dominate in many regions, the shift toward electrification and advanced powertrain technologies is evident worldwide, with each region adapting to its unique set of challenges and opportunities.

Key Market Players

  • Toyota Motor Corporation
  • Hyundai Motor Company
  • JTEKT Corporation
  • ZF Friedrichshafen AG
  • Volkswagen AG
  • Ford Motor Company
  • General Motors Company
  • GKN plc
  • Borgwarner Inc.
  • Aisin Seiki Co. Ltd

Report Scope:

In this report, the Global Passenger Car Powertrain Systems Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Passenger Car Powertrain Systems Market, By Drive Type:

  • Front-Wheel Drive
  • Rear-Wheel Drive
  • All-Wheel Drive

Passenger Car Powertrain Systems Market, By Component Type:

  • Engine
  • Transmission
  • Differentials
  • Driveshaft

Passenger Car Powertrain Systems Market, By Vehicle Type:

  • SUV
  • Sedan
  • Hatchback
  • MUV

Passenger Car Powertrain Systems Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe & CIS
  • Germany
  • Spain
  • France
  • Russia
  • Italy
  • United Kingdom
  • Belgium
  • Asia-Pacific
  • China
  • India
  • Japan
  • Indonesia
  • Thailand
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • Turkey
  • Iran
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Passenger Car Powertrain Systems Market.

Available Customizations:

  • Global Passenger Car Powertrain Systems Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Product Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Impact of COVID-19 on Global Passenger Car Powertrain Systems Market

5. Global Passenger Car Powertrain Systems Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Volume & Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Drive Type Market Share Analysis (Front-Wheel Drive, Rear-Wheel Drive, and All-Wheel Drive)
    • 5.2.2. By Component Type Market Share Analysis (Engine, Transmission, Differentials, and Driveshaft)
    • 5.2.3. By Vehicle Type Market Share Analysis (SUV, Sedan, Hatchback, MUV)
    • 5.2.4. By Regional Market Share Analysis
      • 5.2.4.1. Asia-Pacific Market Share Analysis
      • 5.2.4.2. Europe & CIS Market Share Analysis
      • 5.2.4.3. North America Market Share Analysis
      • 5.2.4.4. South America Market Share Analysis
      • 5.2.4.5. Middle East & Africa Market Share Analysis
    • 5.2.5. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2022)
  • 5.3. Global Passenger Car Powertrain Systems Market Mapping & Opportunity Assessment
    • 5.3.1. By Drive Type Market Mapping & Opportunity Assessment
    • 5.3.2. By Component Type Market Mapping & Opportunity Assessment
    • 5.3.3. By Vehicle Type Market Mapping & Opportunity Assessment
    • 5.3.4. By Regional Market Mapping & Opportunity Assessment

6. Asia-Pacific Passenger Car Powertrain Systems Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Volume & Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Drive Type Market Share Analysis
    • 6.2.2. By Component Type Market Share Analysis
    • 6.2.3. By Vehicle Type Market Share Analysis
    • 6.2.4. By Country Market Share Analysis
      • 6.2.4.1. China Market Share Analysis
      • 6.2.4.2. India Market Share Analysis
      • 6.2.4.3. Japan Market Share Analysis
      • 6.2.4.4. Indonesia Market Share Analysis
      • 6.2.4.5. Thailand Market Share Analysis
      • 6.2.4.6. South Korea Market Share Analysis
      • 6.2.4.7. Australia Market Share Analysis
      • 6.2.4.8. Rest of Asia-Pacific Market Share Analysis
  • 6.3. Asia-Pacific: Country Analysis
    • 6.3.1. China Passenger Car Powertrain Systems Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Volume & Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Drive Type Market Share Analysis
        • 6.3.1.2.2. By Component Type Market Share Analysis
        • 6.3.1.2.3. By Vehicle Type Market Share Analysis
    • 6.3.2. India Passenger Car Powertrain Systems Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Volume & Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Drive Type Market Share Analysis
        • 6.3.2.2.2. By Component Type Market Share Analysis
        • 6.3.2.2.3. By Vehicle Type Market Share Analysis
    • 6.3.3. Japan Passenger Car Powertrain Systems Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Volume & Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Drive Type Market Share Analysis
        • 6.3.3.2.2. By Component Type Market Share Analysis
        • 6.3.3.2.3. By Vehicle Type Market Share Analysis
    • 6.3.4. Indonesia Passenger Car Powertrain Systems Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Volume & Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Drive Type Market Share Analysis
        • 6.3.4.2.2. By Component Type Market Share Analysis
        • 6.3.4.2.3. By Vehicle Type Market Share Analysis
    • 6.3.5. Thailand Passenger Car Powertrain Systems Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Volume & Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Drive Type Market Share Analysis
        • 6.3.5.2.2. By Component Type Market Share Analysis
        • 6.3.5.2.3. By Vehicle Type Market Share Analysis
    • 6.3.6. South Korea Passenger Car Powertrain Systems Market Outlook
      • 6.3.6.1. Market Size & Forecast
        • 6.3.6.1.1. By Volume & Value
      • 6.3.6.2. Market Share & Forecast
        • 6.3.6.2.1. By Drive Type Market Share Analysis
        • 6.3.6.2.2. By Component Type Market Share Analysis
        • 6.3.6.2.3. By Vehicle Type Market Share Analysis
    • 6.3.7. Australia Passenger Car Powertrain Systems Market Outlook
      • 6.3.7.1. Market Size & Forecast
        • 6.3.7.1.1. By Volume & Value
      • 6.3.7.2. Market Share & Forecast
        • 6.3.7.2.1. By Drive Type Market Share Analysis
        • 6.3.7.2.2. By Component Type Market Share Analysis
        • 6.3.7.2.3. By Vehicle Type Market Share Analysis

7. Europe & CIS Passenger Car Powertrain Systems Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Volume & Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Drive Type Market Share Analysis
    • 7.2.2. By Component Type Market Share Analysis
    • 7.2.3. By Vehicle Type Market Share Analysis
    • 7.2.4. By Country Market Share Analysis
      • 7.2.4.1. Germany Market Share Analysis
      • 7.2.4.2. Spain Market Share Analysis
      • 7.2.4.3. France Market Share Analysis
      • 7.2.4.4. Russia Market Share Analysis
      • 7.2.4.5. Italy Market Share Analysis
      • 7.2.4.6. United Kingdom Market Share Analysis
      • 7.2.4.7. Belgium Market Share Analysis
      • 7.2.4.8. Rest of Europe & CIS Market Share Analysis
  • 7.3. Europe & CIS: Country Analysis
    • 7.3.1. Germany Passenger Car Powertrain Systems Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Volume & Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Drive Type Market Share Analysis
        • 7.3.1.2.2. By Component Type Market Share Analysis
        • 7.3.1.2.3. By Vehicle Type Market Share Analysis
    • 7.3.2. Spain Passenger Car Powertrain Systems Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Volume & Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Drive Type Market Share Analysis
        • 7.3.2.2.2. By Component Type Market Share Analysis
        • 7.3.2.2.3. By Vehicle Type Market Share Analysis
    • 7.3.3. France Passenger Car Powertrain Systems Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Volume & Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Drive Type Market Share Analysis
        • 7.3.3.2.2. By Component Type Market Share Analysis
        • 7.3.3.2.3. By Vehicle Type Market Share Analysis
    • 7.3.4. Russia Passenger Car Powertrain Systems Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Volume & Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Drive Type Market Share Analysis
        • 7.3.4.2.2. By Component Type Market Share Analysis
        • 7.3.4.2.3. By Vehicle Type Market Share Analysis
    • 7.3.5. Italy Passenger Car Powertrain Systems Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Volume & Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Drive Type Market Share Analysis
        • 7.3.5.2.2. By Component Type Market Share Analysis
        • 7.3.5.2.3. By Vehicle Type Market Share Analysis
    • 7.3.6. United Kingdom Passenger Car Powertrain Systems Market Outlook
      • 7.3.6.1. Market Size & Forecast
        • 7.3.6.1.1. By Volume & Value
      • 7.3.6.2. Market Share & Forecast
        • 7.3.6.2.1. By Drive Type Market Share Analysis
        • 7.3.6.2.2. By Component Type Market Share Analysis
        • 7.3.6.2.3. By Vehicle Type Market Share Analysis
    • 7.3.7. Belgium Passenger Car Powertrain Systems Market Outlook
      • 7.3.7.1. Market Size & Forecast
        • 7.3.7.1.1. By Volume & Value
      • 7.3.7.2. Market Share & Forecast
        • 7.3.7.2.1. By Drive Type Market Share Analysis
        • 7.3.7.2.2. By Component Type Market Share Analysis
        • 7.3.7.2.3. By Vehicle Type Market Share Analysis

8. North America Passenger Car Powertrain Systems Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Volume & Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Drive Type Market Share Analysis
    • 8.2.2. By Component Type Market Share Analysis
    • 8.2.3. By Vehicle Type Market Share Analysis
    • 8.2.4. By Country Market Share Analysis
      • 8.2.4.1. United States Market Share Analysis
      • 8.2.4.2. Mexico Market Share Analysis
      • 8.2.4.3. Canada Market Share Analysis
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Passenger Car Powertrain Systems Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Volume & Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Drive Type Market Share Analysis
        • 8.3.1.2.2. By Component Type Market Share Analysis
        • 8.3.1.2.3. By Vehicle Type Market Share Analysis
    • 8.3.2. Mexico Passenger Car Powertrain Systems Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Volume & Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Drive Type Market Share Analysis
        • 8.3.2.2.2. By Component Type Market Share Analysis
        • 8.3.2.2.3. By Vehicle Type Market Share Analysis
    • 8.3.3. Canada Passenger Car Powertrain Systems Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Volume & Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Drive Type Market Share Analysis
        • 8.3.3.2.2. By Component Type Market Share Analysis
        • 8.3.3.2.3. By Vehicle Type Market Share Analysis

9. South America Passenger Car Powertrain Systems Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Volume & Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Drive Type Market Share Analysis
    • 9.2.2. By Component Type Market Share Analysis
    • 9.2.3. By Vehicle Type Market Share Analysis
    • 9.2.4. By Country Market Share Analysis
      • 9.2.4.1. Brazil Market Share Analysis
      • 9.2.4.2. Argentina Market Share Analysis
      • 9.2.4.3. Colombia Market Share Analysis
      • 9.2.4.4. Rest of South America Market Share Analysis
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Passenger Car Powertrain Systems Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Volume & Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Drive Type Market Share Analysis
        • 9.3.1.2.2. By Component Type Market Share Analysis
        • 9.3.1.2.3. By Vehicle Type Market Share Analysis
    • 9.3.2. Colombia Passenger Car Powertrain Systems Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Volume & Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Drive Type Market Share Analysis
        • 9.3.2.2.2. By Component Type Market Share Analysis
        • 9.3.2.2.3. By Vehicle Type Market Share Analysis
    • 9.3.3. Argentina Passenger Car Powertrain Systems Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Volume & Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Drive Type Market Share Analysis
        • 9.3.3.2.2. By Component Type Market Share Analysis
        • 9.3.3.2.3. By Vehicle Type Market Share Analysis

10. Middle East & Africa Passenger Car Powertrain Systems Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Volume & Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Drive Type Market Share Analysis
    • 10.2.2. By Component Type Market Share Analysis
    • 10.2.3. By Vehicle Type Market Share Analysis
    • 10.2.4. By Country Market Share Analysis
      • 10.2.4.1. Turkey Market Share Analysis
      • 10.2.4.2. Iran Market Share Analysis
      • 10.2.4.3. Saudi Arabia Market Share Analysis
      • 10.2.4.4. UAE Market Share Analysis
      • 10.2.4.5. Rest of Middle East & Africa Market Share Africa
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. Turkey Passenger Car Powertrain Systems Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Volume & Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Drive Type Market Share Analysis
        • 10.3.1.2.2. By Component Type Market Share Analysis
        • 10.3.1.2.3. By Vehicle Type Market Share Analysis
    • 10.3.2. Iran Passenger Car Powertrain Systems Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Volume & Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Drive Type Market Share Analysis
        • 10.3.2.2.2. By Component Type Market Share Analysis
        • 10.3.2.2.3. By Vehicle Type Market Share Analysis
    • 10.3.3. Saudi Arabia Passenger Car Powertrain Systems Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Volume & Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Drive Type Market Share Analysis
        • 10.3.3.2.2. By Component Type Market Share Analysis
        • 10.3.3.2.3. By Vehicle Type Market Share Analysis
    • 10.3.4. UAE Passenger Car Powertrain Systems Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Volume & Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Drive Type Market Share Analysis
        • 10.3.4.2.2. By Component Type Market Share Analysis
        • 10.3.4.2.3. By Vehicle Type Market Share Analysis

11. SWOT Analysis

  • 11.1. Strength
  • 11.2. Weakness
  • 11.3. Opportunities
  • 11.4. Threats

12. Market Dynamics

  • 12.1. Market Drivers
  • 12.2. Market Challenges

13. Market Trends and Developments

14. Competitive Landscape

  • 14.1. Company Profiles (Up to 10 Major Companies)
    • 14.1.1. Toyota Motor Corporation
      • 14.1.1.1. Company Details
      • 14.1.1.2. Key Product Offered
      • 14.1.1.3. Financials (As Per Availability)
      • 14.1.1.4. Recent Developments
      • 14.1.1.5. Key Management Personnel
    • 14.1.2. Hyundai Motor Company
      • 14.1.2.1. Company Details
      • 14.1.2.2. Key Product Offered
      • 14.1.2.3. Financials (As Per Availability)
      • 14.1.2.4. Recent Developments
      • 14.1.2.5. Key Management Personnel
    • 14.1.3. JTEKT Corporation
      • 14.1.3.1. Company Details
      • 14.1.3.2. Key Product Offered
      • 14.1.3.3. Financials (As Per Availability)
      • 14.1.3.4. Recent Developments
      • 14.1.3.5. Key Management Personnel
    • 14.1.4. ZF Friedrichshafen AG
      • 14.1.4.1. Company Details
      • 14.1.4.2. Key Product Offered
      • 14.1.4.3. Financials (As Per Availability)
      • 14.1.4.4. Recent Developments
      • 14.1.4.5. Key Management Personnel
    • 14.1.5. Volkswagen AG
      • 14.1.5.1. Company Details
      • 14.1.5.2. Key Product Offered
      • 14.1.5.3. Financials (As Per Availability)
      • 14.1.5.4. Recent Developments
      • 14.1.5.5. Key Management Personnel
    • 14.1.6. Ford Motor Company
      • 14.1.6.1. Company Details
      • 14.1.6.2. Key Product Offered
      • 14.1.6.3. Financials (As Per Availability)
      • 14.1.6.4. Recent Developments
      • 14.1.6.5. Key Management Personnel
    • 14.1.7. General Motors Company
      • 14.1.7.1. Company Details
      • 14.1.7.2. Key Product Offered
      • 14.1.7.3. Financials (As Per Availability)
      • 14.1.7.4. Recent Developments
      • 14.1.7.5. Key Management Personnel
    • 14.1.8. GKN plc
      • 14.1.8.1. Company Details
      • 14.1.8.2. Key Product Offered
      • 14.1.8.3. Financials (As Per Availability)
      • 14.1.8.4. Recent Developments
      • 14.1.8.5. Key Management Personnel
    • 14.1.9. Borgwarner Inc.
      • 14.1.9.1. Company Details
      • 14.1.9.2. Key Product Offered
      • 14.1.9.3. Financials (As Per Availability)
      • 14.1.9.4. Recent Developments
      • 14.1.9.5. Key Management Personnel
    • 14.1.10. Aisin Seiki Co. Ltd.
      • 14.1.10.1. Company Details
      • 14.1.10.2. Key Product Offered
      • 14.1.10.3. Financials (As Per Availability)
      • 14.1.10.4. Recent Developments
      • 14.1.10.5. Key Management Personnel

15. Strategic Recommendations

  • 15.1. Key Focus Areas
    • 15.1.1. Target Regions
    • 15.1.2. Target Component Type
    • 15.1.3. Target Vehicle Type

16. About Us & Disclaimer

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦